Skip to main content

Computational Homogenization Using Convolutional Neural Networks

  • Chapter
  • First Online:
Current Trends and Open Problems in Computational Mechanics

Abstract

The classic tasks of computational engineers are to investigate and optimize structures in terms of their mechanical behavior. This iterative process usually requires a large number of calculations of different macroscopic structures of the same material. The computational time in this design-loop directly affects the time to market. Depending on the model complexity, describing the interaction between micro- and macro-scale can be computationally expensive and even prohibitive for engineering practice. This holds especially true if the physics on the micro-scale is complex involving inelastic behavior, fracture and/or phase change. In this paper, recent trends in Scientific Machine Learning (SciML), which may advance computational homogenization in the sense of the digital twin paradigm, are reviewed. We believe that SciML techniques for computational homogenization will make micro-macro simulations become applicable at low extra cost in engineering practice. This work is partially funded by the DFG Priority Program SPP 2020 Experimental-Virtual-Lab and the DFG Collaborative Research Center SFB 1153 Tailored Forming.

Dear Peter, we wish you a good health, further success in the years ahead and happy birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707.

    Article  MathSciNet  Google Scholar 

  2. Wessels, H., Weißenfels, C., & Wriggers, P. (2020). The neural particle method—An updated lagrangian physics informed neural network for computational fluid dynamics. Computer Methods in Applied Mechanics and Engineering, 368, 113–127.

    Article  MathSciNet  Google Scholar 

  3. Haghighat, E., Raissi, M., Moure, A., Gomez, H., & Juanes, R. (2020). A deep learning framework for solution and discovery in solid mechanics: Linear elasticity. arXiv:2003.02751.

  4. Yang, Z., Yabansu, Y. C., Al-Bahrani, R., Liao, W.-K., Choudhary, A. N., Kalidindi, S. R., & Agrawal, A. (2018). Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets. Computational Materials Science, 151, 278–287.

    Article  Google Scholar 

  5. Beniwal, A., Dadhich, R., & Alankar, A. (2019). Deep learning based predictive modeling for structure-property linkages. Materialia, 8, 100435.

    Google Scholar 

  6. Rao, C., & Liu, Y. (2020). Three-dimensional convolutional neural network (3D-CNN) for heterogeneous material homogenization. Computational Materials Science, 184, 109850.

    Google Scholar 

  7. Frankel, A. L., Jones, R. E., Alleman, C., & Templeton, J. A. (2019). Predicting the mechanical response of oligocrystals with deep learning. Computational Materials Science, 169, 109099.

    Google Scholar 

  8. Huang, D., Fuhg, J. N., Weißenfels, C., & Wriggers, P. (2020). A machine learning based plasticity model using proper orthogonal decomposition. Computer Methods in Applied Mechanics and Engineering, 365, 113008.

    Google Scholar 

  9. Wriggers, P., Aldakheel, F., Lohaus, L., & Heist, M. (2020). Water-induced damage mechanisms of cyclically loaded high-performance concretes. Bauingenieur, 95(4), 126–132.

    Article  Google Scholar 

  10. Obara, Y., Tanikura, I., Jung, J., Shintani, R., & Watanabe, S. (2016). Evaluation of micro-damage of concrete specimens under cyclic uniaxial loading by X-ray CT method. Journal of Advanced Concrete Technology, 14(8), 433–443.

    Article  Google Scholar 

  11. Carrara, P., Kruse, R., Bentz, D. P., Lunardelli, M., Leusmann, T., Varady, P. A., & De Lorenzis, L. (2018). Improved mesoscale segmentation of concrete from 3D X-ray images using contrast enhancers. Cement and Concrete Composites, 93, 30–42.

    Article  Google Scholar 

  12. Du Plessis, A., & Boshoff, W. P. (2019). A review of X-ray computed tomography of concrete and asphalt construction materials. Construction and Building Materials, 199, 637–651.

    Article  Google Scholar 

  13. Wriggers, P., & Moftah, S. O. (2006). Mesoscale models for concrete: Homogenisation and damage behaviour. Finite Elements in Analysis and Design, 42(7), 623–636.

    Article  Google Scholar 

  14. Hain, M., & Wriggers, P. (2008). Numerical homogenization of hardened cement paste. Computational Mechanics, 42(2), 197–212.

    Article  Google Scholar 

  15. Hain, M., & Wriggers, P. (2008). Computational homogenization of micro-structural damage due to frost in hardened cement paste. Finite Elements in Analysis and Design, 44(5), 233 – 244. The Nineteenth Annual Robert J. Melosh Competition.

    Google Scholar 

  16. Lohaus, L., Oneschkow, N., & Wefer, M. (2012). Design model for the fatigue behaviour of normal-strength, high-strength and ultra-high-strength concrete. Structural Concrete, 13(3), 182–192.

    Article  Google Scholar 

  17. Aldakheel, F., Tomann, C., Lohaus, L., & Wriggers, P. (2019). Water-induced failure mechanics for concrete. Proceedings in Applied Mathematics and Mechanics, 19(1), e201900140.

    Google Scholar 

  18. Tomann, C., Lohaus, L., Aldakheel, F., & Wriggers, P. (2019). Influence of water-induced damage mechanisms on the fatigue deterioration of high-strength concrete. Proceedings of 6th International fib Congress: Concrete—Innovations in Materials, Design and Structures.

    Google Scholar 

  19. Yang, S., Aldakheel, F., Caggiano, A., Wriggers, P., & Koenders, E. (2020). A review on cementitious self-healing and the potential of phase-field methods for modeling crack-closing and fracture recovery. Materials, 13(22), 5265.

    Article  Google Scholar 

  20. Aldakheel, F. (2020). A microscale model for concrete failure in poro-elasto-plastic media. Theoretical and Applied Fracture Mechanics, 107, 102517.

    Google Scholar 

  21. Aldakheel, F., Mauthe, S., & Miehe, C. (2014). Towards phase field modeling of ductile fracture in gradient-extended elastic-plastic solids. PAMM, 14(1), 411–412.

    Article  Google Scholar 

  22. Aldakheel, F., Hudobivnik, B., & Wriggers, P. (2019). Virtual element formulation for phase-field modeling of ductile fracture. International Journal for Multiscale Computational Engineering, 17(2).

    Google Scholar 

  23. Kienle, D., Aldakheel, F., & Keip, M.-A. (2019). A finite-strain phase-field approach to ductile failure of frictional materials. International Journal of Solids and Structures, 172, 147–162.

    Article  Google Scholar 

  24. Dittmann, M., Aldakheel, F., Schulte, J., Schmidt, F., Krüger, M., Wriggers, P., & Hesch, C. (2020). Phase-field modeling of porous-ductile fracture in non-linear thermo-elasto-plastic solids. Computer Methods in Applied Mechanics and Engineering, 361, 112730.

    Google Scholar 

  25. Zohdi, T. I., & Wriggers, P. (2008). An introduction to computational micromechanics. Springer Science & Business Media.

    Google Scholar 

  26. Schröder, J. (2014). A numerical two-scale homogenization scheme: The FE2-method. In Plasticity and Beyond (pp. 1–64). Berlin: Springer.

    Google Scholar 

  27. Aldakheel, F., Noii, N., Wick, T., & Wriggers, P. (2020). A global–local approach for hydraulic phase-field fracture in poroelastic media. Computers & Mathematics with Applications. https://doi.org/10.1016/j.camwa.2020.07.013.

  28. Noii, N., Aldakheel, F., Wick, T., & Wriggers, P. (2020). An adaptive global-local approach for phase-field modeling of anisotropic brittle fracture. Computer Methods in Applied Mechanics and Engineering, 361, 112744.

    Google Scholar 

  29. Böhm, C., Hudobivnik, B., Marino, M., & Wriggers, P. (2020). Electro-magneto-mechanically response of polycrystalline materials: Computational homogenization via the virtual element method. arXiv:2008.01516.

  30. Terada, K., Hori, M., Kyoya, T., & Kikuchi, N. (2000). Simulation of the multi-scale convergence in computational homogenization approaches. International Journal of Solids and Structures, 37(16), 2285–2311.

    Article  Google Scholar 

  31. Šolinc, U., & Korelc, J. (2015). A simple way to improved formulation of FE\(^{2}\) analysis. Computational Mechanics, 56(5), 905–915.

    Article  MathSciNet  Google Scholar 

  32. Korelc, J., & Wriggers, P. (2016). Automation of Finite Element Methods. Berlin: Springer.

    Google Scholar 

  33. O’Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv:1511.08458.

Download references

Acknowledgements

FA, MH, MH, LL and PW acknowledge funding through the DFG Priority Program SPP 2020 Experimental-Virtual-Lab under the grants number 373757395; project WR 19/58-2 and GZ-LO 751/22-2 (668132). CB, FA and PW thank the German Research Foundation (DFG) for financial support to this work in the Collaborative Research Center SFB 1153 Process chain for the production of hybrid high-performance components through tailored forming with the subproject C04 Modelling and simulation of the joining zone, project number 252662854.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Wessels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wessels, H. et al. (2022). Computational Homogenization Using Convolutional Neural Networks. In: Aldakheel, F., Hudobivnik, B., Soleimani, M., Wessels, H., Weißenfels, C., Marino, M. (eds) Current Trends and Open Problems in Computational Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-030-87312-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87312-7_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87311-0

  • Online ISBN: 978-3-030-87312-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics