Skip to main content

A Review of Nonlocality in Computational Contact Mechanics

  • Chapter
  • First Online:
Current Trends and Open Problems in Computational Mechanics

Abstract

This chapter reviews a class of methods for computational contact mechanics, where the contact problem is regularized using nonlocal interaction, to simplify discretization. This discussion is guided by an analogy to computational fracture mechanics, where nonlocal regularizations are widely employed to obtain robust computational models. Particular emphasis is given to a class of regularizations based on nonlocal integral operators. Such regularizations are analogous to the peridynamic models gaining popularity in the fracture mechanics community. The use of ideas from peridynamics to include physically-consistent friction in such regularizations illustrates the potential value of exploring nonlocal contact modeling through the contact–fracture analogy.

This article summarizes early and recent work on nonlocal approaches in computational contact mechanics and is dedicated to Prof. Peter Wriggers on the occasion of his 70th birthday. Peter’s impactful research has shaped the field of computational contact mechanics and has enabled us to tackle many computational challenges with confidence. The senior author would also like to thank Peter for his continued mentorship and support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wriggers, P. (2006). Computational Contact Mechanics (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  2. Nonlocal Models in Mathematics, Computation, Science, and Engineering. (2015). Oak Ridge, TN, United States.

    Google Scholar 

  3. Nonlocal Methods in Fracture. (2018). Austin, TX, United States.

    Google Scholar 

  4. Experimental and Computational Fracture Mechanics. (2020). Baton Rouge, LA, United States.

    Google Scholar 

  5. Ambati, M., Gerasimov, T., & De Lorenzis, L. (2015). A review on phase-field models of brittle fracture and a new fast hybrid formulation. Computational Mechanics, 55(2), 383–405.

    Article  MathSciNet  Google Scholar 

  6. Silling, S. A. (2000). Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48(1), 175–209.

    Article  MathSciNet  Google Scholar 

  7. Belytschko, T., & Neal, M. O. (1991). Contact-impact by the pinball algorithm with penalty and Lagrangian methods. International Journal for Numerical Methods in Engineering, 31(3), 547–572.

    Article  Google Scholar 

  8. Belytschko, T., & Yeh, I. S. (1991). The splitting pinball method for general contact. In Proceedings of the 10th International Conference on Computing Methods in Applied Sciences and Engineering on Computing Methods in Applied Sciences and Engineering (pp. 73–87). Commack, NY, USA: Nova Science Publishers, Inc.

    Google Scholar 

  9. Belytschko, T., & Yeh, I. S. (1993). The splitting pinball method for contact-impact problems. Computer Methods in Applied Mechanics and Engineering, 105(3), 375–393.

    Article  Google Scholar 

  10. Casadei, F., Aune, V., Valsamos, G., & Larcher, M. (2016). Generalization of the pinball contact/impact model for use with mesh adaptivity and element erosion in EUROPLEXUS. Technical Report JRC101013, European Commission: Joint Research Centre.

    Google Scholar 

  11. Chen, J.-S., Hillman, M., & Chi, S.-W. (2017). Meshfree methods: Progress made after 20 years. Journal of Engineering Mechanics, 143(4).

    Google Scholar 

  12. Guan, P. C., Chi, S. W., Chen, J. S., Slawson, T. R., & Roth, M. J. (2011). Semi-Lagrangian reproducing kernel particle method for fragment-impact problems. International Journal of Impact Engineering, 38(12), 1033–1047.

    Article  Google Scholar 

  13. Silling, S. A., & Askari, E. (2005). A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures, 83(17), 1526–1535. Advances in Meshfree Methods.

    Google Scholar 

  14. Parks, M. L., Littlewood, D. J., Mitchell, J. A., & Silling, S. A. (2012). Peridigm users’ guide. Technical Report SAND2012-7800, Sandia National Laboratories.

    Google Scholar 

  15. Sulsky, D., Chen, Z., & Schreyer, H. L. (1994). A particle method for history-dependent materials. Computer Methods in Applied Mechanics and Engineering, 118(1), 179–196.

    Article  MathSciNet  Google Scholar 

  16. Wriggers, P., Schröder, J., & Schwarz, A. (2013). A finite element method for contact using a third medium. Computational Mechanics, 52(4), 837–847.

    Article  MathSciNet  Google Scholar 

  17. Schillinger, D., & Ruess, M. (2015). The finite cell method: A review in the context of higher-order structural analysis of CAD and image-based geometric models. Archives of Computational Methods in Engineering, 22(3), 391–455.

    Article  MathSciNet  Google Scholar 

  18. Bog, T., Zander, N., Kollmannsberger, S., & Rank, E. (2015). Normal contact with high order finite elements and a fictitious contact material. Computers & Mathematics with Applications, 70(7), 1370–1390.

    Article  MathSciNet  Google Scholar 

  19. Han, X., Gast, T. F., Guo, Q., Wang, S., Jiang, C., & Teran, J. (2019). A hybrid material point method for frictional contact with diverse materials. Proceedings of the ACM in Computer Graphics and Interactive Techniques, 2(2).

    Google Scholar 

  20. Chi, S.-W., Lee, C.-H., Chen, J.-S., & Guan, P.-C. (2014). A level set enhanced natural kernel contact algorithm for impact and penetration modeling. International Journal for Numerical Methods in Engineering, 102(3–4), 839–866.

    MathSciNet  MATH  Google Scholar 

  21. Sauer, R. A. (2006). An atomic interaction based continuum model for computational multiscale contact mechanics. Ph.D. thesis, University of California, Berkeley, Berkeley, California.

    Google Scholar 

  22. Sauer, R. A., & De Lorenzis, L. (2013). A computational contact formulation based on surface potentials. Computer Methods in Applied Mechanics and Engineering, 253, 369–395.

    Article  MathSciNet  Google Scholar 

  23. Kamensky, D., Xu, F., Lee, C.-H., Yan, J., Bazilevs, Y., & Hsu, M.-C. (2018). A contact formulation based on a volumetric potential: Application to isogeometric simulations of atrioventricular valves. Computer Methods in Applied Mechanics and Engineering, 330, 522–546.

    Article  MathSciNet  Google Scholar 

  24. Kamensky, D., & Bazilevs, Y. (2018). tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering.

    Google Scholar 

  25. Wu, M. C. H., Muchowski, H. M., Johnson, E. L., Rajanna, M. R., & Hsu, M.-C. (2019). Immersogeometric fluid-structure interaction modeling and simulation of transcatheter aortic valve replacement. Computer Methods in Applied Mechanics and Engineering, 357, 112556.

    Google Scholar 

  26. Kamensky, D. (2020). Open-source immersogeometric analysis of fluid–structure interaction using FEniCS and tIGAr. Computers & Mathematics with Applications. In press.

    Google Scholar 

  27. Alaydin, M. D., & Bazilevs, Y. (2021). An updated lagrangian framework for isogeometric kirchhoff–love thin-shell analysis. Computer Methods in Applied Mechanics and Engineering. In review.

    Google Scholar 

  28. Kamensky, D., Behzadinasab, M., Foster, J. T., & Bazilevs, Y. (2019). Peridynamic modeling of frictional contact. Journal of Peridynamics and Nonlocal Modeling, 1(2), 107–121.

    Article  MathSciNet  Google Scholar 

  29. Madenci, E., Barut, A., & Futch, M. (2016). Peridynamic differential operator and its applications. Computer Methods in Applied Mechanics and Engineering, 304, 408–451.

    Article  MathSciNet  Google Scholar 

  30. Tupek, M. R. (2014). Extension of the peridynamic theory of solids for the simulation of materials under extreme loadings. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.

    Google Scholar 

  31. Silling, S. A., Epton, M., Weckner, O., Xu, J., & Askari, E. (2007). Peridynamic states and constitutive modeling. Journal of Elasticity, 88(2), 151–184.

    Article  MathSciNet  Google Scholar 

  32. Bessa, M. A., Foster, J. T., Belytschko, T., & Liu, W. K. (2014). A meshfree unification: Reproducing kernel peridynamics. Computational Mechanics, 53(6), 1251–1264.

    Google Scholar 

  33. Hillman, M., Pasetto, M., & Zhou, G. (2020). Generalized reproducing kernel peridynamics: Unification of local and non-local meshfree methods, non-local derivative operations, and an arbitrary-order state-based peridynamic formulation. Computational Particle Mechanics, 7(2), 435–469.

    Article  Google Scholar 

  34. Lipton, R. (2014). Dynamic brittle fracture as a small horizon limit of peridynamics. Journal of Elasticity, 117(1), 21–50.

    Article  MathSciNet  Google Scholar 

  35. Tian, X., & Du, Q. (2014). Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM Journal on Numerical Analysis, 52(4), 1641–1665.

    Article  MathSciNet  Google Scholar 

  36. Trask, N., You, H., Yu, Y., & Parks, M. L. (2019). An asymptotically compatible meshfree quadrature rule for nonlocal problems with applications to peridynamics. Computer Methods in Applied Mechanics and Engineering, 343, 151–165.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Bazilevs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamensky, D., Alaydin, M.D., Bazilevs, Y. (2022). A Review of Nonlocality in Computational Contact Mechanics. In: Aldakheel, F., Hudobivnik, B., Soleimani, M., Wessels, H., Weißenfels, C., Marino, M. (eds) Current Trends and Open Problems in Computational Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-030-87312-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87312-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87311-0

  • Online ISBN: 978-3-030-87312-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics