Skip to main content

3D Semantic Mapping from Arthroscopy Using Out-of-Distribution Pose and Depth and In-Distribution Segmentation Training

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Minimally invasive surgery (MIS) has many documented advantages, but the surgeon’s limited visual contact with the scene can be problematic. Hence, systems that can help surgeons navigate, such as a method that can produce a 3D semantic map, can compensate for the limitation above. In theory, we can borrow 3D semantic mapping techniques developed for robotics, but this requires finding solutions to the following challenges in MIS: 1) semantic segmentation, 2) depth estimation, and 3) pose estimation. In this paper, we propose the first 3D semantic mapping system from knee arthroscopy that solves the three challenges above. Using out-of-distribution non-human datasets, where pose could be labeled, we jointly train depth+pose estimators using self-supervised and supervised losses. Using an in-distribution human knee dataset, we train a fully-supervised semantic segmentation system to label arthroscopic image pixels into femur, ACL, and meniscus. Taking testing images from human knees, we combine the results from these two systems to automatically create 3D semantic maps of the human knee. The result of this work opens the pathway to the generation of intra-operative 3D semantic mapping, registration with pre-operative data, and robotic-assisted arthroscopy. Source code: https://github.com/YJonmo/EndoMapNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, S., Jonmohamadi, Y., Roberts, J., Crawford, R., Carneiro, G., Pandey, A.K.: Arthroscopic multi-spectral scene segmentation using deep learning. arXiv preprint arXiv:2001.05566 (2021)

  2. Ali, S., Jonmohamadi, Y., Takeda, Y., Roberts, J., Crawford, R., Pandey, A.K.: Supervised scene illumination control in stereo arthroscopes for robot assisted minimally invasive surgery. IEEE Sens. J. 4(10), 11577–11587 (2020)

    Google Scholar 

  3. Bae, G., Budvytis, I., Yeung, C.-K., Cipolla, R.: Deep multi-view stereo for dense 3D reconstruction from monocular endoscopic video. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 774–783. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_74

    Chapter  Google Scholar 

  4. Chen, R.J., Bobrow, T.L., Athey, T., Mahmood, F., Durr, N.J.: Slam endoscopy enhanced by adversarial depth prediction. arXiv preprint arXiv:1907.00283 (2019)

  5. Da, K.: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  6. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 270–279 (2017)

    Google Scholar 

  7. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3828–3838 (2019)

    Google Scholar 

  8. Grasa, O.G., Bernal, E., Casado, S., Gil, I., Montiel, J.M.M.: Visual SLAM for handheld monocular endoscope. IEEE Trans. Med. Imag. 33(1), 135–146 (2013)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Jaiprakash, A., et al.: Orthopaedic surgeon attitudes towards current limitations and the potential for robotic and technological innovation in arthroscopic surgery. J. Orthop. Surg. 25(1), 2309499016684993 (2017)

    Google Scholar 

  11. Jonmohamadi, Y., et al.: Automatic segmentation of multiple structures in knee arthroscopy using deep learning. IEEE Access 8, 51853–51861 (2020)

    Google Scholar 

  12. Leonard, S., et al.: Evaluation and stability analysis of video-based navigation system for functional endoscopic sinus surgery onin vivoclinical data. IEEE Trans. Med. Imag. 37(10), 2185–2195 (2018)

    Google Scholar 

  13. Liu, F., Jonmohamadi, Y., Maicas, G., Pandey, A.K., Carneiro, G.: Self-supervised Depth Estimation to Regularise Semantic Segmentation in Knee Arthroscopy. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 594–603. Springer (2020). https://doi.org/10.1007/10704282

  14. Liu, X., et al.: Dense depth estimation in monocular endoscopy with self-supervised learning methods. IEEE Trans. Med. Imag. 39(5), 1438–1447 (2019)

    Google Scholar 

  15. Liu, X., et al.: Self-supervised Learning for Dense Depth Estimation in Monocular Endoscopy. arXiv pp. arXiv-1806 (2018)

    Google Scholar 

  16. Liu, X., et al.: Reconstructing sinus anatomy from endoscopic video-towards a radiation-free approach for quantitative longitudinal assessment. arXiv preprint arXiv:2003.08502 (2020)

  17. Ma, R., Wang, R., Pizer, S., Rosenman, J., McGill, S.K., Frahm, J.-M.: Real-time 3D reconstruction of colonoscopic surfaces for determining missing regions. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 573–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_64

    Chapter  Google Scholar 

  18. Marmol, A., Banach, A., Peynot, T.: Dense-arthroSLAM: Dense intra-articular 3-D reconstruction with robust localization prior for arthroscopy. IEEE Robot. Autom. Lett. 4(2), 918–925 (2019)

    Google Scholar 

  19. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4040–4048. IEEE, Las Vegas, NV, USA, June 2016. /DOIurl 0.1109/CVPR.2016.438, http://ieeexplore.ieee.org/document/7780807/

  20. Otsu, H., Yamamoto, M., Hachisuka, T.: Reproducing spectral reflectances from tristimulus colours. Comput. Graph. Forum (2018). https://doi.org/10.1111/cgf.13332

    Article  Google Scholar 

  21. Paszke, A., et al.: Gross automatic differentiation in pytorch (2017)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Google Scholar 

  24. Sharan, L., et al.: Domain gap in adapting self-supervised depth estimation methods for stereo-endoscopy. Curr. Direct. Biomed. Eng. 6(1) (2020)

    Google Scholar 

  25. Ullman, S.: The interpretation of structure from motion. Proc. R. Soc. Lond. Ser B Biol. Sci. 203(1153), 405–426 (1979)

    Google Scholar 

  26. Vijayanarasimhan, S., Ricco, S., Schmid, C., Sukthankar, R., Fragkiadaki, K.: Sfm-net: learning of structure and motion from video. arXiv preprint arXiv:1704.07804 (2017)

  27. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Google Scholar 

  28. Wu, L., et al.: Robotic and image-guided knee arthroscopy. In: Handbook of Robotic and Image-Guided Surgery, pp. 493–514. Elsevier, Amesterdam (2020)

    Google Scholar 

  29. Yang, Z., Wang, P., Wang, Y., Xu, W., Nevatia, R.: Lego: learning edge with geometry all at once by watching videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 225–234 (2018)

    Google Scholar 

  30. Zach, C., Pock, T., Bischof, H.: A globally optimal algorithm for robust tv-l 1 range image integration. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)

    Google Scholar 

  31. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1851–1858 (2017)

    Google Scholar 

Download references

Acknowledgements

Supported by AISRF53820 and Australian Research Council through grants DP180103232 and FT190100525.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jonmohamadi, Y. et al. (2021). 3D Semantic Mapping from Arthroscopy Using Out-of-Distribution Pose and Depth and In-Distribution Segmentation Training. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12902. Springer, Cham. https://doi.org/10.1007/978-3-030-87196-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87196-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87195-6

  • Online ISBN: 978-3-030-87196-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics