Skip to main content

Efficient Semi-supervised Gross Target Volume of Nasopharyngeal Carcinoma Segmentation via Uncertainty Rectified Pyramid Consistency

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Gross Target Volume (GTV) segmentation plays an irreplaceable role in radiotherapy planning for Nasopharyngeal Carcinoma (NPC). Despite that Convolutional Neural Networks (CNN) have achieved good performance for this task, they rely on a large set of labeled images for training, which is expensive and time-consuming to acquire. In this paper, we propose a novel framework with Uncertainty Rectified Pyramid Consistency (URPC) regularization for semi-supervised NPC GTV segmentation. Concretely, we extend a backbone segmentation network to produce pyramid predictions at different scales. The pyramid predictions network (PPNet) is supervised by the ground truth of labeled images and a multi-scale consistency loss for unlabeled images, motivated by the fact that prediction at different scales for the same input should be similar and consistent. However, due to the different resolution of these predictions, encouraging them to be consistent at each pixel directly has low robustness and may lose some fine details. To address this problem, we further design a novel uncertainty rectifying module to enable the framework to gradually learn from meaningful and reliable consensual regions at different scales. Experimental results on a dataset with 258 NPC MR images showed that with only 10% or 20% images labeled, our method largely improved the segmentation performance by leveraging the unlabeled images, and it also outperformed five state-of-the-art semi-supervised segmentation methods. Moreover, when only 50% labeled images, URPC achieved an average Dice score of 82.74% that was close to fully supervised learning. Code is available at: https://github.com/HiLab-git/SSL4MIS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, W., et al.: Semi-supervised learning for network-based cardiac MR image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 253–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_29

    Chapter  Google Scholar 

  2. Bortsova, G., Dubost, F., Hogeweg, L., Katramados, I., de Bruijne, M.: Semi-supervised medical image segmentation via learning consistency under transformations. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 810–818. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_90

    Chapter  Google Scholar 

  3. Cao, X., Chen, H., Li, Y., Peng, Y., Wang, S., Cheng, L.: Uncertainty aware temporal-ensembling model for semi-supervised abus mass segmentation. TMI 40(1), 431–443 (2020)

    Google Scholar 

  4. Chaitanya, K., Karani, N., Baumgartner, C.F., Becker, A., Donati, O., Konukoglu, E.: Semi-supervised and task-driven data augmentation. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 29–41. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_3

    Chapter  Google Scholar 

  5. Chen, W., et al.: Cancer statistics in China, 2015. CA: A Cancer J. Clin. 66(2), 115–132 (2016)

    Google Scholar 

  6. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  7. Cui, W., et al.: Semi-supervised brain lesion segmentation with an adapted mean teacher model. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 554–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_43

    Chapter  Google Scholar 

  8. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML, pp. 1050–1059 (2016)

    Google Scholar 

  9. Hang, W., et al.: Local and global structure-aware entropy regularized mean teacher model for 3D left atrium segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 562–571. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_55

    Chapter  Google Scholar 

  10. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Artificial Intelligence and Statistics, pp. 562–570. PMLR (2015)

    Google Scholar 

  11. Li, S., Zhang, C., He, X.: Shape-aware semi-supervised 3D semantic segmentation for medical images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 552–561. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_54

    Chapter  Google Scholar 

  12. Li, X., Yu, L., Chen, H., Fu, C.W., Xing, L., Heng, P.A.: Transformation-consistent self-ensembling model for semisupervised medical image segmentation. TNNLS 32(2), 523–534 (2020)

    Google Scholar 

  13. Lin, L., et al.: Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma. Radiology 291(3), 677–686 (2019)

    Article  Google Scholar 

  14. Luo, X.: SSL4MIS (2020). https://github.com/HiLab-git/SSL4MIS

  15. Luo, X., Chen, J., Song, T., Wang, G.: Semi-supervised medical image segmentation through dual-task consistency. In: AAAI, vol. 35, no. 10, pp. 8801–8809 (2021)

    Google Scholar 

  16. Ma, J., et al.: Active contour regularized semi-supervised learning for COVID-19 CT infection segmentation with limited annotations. Phys. Med. Biol. 65(22), 225034 (2020)

    Article  Google Scholar 

  17. Nie, D., Gao, Y., Wang, L., Shen, D.: ASDNet: attention based semi-supervised deep networks for medical image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 370–378. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_43

    Chapter  Google Scholar 

  18. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS, pp. 8026–8037 (2019)

    Google Scholar 

  19. Peng, J., Pedersoli, M., Desrosiers, C.: Mutual information deep regularization for semi-supervised segmentation. In: MIDL, pp. 601–613. PMLR (2020)

    Google Scholar 

  20. Qiao, S., Shen, W., Zhang, Z., Wang, B., Yuille, A.: Deep co-training for semi-supervised image recognition. In: ECCV, pp. 135–152 (2018)

    Google Scholar 

  21. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NeurIPS, pp. 1195–1204 (2017)

    Google Scholar 

  22. Verma, V., Lamb, A., Kannala, J., Bengio, Y., Lopez-Paz, D.: Interpolation consistency training for semi-supervised learning. In: IJCAI, pp. 3635–3641 (2019)

    Google Scholar 

  23. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation. In: CVPR, pp. 2517–2526 (2019)

    Google Scholar 

  24. Wang, G., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T., Zhang, S.: Uncertainty-guided efficient interactive refinement of fetal brain segmentation from stacks of MRI slices. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 279–288. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_28

    Chapter  Google Scholar 

  25. Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338, 34–45 (2019)

    Article  Google Scholar 

  26. Wang, Y., et al.: Double-uncertainty weighted method for semi-supervised learning. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 542–551. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_53

    Chapter  Google Scholar 

  27. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

  28. Yushkevich, P.A., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  29. Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408–416. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_47

    Chapter  Google Scholar 

  30. Zheng, Z., Yang, Y.: Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation. IJCV 129(4), 1106–1120 (2021). https://doi.org/10.1007/s11263-020-01395-y

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundations of China [81771921, 61901084], and also by key research and development project of Sichuan province, China [20ZDYF2817]. We thank M.D. Mengwan Wu and Yuanyuan Shen from the Sichuan Provincial People’s Hospital for the data annotation and checking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guotai Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 314 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, X. et al. (2021). Efficient Semi-supervised Gross Target Volume of Nasopharyngeal Carcinoma Segmentation via Uncertainty Rectified Pyramid Consistency. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12902. Springer, Cham. https://doi.org/10.1007/978-3-030-87196-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87196-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87195-6

  • Online ISBN: 978-3-030-87196-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics