Skip to main content

Vulnerability and Resilience Status of River Systems of North-Eastern India: A Special Reference to Brahmaputra

  • Chapter
  • First Online:
Riverine Systems

Abstract

Rivers are one of the significant components of water cycle on a global scale. These river systems are essential for the geochemical cycling of the elements and rivers do have their geochemistry from their point of origin but on their due course this water chemistry changes due to the various factors. River geochemistry effects due to changes in natural and anthropogenic sources including the process of chemical weathering of silicates and carbonates which convert atmospheric CO2 into dissolved HCO3 (Das et al., 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allan, J.D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution and Systematics, 257-284.

    Google Scholar 

  • Allen, J.D. (1995). Nutrient dynamics. In: Stream Ecology: Structure and Functions of Running Waters (pp. 283–303). London: Chapman & Hall.

    Google Scholar 

  • Arrigoni, A., Findlay, S., Fischer, D. and Tockner, K. (2008). Predicting carbon and nutrient transformations in tidal freshwater wetlands of the Hudson River. Ecosystems, 11(5): 790-802.

    Article  Google Scholar 

  • Barman, N. and Gokhale, S. (2019). Urban black carbon-source apportionment, emissions and long-range transport over the Brahmaputra River Valley. Science of the Total Environment, 693: 133577.

    Article  Google Scholar 

  • Bora, M. and Goswami, D.C. (2017). Water quality assessment in terms of water quality index (WQI): Case study of the Kolong River, Assam, India. Applied Water Science, 7(6): 3125-3135.

    Article  Google Scholar 

  • Bhuyan, P., Barman, N., Bora, J., Daimari, R., Deka, P. and Hoque, R.R. (2016a). Attributes of aerosol bound water soluble ions and carbon, and their relationships with AOD over the Brahmaputra Valley. Atmospheric Environment, 142: 194-209.

    Article  Google Scholar 

  • Bhuyan, P., Barman, N., Begum, S., Gogoi, D., Borah, S., Kumar, M., Sarma, K.P. and Hoque, R.R. (2016b). Spatial and Seasonal Variations of Water Soluble Ions in PM 10 of Mid-Brahmaputra Plain of Assam Valley. Asian Journal of Water, Environment and Pollution, 13(2): 69-81.

    Article  Google Scholar 

  • Capone, D.G. and Kiene, R.P. (1998). Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon metabolism. Limnology and Oceanography, 33: 725-749.

    Google Scholar 

  • Chakraborti, D., Rahman, M.M., Das, B., Nayak, B., Pal, A., Sengupta, M.K., Hossain, M.A., Ahamed, S., Sahu, M., Saha, K.C. and Mukherjee, S.C. (2013). Groundwater arsenic contamination in Ganga–Meghna–Brahmaputra plain, its health effects and an approach for mitigation. Environmental Earth Sciences, 70(5): 1993-2008.

    Article  Google Scholar 

  • Chakraborty, P., Sakthivel, S., Kumar, B., Kumar, S., Mishra, M., Verma, V.K. and Gaur, R. (2014). Spatial distribution of persistent organic pollutants in the surface water of River Brahmaputra and River Ganga in India. Reviews on Environmental Health, 29(1-2): 45-48.

    Article  Google Scholar 

  • Chetia, M., Chatterjee, S., Banerjee, S., Nath, M.J., Singh, L., Srivastava, R.B. and Sarma, H.P. (2011). Groundwater arsenic contamination in Brahmaputra river basin: A water quality assessment in Golaghat (Assam), India. Environmental Monitoring and Assessment, 173(1-4): 371-385.

    Article  Google Scholar 

  • Coleman, J.M. (1969). Brahmaputra River: Channel processes and sedimentation. Sedimentary Geology, 3(2-3): 129-239.

    Article  Google Scholar 

  • Conley et al. (2009). Controlling eutrophication: Nitrogen and phosphorus. Science, 323: 1014-1015.

    Article  Google Scholar 

  • Das, J.D., Dutta, T. and Saraf, A.K. (2007). Remote sensing and GIS application in change detection of the Barak river channel, NE India. Journal of the Indian Society of Remote Sensing, 35(4): 301-312.

    Article  Google Scholar 

  • Das, N., Deka, J.P., Shim, J., Patel, A.K., Kumar, A., Sarma, K.P. and Kumar, M., (2016). Effect of river proximity on the arsenic and fluoride distribution in the aquifers of the Brahmaputra Floodplains, Assam, Northeast India.

    Google Scholar 

  • Das, N., Sarma, K.P., Patel, A.K., Deka, J.P., Das, A., Kumar, A., Shea, P.J. and Kumar, M. (2017a). Seasonal disparity in the co-occurrence of arsenic and fluoride in the aquifers of the Brahmaputra flood plains, Northeast India. Environmental Earth Sciences, 76(4): 183.

    Article  Google Scholar 

  • Das, N., Sarma, K.P., Patel, A.K., Deka, J.P., Das, A., Kumar, A., Shea, P.J. and Kumar, M. (2017b). Seasonal disparity in the co-occurrence of arsenic and fluoride in the aquifers of the Brahmaputra flood plains, Northeast India. Environ. Earth Sci.

    Google Scholar 

  • Das A. (2016) Coupled application of Geochemistry, Isotope and SWAT modeling to understand nutrient dynamics in the Brahmaputra river system. Tejpur University, India

    Google Scholar 

  • Das, P., Sarma, K.P., Jha, P.K., Ranjan, R., Herbert, R. and Kumar, M. (2016). Understanding the Cyclicity of Chemical Weathering and Associated CO2 Consumption in the Brahmaputra River Basin (India): The Role of Major Rivers in Climate Change Mitigation Perspective. Aquatic Geochemistry, 22(3): 225-251.

    Article  Google Scholar 

  • Duan et al. (2011). Temperature Control on Soluble Reactive Phosphorus in the Lower Mississippi River? Estuaries and Coasts, 34: 78-89.

    Article  Google Scholar 

  • Duda, A.M. (1993). Addressing non-point sources of water pollution must become an international priority. Water Sci. Technol., 28(3-5): 1-11.

    Article  Google Scholar 

  • Ensign, S.H. and Doyle, M.W. (2006). Nutrient spiraling in streams and river networks. Journal of Geophysical Research: Biogeosciences, 111(G4).

    Google Scholar 

  • Goswami, D.C. (1985). Brahmaputra River, Assam, India: Physiography, basin denudation and channel aggradation. Water Resources Research, 21(7): 959-978.

    Article  Google Scholar 

  • Islam, M.S. and Islam, M.N. (2016). “Environmentalism of the poor”: The Tipaimukh Dam, ecological disasters and environmental resistance beyond borders. Bandung: Journal of the Global South, 3(1): 27.

    Article  Google Scholar 

  • Khan, I. and Ali, M. (2019). Potential Changes to the Water Balance of the Teesta River Basin Due to Climate Change. American Journal of Water Resources, 7(3): 95-105.

    Google Scholar 

  • Khangembam, S. and Kshetrimayum, K.S. (2019). Evaluation of hydrogeochemical controlling factors and water quality index of water resources of the Barak valley of Assam, Northeast India. Groundwater for Sustainable Development, 8: 541-553.

    Article  Google Scholar 

  • Kumar, M., Patel, A.K., Das, A., Das, N. and Goswami, R. (2017). Comparative understanding of arsenic enrichment and mobilization in the aquifers of the river Ganges and Brahmaputra: A provenance, prevalence and health perspective.

    Google Scholar 

  • Kumar, M., Patel, A.K., Das, A., Kumar, P., Goswami, R., Deka, P. and Das, N. (2017). Hydrogeochemical controls on mobilization of arsenic and associated health risk in Nagaon district of the central Brahmaputra Plain, India. Environmental Geochemistry and Health, 39(1): 161-178.

    Article  Google Scholar 

  • Kumar, M., Chaminda, T., Honda, R. and Furumai, H. (2019). Vulnerability of urban waters to emerging contaminants in India and Sri Lanka: Resilience framework and strategy. APN Science Bulletin, 9(1). doi:https://doi.org/10.30852/sb.2019.799.

  • Lam, Q.D., Schmalz, B. and Fohrer, N. (2010). Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model. Agr. Water Manage., 97: 317-325.

    Article  Google Scholar 

  • Laskar, A.A. and Phukon, P. (2012). Erosional vulnerability and spatio-temporal variability of the Barak River, NE India. Current Science, 80-86.

    Google Scholar 

  • Lindgren, G.A., Wrede, S., Seibert, J. and Wallin, M. (2007). Nitrogen source apportionment modeling and the effect of land-use class related runoff contributions. Nord. Hydrol., 38(4-5): 317-331.

    Article  Google Scholar 

  • Mahanta, C., Zaman, A.M., Newaz, S.S., Rahman, S.M.M., Mazumdar, T.K., Choudhury, R., Borah, P.J. and Saikia, L. (2014). Physical assessment of the Brahmaputra River. Ecosystems for Life: A Bangladesh-India Initiative.

    Google Scholar 

  • Meetei, L.I., Pattanayak, S.K., Bhaskar, A., Pandit, M.K. and Tandon, S.K. (2007). Climatic imprints in Quaternary valley fill deposits of the middle Teesta valley, Sikkim Himalaya. Quaternary International, 159(1): 32-46.

    Article  Google Scholar 

  • Nath, K.D., Borah, S., Yadav, A.K., Bhattacharjya, B.K., Das, P., Deka, P.M., Darngawn, O. and Nath, D.V.J. (2017). Length-weight and Length-length relationship of four native fish species from Barak River, Assam, India. Journal of Experimental Zoology India, 20(2): 977-979.

    Google Scholar 

  • Nepal, S. and Shrestha, A.B. (2015). Impact of climate change on the hydrological regime of the Indus, Ganges and Brahmaputra river basins: A review of the literature. International Journal of Water Resources Development, 31(2): 201-218.

    Article  Google Scholar 

  • Onderka, M. (2007). Correlations between several environmental factors affecting the bloom events of cyanobacteria in Liptovska Mara reservoir (Slovakia) – A simple regression model. Ecol. Model., 209: 412-416.

    Article  Google Scholar 

  • Pahuja, S. and Goswami, D.C. (2006). A fluvial geomorphology perspective on the knowledge base of the Brahmaputra. Background Paper, 3.

    Google Scholar 

  • Pervez, M.S. and Henebry, G.M. (2015). Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin. Journal of Hydrology: Regional Studies, 3: 285-311.

    Google Scholar 

  • Prasad, V.K., Ortiz, A., Stinner, B., McCartney, D., Parker, J. et al. (2005). Exploring the relationship between hydrologic parameters and nutrient loads using digital elevation model and GIS – A case study from Sugarcreek headwaters. Ohio, USA. Environ. Monit. Assess., 110: 141-169.

    Article  Google Scholar 

  • Rajkumar, B. and Sharma, G.D. (2013). Seasonal bacteriological analysis of Barak River, Assam, India. Applied Water Science, 3(3): 625-630.

    Article  Google Scholar 

  • Riseng, C.M., Wiley, M.J., Black, R.W. and Munn, M.D. (2011). Impacts of agricultural land use on biological integrity: A causal analysis. Ecological Applications, 21(8): 3128-3146.

    Article  Google Scholar 

  • Rothwell, J.J., Dise, N.B., Taylor, K.G., Allott, T.E.H., Scholefield, P., Davies, H. and Neal, C. (2011). Predicting river water quality across North West England using catchment characteristics. J. Hydrol., 395(3-4): 153-162.

    Article  Google Scholar 

  • Roy, S. and Gupta, A. (2010). Molluscan diversity in river Barak and its tributaries, Assam, India. Assam University Journal of Science and Technology, 5(1): 9-113.

    Google Scholar 

  • Saha, M., Sarkar, S.K. and Bhattacharya, B. (2006). Interspecific variation in heavy metal body concentrations in biota of Sunderban mangrove wetland, northeast India. Environment International, 32(2): 203-207.

    Article  Google Scholar 

  • Saha, M., Sengupta, S., Sinha, B. and Mishra, D.K. (2017). Assessment of physico-chemical properties, some heavy metals and arsenic of river teesta in Jalpaiguri district, West Bengal, India. Asian Journal of Research in Chemistry, 10(3): 399-404.

    Article  Google Scholar 

  • Sarin, M.M., Krishnaswami, S., Dilli, K., Somayajulu, B.L.K. and Moore, W.S. (1989). Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal. Geochimica et cosmochimica acta, 53(5): 997-1009.

    Article  Google Scholar 

  • Saunders, J.A., Lee, M.K., Uddin, A., Mohammad, S., Wilkin, R.T., Fayek, M. and Korte, N.E. (2005). Natural arsenic contamination of Holocene alluvial aquifers by linked tectonic, weathering, and microbial processes. Geochemistry, Geophysics, Geosystems, 6(4).

    Google Scholar 

  • Seitzinger, S.P., Mayorga, E., Bouwman, A.F., Kroeze, C., Beusen, A.H.W., Billen, G. and Harrison, J.A. (2010). Global river nutrient export: A scenario analysis of past and future trends. Global Biogeochemical Cycles, 24(4).

    Google Scholar 

  • Sharma, B.M., Bečanová, J., Scheringer, M., Sharma, A., Bharat, G.K., Whitehead, P.G., Klánová, J. and Nizzetto, L. (2019). Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Science of the Total Environment, 646: 1459-1467.

    Article  Google Scholar 

  • Saunders, J.A., Lee, M.K., Uddin, A., Mohammad, S., Wilkin, R.T., Fayek, M. and Korte, N.E., 2005. Natural arsenic contamination of Holocene alluvial aquifers by linked tectonic, weathering, and microbial processes. Geochemistry, Geophysics, Geosystems, 6(4).

    Google Scholar 

  • Singh, A.K. (2006). Chemistry of arsenic in groundwater of Ganges–Brahmaputra river basin. Current Science, 599-606.

    Google Scholar 

  • Singh, V., Sharma, N. and Ojha, C.S.P. eds. (2004). The Brahmaputra Water Resources (Vol. 47). Springer Science & Business Media.

    Google Scholar 

  • Subramanian, V., Richey, J.E. and Abbas, N. (1985). Geochemistry of river basins of India, Pt II: Preliminary studies on the particulate C and N in the Ganges-Brahmaputra river system. Transport of Carbon and Minerals in Major World Rivers, Pt 3: 513-518.

    Google Scholar 

  • Thorne, C.R. (2002). Geomorphic analysis of large alluvial rivers. Geomorphology, 44(3-4): 203-219.

    Article  Google Scholar 

  • Tsering, T., Wahed, M.S.A., Iftekhar, S. and Sillanpää, M. (2019). Major ion chemistry of the Teesta River in Sikkim Himalaya, India: Chemical weathering and assessment of water quality. Journal of Hydrology: Regional Studies, 24: 100612.

    Google Scholar 

  • Wiejaczka, Ł., Prokop, P., Kozłowski, R. and Sarkar, S. (2018). Reservoir’s Impact on the Water Chemistry of the Teesta River Mountain Course (Darjeeling Himalaya). Ecological Chemistry and Engineering S, 25(1): 73-88.

    Article  Google Scholar 

  • Yan, H., Liu, J., Huang, H.Q., Tao, B. and Cao, M. (2009). Assessing the consequence of land use change on agricultural productivity in China. Global and Planetary Change, 67(1): 13-19.

    Article  Google Scholar 

  • Yasuda, Y., Aich, D., Hill, D., Huntjens, P. and Swain, A. (2017). Transboundary water cooperation over the Brahmaputra River. Legal political economy analysis of current and future potential cooperation. Hague, the Netherlands: The Hague Institute for Global Justice.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakur, A.K., Das, A., Kumar, M. (2022). Vulnerability and Resilience Status of River Systems of North-Eastern India: A Special Reference to Brahmaputra. In: Mukherjee, A. (eds) Riverine Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-87067-6_5

Download citation

Publish with us

Policies and ethics