Skip to main content

Early Detection of Parkinson’s Disease from Micrographic Static Hand Drawings

  • Conference paper
  • First Online:
Brain Informatics (BI 2021)

Abstract

Parkinson’s disease (PD) is a neurological illness that occurs by the degeneration of cells in the nervous system. Early symptoms include tremors or involuntary movements of the hands, arms, legs, and jaw. Currently, the only method to diagnose PD involves the observation of its prodromal symptoms. Moreover, detecting handwriting will work as a variable for clinitians to understand PD in patients better. With the advancement of technology, it is possible to build applications that will aid in diagnosing PD without any clinical intervention. The majority suffering from PD have handwriting abnormalities (referred to as micrographia), which is the most reported among earlier signs of the disease. So this research is undertaken by focusing on the implication of micrographia. For this purpose, handwritten images are collected from a group of 136 PD patients and 36 healthy patients. These images form a dataset of 800 images that are used to train a model which will accurately classify PD patients. To achieve this transfer learning is chosen because of its ability to produce accurate results regardless of the limited size of the dataset. Here, different models of transfer learning are trained to figure out the well-fitting model. It was observed that VGG-16 performed adequately with a training accuracy of 90.63% while a testing accuracy of 91.36%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, T.U., Hossain, S., Hossain, M.S., ul Islam, R., Andersson, K.: Facial expression recognition using convolutional neural network with data augmentation. In: 2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 336–341. IEEE (2019)

    Google Scholar 

  2. Belalcazar-Bolaños, E.A., Orozco-Arroyave, J.R., Vargas-Bonilla, J.F., Arias-Londoño, J.D., Castellanos-Domínguez, C.G., Nöth, E.: New cues in low-frequency of speech for automatic detection of Parkinson’s disease. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds.) IWINAC 2013. LNCS, vol. 7930, pp. 283–292. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38637-4_29

    Chapter  Google Scholar 

  3. De Rijk, M.D., et al.: Prevalence of Parkinson’s disease in Europe: a collaborative study of population-based cohorts. Neurologic diseases in the elderly research group. Neurology 54(11 Suppl 5), S21–S23 (2000)

    Google Scholar 

  4. De Stefano, C., Fontanella, F., Impedovo, D., Pirlo, G., di Freca, A.S.: Handwriting analysis to support neurodegenerative diseases diagnosis: a review. Pattern Recogn. Lett. 121, 37–45 (2019)

    Article  Google Scholar 

  5. Gallicchio, C., Micheli, A., Pedrelli, L.: Deep echo state networks for diagnosis of Parkinson’s disease. arXiv preprint arXiv:1802.06708 (2018)

  6. Gil-Martín, M., Montero, J.M., San-Segundo, R.: Parkinson’s disease detection from drawing movements using convolutional neural networks. Electronics 8(8), 907 (2019)

    Article  Google Scholar 

  7. Haller, S., Badoud, S., Nguyen, D., Garibotto, V., Lovblad, K., Burkhard, P.: Individual detection of patients with Parkinson disease using support vector machine analysis of diffusion tensor imaging data: initial results. Am. J. Neuroradiol. 33(11), 2123–2128 (2012)

    Article  Google Scholar 

  8. Isenkul, M., Sakar, B., Kursun, O., et al.: Improved spiral test using digitized graphics tablet for monitoring Parkinson’s disease. In: Proceedings of the International Conference on e-Health and Telemedicine, pp. 171–5 (2014)

    Google Scholar 

  9. Islam, M.Z., Hossain, M.S., ul Islam, R., Andersson, K.: Static hand gesture recognition using convolutional neural network with data augmentation. In: 2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 324–329. IEEE (2019)

    Google Scholar 

  10. Islam, R.U., Hossain, M.S., Andersson, K.: A deep learning inspired belief rule-based expert system. IEEE Access 8, 190637–190651 (2020)

    Article  Google Scholar 

  11. Jamil, M.N., Hossain, M.S., ul Islam, R., Andersson, K.: A belief rule based expert system for evaluating technological innovation capability of high-tech firms under uncertainty. In: 2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 330–335. IEEE (2019)

    Google Scholar 

  12. Kabir, S., Islam, R.U., Hossain, M.S., Andersson, K.: An integrated approach of belief rule base and deep learning to predict air pollution. Sensors 20(7), 1956 (2020)

    Article  Google Scholar 

  13. Karim, R., Andersson, K., Hossain, M.S., Uddin, M.J., Meah, M.P.: A belief rule based expert system to assess clinical bronchopneumonia suspicion. In: 2016 Future Technologies Conference (FTC), pp. 655–660. IEEE (2016)

    Google Scholar 

  14. Khatamino, P., Cantürk, İ., Özyilmaz, L.: A deep learning-CNN based system for medical diagnosis: an application on Parkinson’s disease handwriting drawings. In: 2018 6th International Conference on Control Engineering & Information Technology (CEIT), pp. 1–6. IEEE (2018)

    Google Scholar 

  15. Kotsavasiloglou, C., Kostikis, N., Hristu-Varsakelis, D., Arnaoutoglou, M.: Machine learning-based classification of simple drawing movements in Parkinson’s disease. Biomed. Signal Process. Control 31, 174–180 (2017)

    Article  Google Scholar 

  16. Lang, A.E., Lozano, A.M.: Parkinson’s disease. New Engl. J. Med. 339(16), 1130–1143 (1998)

    Article  Google Scholar 

  17. Little, M., McSharry, P., Hunter, E., Spielman, J., Ramig, L.: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. Nat. Precedings 1–1 (2008)

    Google Scholar 

  18. Mahmud, M., Kaiser, M.S., McGinnity, T.M., Hussain, A.: Deep learning in mining biological data. Cogn. Comput. 13(1), 1–33 (2021)

    Article  Google Scholar 

  19. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)

    Article  MathSciNet  Google Scholar 

  20. Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Al Mamun, S., Mahmud, M.: Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia. Brain Inform. 7(1), 1–21 (2020)

    Google Scholar 

  21. Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Mahmud, M., Al Mamun, S.: Detecting neurodegenerative disease from MRI: a brief review on a deep learning perspective. In: Liang, P., Goel, V., Shan, C. (eds.) Brain Informatics. International Conference on Brain Informatics, pp. 115–125. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37078-7_12

  22. Pereira, C.R., et al.: A step towards the automated diagnosis of Parkinson’s disease: analyzing handwriting movements. In: 2015 IEEE 28th International Symposium on Computer-Based Medical Systems, pp. 171–176. IEEE (2015)

    Google Scholar 

  23. Pereira, J.C., Schelp, A.O., Montagnoli, A.N., Gatto, A.R., Spadotto, A.A., Carvalho, L.R.D.: Residual signal auto-correlation to evaluate speech in Parkinson’s disease patients. Arquivos de neuro-psiquiatria 64, 912–915 (2006)

    Google Scholar 

  24. Progga, N.I., Hossain, M.S., Andersson, K.: A deep transfer learning approach to diagnose COVID-19 using x-ray images. In: 2020 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), pp. 177–182. IEEE (2020)

    Google Scholar 

  25. Rahaman, S., Hossain, M.S.: A belief rule based clinical decision support system to assess suspicion of heart failure from signs, symptoms and risk factors. In: 2013 International Conference on Informatics, Electronics and Vision (ICIEV), pp. 1–6. IEEE (2013)

    Google Scholar 

  26. Ramteke, S.P., Gurjar, A.A., Deshmukh, D.S.: A streamlined OCR system for handwritten Marathi text document classification and recognition using SVM-ACS algorithm. Int. J. Intell. Eng. Syst. 11(3), 186–195 (2018)

    Google Scholar 

  27. Rezaoana, N., Hossain, M.S., Andersson, K.: Detection and classification of skin cancer by using a parallel CNN model. In: 2020 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), pp. 380–386. IEEE (2020)

    Google Scholar 

  28. Ruiz, J., Mahmud, M., Modasshir, Md., Shamim Kaiser, M., Alzheimer’s Disease Neuroimaging Initiative: 3D DenseNet ensemble in 4-way classification of Alzheimer’s disease. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 85–96. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_8

  29. Sakar, B.E., et al.: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J. Biomed. Health Inform. 17(4), 828–834 (2013)

    Article  Google Scholar 

  30. Tammina, S.: Transfer learning using VGG-16 with deep convolutional neural network for classifying images. Int. J. Sci. Res. Publ. (IJSRP) 9(10), 143–150 (2019)

    Google Scholar 

  31. Tsanas, A., Little, M., McSharry, P., Spielman, J., Ramig, L.: A decision support system to improve medical diagnosis using a combination of k-medoids clustering based attribute weighting and svm. IEEE Trans. Biomed. Eng. 59(5), 1264–71 (2012)

    Article  Google Scholar 

  32. Tseng, M.H., Cermak, S.A.: The influence of ergonomic factors and perceptual-motor abilities on handwriting performance. Am. J. Occup. Ther. 47(10), 919–926 (1993)

    Article  Google Scholar 

  33. Tysnes, O.B., Storstein, A.: Epidemiology of Parkinson’s disease. J. Neural Transm. 124(8), 901–905 (2017)

    Article  Google Scholar 

  34. Uddin Ahmed, T., Jamil, M.N., Hossain, M.S., Andersson, K., Hossain, M.S.: An integrated real-time deep learning and belief rule base intelligent system to assess facial expression under uncertainty. In: 9th International Conference on Informatics, Electronics & Vision (ICIEV). IEEE Computer Society (2020)

    Google Scholar 

  35. Vásquez-Correa, J.C., Arias-Vergara, T., Orozco-Arroyave, J.R., Vargas-Bonilla, J.F., Arias-Londoño, J.D., Nöth, E.: Automatic detection of Parkinson’s disease from continuous speech recorded in non-controlled noise conditions. In: Sixteenth Annual Conference of the International Speech Communication Association (2015)

    Google Scholar 

  36. Zham, P., Arjunan, S.P., Raghav, S., Kumar, D.K.: Efficacy of guided spiral drawing in the classification of Parkinson’s disease. IEEE J. Biomed. Health Inform. 22(5), 1648–1652 (2017)

    Article  Google Scholar 

  37. Zisad, S.N., Chowdhury, E., Hossain, M.S., Islam, R.U., Andersson, K.: An integrated deep learning and belief rule-based expert system for visual sentiment analysis under uncertainty. Algorithms 14(7), 213 (2021)

    Article  Google Scholar 

  38. Zisad, S.N., Hossain, M.S., Andersson, K.: Speech emotion recognition in neurological disorders using convolutional neural network. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 287–296. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_26

    Chapter  Google Scholar 

  39. Zuo, W.L., Wang, Z.Y., Liu, T., Chen, H.L.: Effective detection of Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach. Biomed. Signal Process. Control 8(4), 364–373 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Basnin, N., Sumi, T.A., Hossain, M.S., Andersson, K. (2021). Early Detection of Parkinson’s Disease from Micrographic Static Hand Drawings. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds) Brain Informatics. BI 2021. Lecture Notes in Computer Science(), vol 12960. Springer, Cham. https://doi.org/10.1007/978-3-030-86993-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86993-9_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86992-2

  • Online ISBN: 978-3-030-86993-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics