Skip to main content

Role of Chitosan Nanoparticles in Regulation of Plant Physiology Under Abiotic Stress

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 53

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 53))

Abstract

Chitosan is a biopolymer derived from chitin in crustaceans. It has emerged as bio-stimulant and elicitor in agriculture sector. It is non-toxic, biodegradable and abundant in nature with potent role in regulating plant physiological aspects. Application of chitosan in the form of nanoparticles (NPs) to promote growth and development of plant is a recent topic of interest amongst researchers. It is known to protect photosynthetic machinery during abiotic stress in plants. It mitigates toxicity symptoms in plant under abiotic stresses via induction of antioxidant defence system. Chitosan NPs are known to induce plants innate immunity responses via up-regulation of defence related genes as well as elevation of secondary metabolites. The present chapter sheds some light on recent development associated with chitosan NPs-mediated modifications of plant physiology and mainly on the abiotic stress responses in plants which could prove useful for crop improvement programs in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Aziz H (2019) Effect of priming with chitosan nanoparticles on germination, seedling growth and antioxidant enzymes of broad beans. Catrina Int J Environ Sci 18:81–86

    Article  Google Scholar 

  • Ahmed KB, Khan MM, Jahan A, Siddiqui H, Uddin M (2020a) Gamma rays induced acquisition of structural modification in chitosan boosts photosynthetic machinery, enzymatic activities and essential oil production in citronella grass (CymbopogonwinterianusJowitt). Int J Biol Mac 145:372–389

    Article  CAS  Google Scholar 

  • Ahmed KB, Khan MM, Siddiqui H, Jahan A (2020b) Chitosan and its oligosaccharides, a promising option for sustainable crop production-a review. Carbohydr Polymers 227:115331

    Article  Google Scholar 

  • Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667

    Article  CAS  Google Scholar 

  • Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S (2020) Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol Biochem 156:64–77

    Google Scholar 

  • Asgari-Targhi G, Iranbakhsh A, Ardebili ZO (2018) Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. Plant Physiol Biochem 127:393–402

    Article  CAS  PubMed  Google Scholar 

  • Avestan S, Naseri L, Barker AV (2017) Evaluation of nanosilicon dioxide and chitosan on tissue culture of apple under agar-induced osmotic stress. J Plant Nutr 40:2797–2807

    Article  CAS  Google Scholar 

  • Bandara S, Du H, Carson L, Bradford D, Kommalapati R (2020) Agricultural and biomedical applications of chitosan-based nanomaterials. Nanomaterials 10(10):1903

    Article  CAS  PubMed Central  Google Scholar 

  • Behboudi F, TahmasebiSarvestani Z, Kassaee MZ, ModaresSanavi SAM, Sorooshzadeh A, Ahmadi SB (2018) Evaluation of chitosan nanoparticles effects on yield and yield components of barley (Hordeum vulgare L.) under late season drought stress. Water Environ Nanotechnol 3:22–39

    CAS  Google Scholar 

  • Behboudi F, Sarvestani ZT, Kassaee MZ, Modarres-Sanavy SAM, Sorooshzadeh A, Mokhtassi-Bidgoli A (2019) Evaluation of chitosan nanoparticles effects with two application methods on wheat under drought stress. J Plant Nutr 42:1439–1451

    Article  CAS  Google Scholar 

  • Bistgani ZE, Siadat SA, Bakhshandeh A, Pirbalouti AG, Hashemi M (2017) Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. Crop J 5(5):407–415

    Article  Google Scholar 

  • Choi C, Nam JP, Nah JW (2016) Application of chitosan and chitosan derivatives as biomaterials. J Ind Eng Chem 33:1–10

    Article  CAS  Google Scholar 

  • Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, Biswas P, Saharan V (2017) Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci Rep 7:9754–9765

    Article  PubMed  PubMed Central  Google Scholar 

  • Deshpande P, Dapkekar A, Oak MD, Paknikar KM, Rajwade JM (2017) Zinc complexed chitosan/TPP nanoparticles: promising micronutrient nanocarrier suited for foliar application. Carbohydr Polym 165:394–401

    Article  CAS  PubMed  Google Scholar 

  • Doares SH, Syrovets T, Wieler EW, Ryan A (1995) Oligogalacturonides and chitosan activate plant defensive gene through the octadecanoid pathway. Proc Natl Acad USA 92:4095–4098

    Article  CAS  Google Scholar 

  • Espirito Santo Pereira A, Mayara Silva P, Oliveira JL, Oliveira HC, FernandesFraceto L (2017) Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloids Surf B Biointerfaces 150:141–152

    Article  Google Scholar 

  • Falcón-Rodríguez AB, Costales D, Gónzalez-Peña D, Morales D, Mederos Y, Jerez E, Cabrera JC (2017) Chitosans of different molecular weight enhance potato (Solanum tuberosum L.) yield in a field trial. Span. J Agric Res 15:e0902

    Google Scholar 

  • González Gómez H, RamírezGodina F, Ortega Ortiz H, Benavides Mendoza A, Robledo Torres V, Cabrera De la Fuente M (2017) Use of chitosan-PVA hydrogels with copper nanoparticles to improve the growth of grafted watermelon. Molecules 22:1031

    Article  PubMed Central  Google Scholar 

  • Gumilar TA, Prihastanti E, Haryanti S, Subagio A, Ngadiwiyana A (2017) Utilization of waste silica and chitosan as fertilizer nanochisil to improve corn production in Indonesia. Adv Sci Lett 23:2447–2449

    Article  Google Scholar 

  • Hadwiger LA (2013) Multiple effects of chitosan on plant systems: Solid science or hype. Plant Sci 208:42–49

    Google Scholar 

  • Hadwiger LA (2015) Anatomy of a nonhost disease resistance response of pea to Fusariumsolani: PR gene elicitation via DNase, chitosan and chromatin alterations. Front Plant Sci 6:373

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández-Hernández H, Juárez-Maldonado A, Benavides-Mendoza A, Ortega-Ortiz H, Cadenas-Pliego G, Sánchez-Aspeytia D, González-Morales S (2018) Chitosan-PVA and copper nanoparticles improve growth and overexpress the SOD and JA genes in tomato plants under salt stress. Agronomy 8:175

    Article  Google Scholar 

  • Hidangmayum A, Dwivedi P, Katiyar D, Hemantaranjan A (2019) Application of chitosan on plant responses with special reference to abiotic stress. Physiol Mol Biol Plants 25(2):313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iriti M, Faoro F (2008) Abscisic acid mediates the chitosan-induced resistance in plant against viral disease. Plant Physiol Biochem 46:1106–1111

    Article  CAS  PubMed  Google Scholar 

  • Iriti M, Faoro F (2009) Chitosan as a MAMP, searching for a PRR. Plant Signal Behav 4(1):66–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iriti M, Sironi M, Gomarasca S, Casazza AP, Soave C, Faoro F (2006) Cell death-mediated antiviral effect of chitosan in tabacco. Plant Physiol Biochem 44:893–900

    Article  CAS  PubMed  Google Scholar 

  • Iriti M, Picchi V, Rossoni M, Gomarasca S, Ludwig N, Gargano M, Faoro F (2009) Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environ Exp Bot 66:493–500

    Article  CAS  Google Scholar 

  • Kamari A, Pulford I, Hargreaves JS (2011) Chitosan as a potential amendment to remediate metal contaminated soil – a characterisation study. Colloids Surf B Biointerfaces 82:71–80

    Article  CAS  PubMed  Google Scholar 

  • Kaya M, Mujtaba M, Bulut E, Akyuz B, Zelencova L, Sofi K (2015) Fluctuation in physicochemical propertiesof chitins extracted from different body parts of honeybee. Carbohydr Polym 132:9–16

    Article  CAS  PubMed  Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2003) Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves. J Plant Physiol 160:859–863

    Article  CAS  PubMed  Google Scholar 

  • Khati P, Chaudhary P, Gangola S, Bhatt P, Sharma A (2017) Nanochitosan supports growth of Zea mays and also maintains soil health following growth. Biotech 7:81

    Google Scholar 

  • Kiani M, Rabiee N, Bagherzadeh M, Ghadiri AM, Fatahi Y, Dinarvand R, Webster TJ (2021) Improved green biosynthesis of chitosan decorated Ag-and Co3O4-nanoparticles: a relationship between surface morphology, photocatalytic and biomedical applications. Nanomedicine 32:102331

    Article  CAS  PubMed  Google Scholar 

  • Krstić-MiloÅ¡ević D, Janković T, Uzelac B, Vinterhalter D, Vinterhalter B (2017) Effect of elicitors on xanthone accumulation and biomass production in hairy root cultures of Gentianadinarica. Plant Cell Tissue Organ Cult 130:631–640

    Article  Google Scholar 

  • Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–226

    Article  CAS  Google Scholar 

  • Li WJ, Jiang X, Xue PH, Chen SM (2002) Inhibitory effects of chitosan on superoxide anion radicals and lipid free radicals. Chin Sci Bull 47:887–889

    Article  CAS  Google Scholar 

  • Li Z, Zhang Y, Zhang X, Merewitz E, Peng Y, Ma X, Yan Y (2017) Metabolic pathways regulated by chitosan contributing to drought resistance in white clover. J Proteome Res 16(8):3039–3052

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Li Y, Yu C, Wang Y, Li X, Li N, Chen Q, Bu N (2011) Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress. Protoplasma 249:393–399

    Article  PubMed  Google Scholar 

  • Mahmood N, Abbasi NA, Hafiz IA, Ali I, Zakia S (2017) Effect of biostimulants on growth, yield and quality of bell pepper cv. Yolo wonder. Pak J Agric Sci 54:311–317

    Google Scholar 

  • Malayamana V, Sisubalan N, Senthilkumar RP, Sheik Mohamed S, Ranjithkumar R, GhouseBasha M (2017) Chitosan mediated enhancement of hydrolysable tannin in Phyllanthusdebilis Klein ex Willd via plant cell suspension culture. Int J Biol Macromol 104:1656–1663

    Article  Google Scholar 

  • Malerba M, Cerana R (2015) Reactive oxygen and nitrogen species indefense/stress responses activated by chitosan in sycamore cultured cells. Int J Mol Sci 16:3019–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malerba M, Cerana R (2016) Chitosan effects on plant systems. Int J Mol Sci 17:996

    Article  PubMed Central  Google Scholar 

  • Malerba M, Cerana R (2018) Recent advances of chitosan applications in plants. Polymers 10(2):118

    Article  PubMed Central  Google Scholar 

  • Mehregan M, Mehrafarin A, Labbafi MR, NaghdiBadi H (2017) Effect of different concentrations of chitosan biostimulant on biochemical and morphophysiological traits of stevia plant (Stevia rebaudiana Bertoni). J Med Plants 16:169–181

    Google Scholar 

  • Mejía-Teniente L, Duran-Flores FD, Chapa-Oliver AM, Torres-Pacheco I, Cruz-Hernández A, González-Chavira MM, Ocampo-Velázquez RV, Guevara-González RG (2013) Oxidative and molecular responses in Capsicum annuum L. after hydrogen peroxide, salicylic acid and chitosan foliar applications. Int J Mol Sci 14:10178–10196

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammed MA, Syeda J, Wasan KM, Wasan EK (2017) An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 9(4):53

    Article  PubMed Central  Google Scholar 

  • Murugan K, Anitha J, Dinesh D, Suresh U, Rajaganesh R, Chandramohan B, Subramaniam J, Paulpandi M, Vadivalagan C, Amuthavalli P et al (2016) Fabrication of nano-mosquitocides using chitosan from crab shells: Impact on non-target organisms in the aquatic environment. Ecotoxicol Environ Saf 132:318–328

    Article  CAS  PubMed  Google Scholar 

  • Mutka JA, Rahman M, Sabir AA, Gupta DR, Surovy MZ, Rahman M, Tofazzal Islam M (2017) Chitosan and plant probiotics application enhance growth and yield of strawberry. Biocatal Agric Biotechnol 11:9–18

    Article  Google Scholar 

  • Oliveira HC, Gomes BC, Pelegrino MT, Seabra AB (2016) Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide 61:10–19

    Article  CAS  PubMed  Google Scholar 

  • Phothi R, Theerakarunwong CD (2017) Effect of chitosan on physiology, photosynthesis and biomass of rice (Oryza sativa L.) under elevated ozone. Aust J Crop Sci 11:624–630

    Article  CAS  Google Scholar 

  • Pichyangkura R, Chadchawan S (2015) Biostimulant activity of chitosan in horticulture. Sci Hort 196:49–65

    Article  CAS  Google Scholar 

  • Pirbalouti AG, Malekpoor F, Salimi A, Golparvar A (2017) Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimumciliatum and Ocimumbasilicum) under reduced irrigation. Sci Hortic 217:114–122

    Article  Google Scholar 

  • Pongprayoon W, Roytrakul S, Pichayangkura R, Chadchawan S (2013) The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.). Plant Growth Regul 70:159–173

    Article  CAS  Google Scholar 

  • Priyaadharshini M, Sritharan N, Senthil A, Marimuthu S (2019) Physiological studies on effect of chitosan nanoemulsion in pearl millet under drought condition. J Pharmacogn Phytochem 8:3304–3307

    CAS  Google Scholar 

  • Rabêlo VM, Magalhães PC, Bressanin LA, Carvalho DT, Dos Reis CO, Karam D, Doriguetto AC, Dos Santos MH, Filho PRDSS, De Souza TC (2019) The foliar application of a mixture of semisynthetic chitosan derivatives induces tolerance to water deficit in maize, improving the antioxidant system and increasing photosynthesis and grain yield. Sci Rep 9:8164

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramakrishna R, Sarkar D, Manduri A, Iyer SG, Shetty K (2017) Improving phenolic bioactive-linked anti-hyperglycemic functions of dark germinated barley sprouts (Hordeumvulgare L.) using seed elicitation strategy. J Food Sci Technol 54:3666–3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:606–632

    Article  Google Scholar 

  • Sen SK, Chouhan D, Das D, Ghosh R, Mandal P (2019) Improvisation of salinity stress response in mung bean through solid matrix priming with normal and nano-sized chitosan. Int J Boil Macromol 145:108–123

    Article  Google Scholar 

  • Silveira NM, Seabra AB, Marcos FC, Pelegrino MT, Machado EC, Ribeiro RV (2019) Encapsulation of S-nitrosoglutathione into chitosan nanoparticles improves drought tolerance of sugarcane plants. Nitric Oxide 2019(84):38–44

    Article  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Li S, Zhao X, Du Y, Ma X (2006) cDNA microarray analysis of gene expression in Brassica napus treated with oligochitosan elicitor. Plant Physiol Biochem 44:910–916

    Article  CAS  PubMed  Google Scholar 

  • Zayed M, ElKafafi S, Zedan A, Dawoud S (2017) Effect of Nano chitosan on growth, physiological and biochemical parameters of Phaseolus vulgaris under salt stress. J Plant Prod 8:577–585

    Google Scholar 

  • Zhang X, Wollenweber B, Jiang N, Liu F, Zhao J (2008) Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. J Exp Bot 59:839–848

    Article  CAS  PubMed  Google Scholar 

  • Zong H, Kecheng L, Liu S, Song L, Xing R, Chen X, Li P (2017a) Improvement in cadmium tolerance of edible rape (Brassica rapa L.) with exogenous application of chitooligosaccharide. Chemosphere 181:92–100

    Article  CAS  PubMed  Google Scholar 

  • Zong H, Liu S, Xing R, Chen X, Li P (2017b) Protective effect of chitosan on photosynthesis and antioxidative defense system in edible rape (Brassica rapa L.) in the presence of cadmium. Ecotoxicol Environ Saf 138:271–278

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arif, Y., Siddiqui, H., Hayat, S. (2021). Role of Chitosan Nanoparticles in Regulation of Plant Physiology Under Abiotic Stress. In: Faizan, M., Hayat, S., Yu, F. (eds) Sustainable Agriculture Reviews 53. Sustainable Agriculture Reviews, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-030-86876-5_16

Download citation

Publish with us

Policies and ethics