Skip to main content

EPE-NAS: Efficient Performance Estimation Without Training for Neural Architecture Search

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12895))

Included in the following conference series:

Abstract

Neural Architecture Search (NAS) has shown excellent results in designing architectures for computer vision problems. NAS alleviates the need for human-defined settings by automating architecture design and engineering. However, NAS methods tend to be slow, as they require large amounts of GPU computation. This bottleneck is mainly due to the performance estimation strategy, which requires the evaluation of the generated architectures, mainly through training, to update the sampler method. In this paper, we propose EPE-NAS, an efficient performance estimation strategy, that mitigates the problem of evaluating networks, by scoring untrained networks and correlating them with their trained performance. We perform this process by looking at intra and inter-class correlations of an untrained network. We show that EPE-NAS can produce a robust correlation and that by incorporating it into a simple random sampling strategy, we are able to search for competitive networks, without requiring any training, in a matter of seconds using a single GPU. Moreover, EPE-NAS is agnostic to the search method, as it focuses on evaluating untrained networks, making it easy to integrate into almost any NAS method.

This work was supported by ‘FCT - Fundação para a Ciência e Tecnologia’ through the research grant ‘2020.04588.BD’, partially supported by NOVA LINCS (UIDB/04516/2020) with the financial support of FCT-Fundação para a Ciência e a Tecnologia, through national funds, and partially supported by operation Centro-01-0145-FEDER-000019 - C4 - Centro de Competencias em Cloud Computing, cofinanced by the European Regional Development Fund (ERDF) through the Programa Operacional Regional do Centro (Centro 2020), in the scope of the Sistema de Apoio à Investigação Cientifíca e Tecnologica - Programas Integrados de IC&DT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code publicly available on GitHub: www.github.com/VascoLopes/EPE-NAS.

References

  1. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning. In: ICLR (2017)

    Google Scholar 

  2. Baker, B., Gupta, O., Raskar, R., Naik, N.: Accelerating neural architecture search using performance prediction. In: ICLR (2018)

    Google Scholar 

  3. Brock, A., Lim, T., Ritchie, J.M., Weston, N.: SMASH: one-shot model architecture search through hypernetworks. In: ICLR (2018)

    Google Scholar 

  4. Cai, H., Zhu, L., Han, S.: Proxylessnas: direct neural architecture search on target task and hardware. In: ICLR (2019)

    Google Scholar 

  5. Deng, L., Yu, D., et al.: Deep learning: methods and applications. Found. Trends Signal Process. 7(3–4), 197–387 (2014)

    Article  MathSciNet  Google Scholar 

  6. Domhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. In: IJCAI (2015)

    Google Scholar 

  7. Dong, X., Yang, Y.: One-shot neural architecture search via self-evaluated template network. In: ICCV. IEEE (2019)

    Google Scholar 

  8. Dong, X., Yang, Y.: Searching for a robust neural architecture in four GPU hours. In: CVPR, pp. 1761–1770 (2019)

    Google Scholar 

  9. Dong, X., Yang, Y.: NAS-bench-201: extending the scope of reproducible neural architecture search. In: ICLR (2020)

    Google Scholar 

  10. Elsken, T., Metzen, J.H., Hutter, F.: Efficient multi-objective neural architecture search via lamarckian evolution. In: ICLR (2019)

    Google Scholar 

  11. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(1), 1997–2017 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter optimization at scale. In: Dy, J.G., Krause, A. (eds.) ICML (2018)

    Google Scholar 

  13. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  15. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)

    Google Scholar 

  16. Hutter, F., Kotthoff, L., Vanschoren, J.: Automated Machine Learning. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5

    Book  Google Scholar 

  17. Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53(8), 5455–5516 (2020)

    Article  Google Scholar 

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  19. Li, L., Talwalkar, A.: Random search and reproducibility for neural architecture search. In: UAI, pp. 367–377. PMLR (2020)

    Google Scholar 

  20. Lindauer, M., Hutter, F.: Best practices for scientific research on neural architecture search. J. Mach. Learn. Res. 21(243), 1–18 (2020)

    MATH  Google Scholar 

  21. Liu, C., et al.: Progressive neural architecture search. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  22. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: ICLR (2019)

    Google Scholar 

  23. Mellor, J., Turner, J., Storkey, A.J., Crowley, E.J.: Neural Architecture Search without Training. CoRR abs/2006.04647 (2020)

    Google Scholar 

  24. Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture search via parameters sharing. In: ICML (2018)

    Google Scholar 

  25. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Aging evolution for image classifier architecture search. In: AAAI, vol. 2 (2019)

    Google Scholar 

  26. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: AAAI, pp. 4780–4789. AAAI Press (2019)

    Google Scholar 

  27. Runge, F., Stoll, D., Falkner, S., Hutter, F.: Learning to design RNA. In: ICLR (2019)

    Google Scholar 

  28. Siems, J., Zimmer, L., Zela, A., Lukasik, J., Keuper, M., Hutter, F.: NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search. arXiv preprint arXiv:2008.09777 (2020)

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  30. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  31. Tan, M., et al.: Mnasnet: platform-aware neural architecture search for mobile. In: CVPR (2019)

    Google Scholar 

  32. Tan, M., Le, Q.V.: Efficientnet: rethinking model scaling for convolutional neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) ICML (2019)

    Google Scholar 

  33. Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. (2018)

    Google Scholar 

  34. Wistuba, M., Rawat, A., Pedapati, T.: A survey on neural architecture search. CoRR abs/1905.01392 (2019)

    Google Scholar 

  35. Wu, B., et al.: Fbnet: hardware-aware efficient convnet design via differentiable neural architecture search. In: CVPR (2019)

    Google Scholar 

  36. Yang, A., Esperança, P.M., Carlucci, F.M.: Nas evaluation is frustratingly hard. In: ICLR (2020)

    Google Scholar 

  37. Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: NAS-bench-101: towards reproducible neural architecture search. In: ICML (2019)

    Google Scholar 

  38. Zela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., Hutter, F.: Understanding and robustifying differentiable architecture search. In: ICLR (2020)

    Google Scholar 

  39. Zela, A., Siems, J., Hutter, F.: Nas-bench-1shot1: benchmarking and dissecting one-shot neural architecture search. In: ICLR (2020)

    Google Scholar 

  40. Zhong, Z., Yan, J., Wu, W., Shao, J., Liu, C.L.: Practical block-wise neural network architecture generation. In: CVPR (2018)

    Google Scholar 

  41. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: ICLR (2017)

    Google Scholar 

  42. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: CVPR (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasco Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lopes, V., Alirezazadeh, S., Alexandre, L.A. (2021). EPE-NAS: Efficient Performance Estimation Without Training for Neural Architecture Search. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12895. Springer, Cham. https://doi.org/10.1007/978-3-030-86383-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86383-8_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86382-1

  • Online ISBN: 978-3-030-86383-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics