Skip to main content

ClimbLab: MATLAB Simulation Platform for Legged Climbing Robotics

  • Conference paper
  • First Online:
Robotics for Sustainable Future (CLAWAR 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 324))

Included in the following conference series:

Abstract

This paper presents an open-sourced MATLAB simulation and analysis platform dedicated to legged climbing robots. This simulator enables the design of any limbed robotic system as an articulated multi-body with a floating base and simulates it walking and climbing in an arbitrary environment. The main variable environmental parameters are inclination, gravity, and ground stiffness, and any point cloud can be installed as the terrain map. Furthermore, the simulator employs a rigid body dynamics engine. This paper first describes the simulator structure, and the computational flow and next presents the representative simulation examples where quadrupedal robots assumed gripping on the wall or climbing on the steep slope.

K. Uno and W. F. R. Ribeiro—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Made available at https://github.com/Space-Robotics-Laboratory/ClimbLab.

References

  1. Nagakubo, A., Hirose, S.: Walking and running of the quadruped wall-climbing robot. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation (ICRA) (1994)

    Google Scholar 

  2. Parness, A., et al.: LEMUR 3: a limbed climbing robot for extreme terrain mobility in space. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2017)

    Google Scholar 

  3. Bandyopadhyay, T., et al.: Magneto: a versatile multi-limbed inspection robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018)

    Google Scholar 

  4. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2004)

    Google Scholar 

  5. Rohmer, E., et al.: V-rep: a versatile and scalable robot simulation framework. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2013)

    Google Scholar 

  6. Hwangbo, J., et al.: IEEE Robot. Autom. Lett. 3, 895 (2018)

    Google Scholar 

  7. Fangohr, H.: A Comparison of C, MATLAB, and Python as Teaching Languages in Engineering. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. Lecture Notes in Computer Science, vol. 3039. Springer, Heidelber (2004). https://doi.org/10.1007/978-3-540-25944-2_157

  8. Corke, P.: Robotics, Vision and Control: Fundamental Algorithms in MATLAB® Second, Completely Revised. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-54413-7

  9. Yoshida, K.: The SpaceDyn: a MATLAB toolbox for space and mobile robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (1999)

    Google Scholar 

  10. McGhee, R., Frank, A.: Math. Biosci. 3, 331 (1968)

    Google Scholar 

  11. Yoneda, K., Hirose, S.: Tumble stability criterion of integrated locomotion and manipulation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (1996)

    Google Scholar 

  12. Ribeiro, W.F.R., et al.: Dynamic equilibrium of climbing robots based on stability polyhedron for gravito-inertial acceleration. In: Proceedings of the 23rd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR) (2020)

    Google Scholar 

  13. Uno, K., et al.: Hubrobo: a lightweight multi-limbed climbing robot for exploration in challenging terrain. In: Proceedings of the IEEE-RAS International Conferenceon Human Robotics (2021)

    Google Scholar 

  14. Hutter, M., et al.: Adv. Robot. 31, 918 (2017)

    Google Scholar 

  15. Uno, K., et al.: Gait planning for a free-climbing robot based on tumble stability. In: Proceedings of the IEEE/SICE International Symposium on System Integration (2019)

    Google Scholar 

  16. Hooks, J., et al.: IEEE Robot. Autom. Lett. 5, 5409 (2020)

    Google Scholar 

  17. Uno, K., et al.: Non-periodic gait planning based on salient region detection for a planetary cave exploration robot. In: Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), no. 5027 (2020)

    Google Scholar 

Download references

Acknowledgments

This work is supported by JSPS KAKENHI Grant Number 19J20685.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Uno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uno, K. et al. (2022). ClimbLab: MATLAB Simulation Platform for Legged Climbing Robotics. In: Chugo, D., Tokhi, M.O., Silva, M.F., Nakamura, T., Goher, K. (eds) Robotics for Sustainable Future. CLAWAR 2021. Lecture Notes in Networks and Systems, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-030-86294-7_20

Download citation

Publish with us

Policies and ethics