Skip to main content

The Roles of IL-7 and IL-15 in Niches for Lymphocyte Progenitors and Immune Cells in Lymphoid Organs

  • Chapter
  • First Online:
Bone Marrow Niche

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 434))

Abstract

Lymphoid organs consist of immune cells and stromal cells. The stromal cells produce various cytokines that support the development, maintenance, and response of the immune cells. IL-7 and IL-15 are the major cytokines produced by stromal cells and are essential for the development and maintenance of lymphocytes and innate lymphoid cells (ILCs). In addition, IL-7 is indispensable for the organogenesis of lymphoid organs. However, because the amount of these two cytokines is relatively low, it has been difficult to directly detect their expression. Recently, several groups succeeded in establishing IL-7 and IL-15 reporter mouse lines. As expected, IL-7 and IL-15 were detected in mesenchymal stromal cells in the bone marrow and lymph nodes and in epithelial cells in the thymus. Furthermore, IL-7 and IL-15 were differentially expressed in lymphatic endothelial cells and blood endothelial cells, respectively. In addition to their expression, many groups have analyzed the local functions of IL-7 and IL-15 by using cell-type-specific knockout mice. From these experiments, CXCL12-expressing mesenchymal stromal cells were identified as the major niche for early B cell precursors. Single-cell RNA sequencing (scRNA-seq) analysis has revealed different subpopulations of stromal cells in the lymphoid organs, including those that express both IL-7 and IL-15. Future research is still needed to elucidate which stromal cells serve as the niche for the early precursors of ILCs and NK cells in the bone marrow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi S, Yoshida H, Honda K, Maki K, Saijo K, Ikuta K, Saito T, Nishikawa SI (1998) Essential role of IL-7 receptor α in the formation of Peyer’s patch anlage. Int Immunol 10:1–6

    Google Scholar 

  • Adachi T, Kobayashi T, Sugihara E, Yamada T, Ikuta K, Pittaluga S, Saya H, Amagai M, Nagao K (2015) Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat Med 21:1272–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves NL, Richard-Le Goff O, Huntington ND, Sousa AP, Ribeiro VS, Bordack A, Vives FL, Peduto L, Chidgey A, Cumano A, Boyd R, Eberl G, Di Santo JP (2009) Characterization of the thymic IL-7 niche in vivo. Proc Natl Acad Sci USA 106:1512–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baccin C, Al-Sabah J, Velten L, Helbling PM, Grunschlager F, Hernandez-Malmierca P, Nombela-Arrieta C, Steinmetz LM, Trumpp A, Haas S (2020) Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat Cell Biol 22:38–48

    Article  CAS  PubMed  Google Scholar 

  • Balzano M, De Grandis M, Vu Manh TP, Chasson L, Bardin F, Farina A, Serge A, Bidaut G, Charbord P, Herault L, Bailly AL, Cartier-Michaud A, Boned A, Dalod M, Duprez E, Genever P, Coles M, Bajenoff M, Xerri L, Aurrand-Lions M, Schiff C, Mancini SJC (2019) Nidogen-1 contributes to the interaction network involved in pro-B cell retention in the peri-sinusoidal hematopoietic stem cell niche. Cell Rep 26:3257–3271 e3258

    Google Scholar 

  • Castillo EF, Stonier SW, Frasca L, Schluns KS (2009) Dendritic cells support the in vivo development and maintenance of NK cells via IL-15 trans-presentation. J Immunol 183:4948–4956

    Article  CAS  PubMed  Google Scholar 

  • Cepero-Donates Y, Rakotoarivelo V, Mayhue M, Ma A, Chen YG, Ramanathan S (2016) Homeostasis of IL-15 dependent lymphocyte subsets in the liver. Cytokine 82:95–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colpitts SL, Stoklasek TA, Plumlee CR, Obar JJ, Guo C, Lefrancois L (2012) The role of IFN-α receptor and MyD88 signaling in induction of IL-15 expression in vivo. J Immunol 188:2483–2487

    Google Scholar 

  • Colpitts SL, Stonier SW, Stoklasek TA, Root SH, Aguila HL, Schluns KS, Lefrancois L (2013) Transcriptional regulation of IL-15 expression during hematopoiesis. J Immunol 191:3017–3024

    Article  CAS  PubMed  Google Scholar 

  • Comazzetto S, Murphy MM, Berto S, Jeffery E, Zhao Z, Morrison SJ (2019) Restricted hematopoietic progenitors and erythropoiesis require SCF from leptin receptor+ niche cells in the bone marrow. Cell Stem Cell 24:477–486 e476

    Google Scholar 

  • Cordeiro Gomes A, Hara T, Lim VY, Herndler-Brandstetter D, Nevius E, Sugiyama T, Tani-ichi S, Schlenner S, Richie E, Rodewald HR, Flavell RA, Nagasawa T, Ikuta K, Pereira JP (2016) Hematopoietic stem cell niches produce lineage-instructive signals to control multipotent progenitor differentiation. Immunity 45:1219–1231

    Article  CAS  PubMed  Google Scholar 

  • Cui G, Hara T, Simmons S, Wagatsuma K, Abe A, Miyachi H, Kitano S, Ishii M, Tani-ichi S, Ikuta K (2014) Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo. Proc Natl Acad Sci USA 111:1915–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diefenbach A, Colonna M, Koyasu S (2014) Development, differentiation, and diversity of innate lymphoid cells. Immunity 41:354–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiMascio L, Voermans C, Uqoezwa M, Duncan A, Lu D, Wu J, Sankar U, Reya T (2007) Identification of adiponectin as a novel hemopoietic stem cell growth factor. J Immunol 178:3511–3520

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495:231–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fistonich C, Zehentmeier S, Bednarski JJ, Miao R, Schjerven H, Sleckman BP, Pereira JP (2018) Cell circuits between B cell progenitors and IL-7+ mesenchymal progenitor cells control B cell development. J Exp Med 215:2586–2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Cruz C, Perez-Shibayama C, Onder L, Chai Q, Cupovic J, Cheng HW, Novkovic M, Lang PA, Geuking MB, McCoy KD, Abe S, Cui G, Ikuta K, Scandella E, Ludewig B (2016) Fibroblastic reticular cells regulate intestinal inflammation via IL-15-mediated control of group 1 ILCs. Nat Immunol 17:1388–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabstein KH, Eisenman J, Shanebeck K, Rauch C, Srinivasan S, Fung V, Beers C, Richardson J, Schoenborn MA, Ahdieh M, Johnson L, Alderson MR, Watson JD, Anderson DM, Giri JG (1994) Cloning of a T cell growth factor that interacts with the β chain of the interleukin-2 receptor. Science 264:965–968

    Google Scholar 

  • Hara T, Shitara S, Imai K, Miyachi H, Kitano S, Yao H, Tani-ichi S, Ikuta K (2012) Identification of IL-7-producing cells in primary and secondary lymphoid organs using IL-7-GFP knock-in mice. J Immunol 189:1577–1584

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Coles M (2012) IL-7: the global builder of the innate lymphoid network and beyond, one niche at a time. Semin Immunol 24:190–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KY, Kim JK, Han SH, Lim JS, Kim KI, Cho DH, Lee MS, Lee JH, Yoon DY, Yoon SR, Chung JW, Choi I, Kim E, Yang Y (2006) Adiponectin is a negative regulator of NK cell cytotoxicity. J Immunol 176:5958–5964

    Article  CAS  PubMed  Google Scholar 

  • Liang B, Hara T, Wagatsuma K, Zhang J, Maki K, Miyachi H, Kitano S, Yabe-Nishimura C, Tani-ichi S, Ikuta K (2012) Role of hepatocyte-derived IL-7 in maintenance of intrahepatic NKT cells and T cells and development of B cells in fetal liver. J Immunol 189:4444–4450

    Article  CAS  PubMed  Google Scholar 

  • Link A, Vogt TK, Favre S, Britschgi MR, Acha-Orbea H, Hinz B, Cyster JG, Luther SA (2007) Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol 8:1255–1265

    Article  CAS  PubMed  Google Scholar 

  • Liou YH, Wang SW, Chang CL, Huang PL, Hou MS, Lai YG, Lee GA, Jiang ST, Tsai CY, Liao NS (2014) Adipocyte IL-15 regulates local and systemic NK cell development. J Immunol 193:1747–1758

    Article  CAS  PubMed  Google Scholar 

  • Ma A, Koka R, Burkett P (2006) Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol 24:657–679

    Article  CAS  PubMed  Google Scholar 

  • Malhotra D, Fletcher AL, Astarita J, Lukacs-Kornek V, Tayalia P, Gonzalez SF, Elpek KG, Chang SK, Knoblich K, Hemler ME, Brenner MB, Carroll MC, Mooney DJ, Turley SJ, Immunological Genome Project C (2012) Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat Immunol 13:499–510

    Article  Google Scholar 

  • Matsuda JL, Gapin L, Sidobre S, Kieper WC, Tan JT, Ceredig R, Surh CD, Kronenberg M (2002) Homeostasis of Va14i NKT cells. Nat Immunol 3:966–974

    Article  CAS  PubMed  Google Scholar 

  • Matsue H, Bergstresser PR, Takashima A (1993) Keratinocyte-derived IL-7 serves as a growth factor for dendritic epidermal T cells in mice. J Immunol 151:6012–6019

    Article  CAS  PubMed  Google Scholar 

  • Mattei F, Schiavoni G, Belardelli F, Tough DF (2001) IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J Immunol 167:1179–1187

    Article  CAS  PubMed  Google Scholar 

  • Mazzucchelli R, Durum SK (2007) Interleukin-7 receptor expression: intelligent design. Nat Rev Immunol 7:144–154

    Article  CAS  PubMed  Google Scholar 

  • Mazzucchelli RI, Warming S, Lawrence SM, Ishii M, Abshari M, Washington AV, Feigenbaum L, Warner AC, Sims DJ, Li WQ, Hixon JA, Gray DH, Rich BE, Morrow M, Anver MR, Cherry J, Naf D, Sternberg LR, McVicar DW, Farr AG, Germain RN, Rogers K, Jenkins NA, Copeland NG, Durum SK (2009) Visualization and identification of IL-7 producing cells in reporter mice. PLoS One 4:e7637

    Google Scholar 

  • Miller CN, Hartigan-O’Connor DJ, Lee MS, Laidlaw G, Cornelissen IP, Matloubian M, Coughlin SR, McDonald DM, McCune JM (2013) IL-7 production in murine lymphatic endothelial cells and induction in the setting of peripheral lymphopenia. Int Immunol 25:471–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortier E, Advincula R, Kim L, Chmura S, Barrera J, Reizis B, Malynn BA, Ma A (2009) Macrophage- and dendritic-cell-derived interleukin-15 receptor alpha supports homeostasis of distinct CD8+ T cell subsets. Immunity 31:811–822

    Article  CAS  PubMed  Google Scholar 

  • Mukohira H, Hara T, Abe S, Tani-ichi S, Sehara-Fujisawa A, Nagasawa T, Tobe K, Ikuta K (2019) Mesenchymal stromal cells in bone marrow express adiponectin and are efficiently targeted by an adiponectin promoter-driven Cre transgene. Int Immunol 31:729–742

    Article  CAS  PubMed  Google Scholar 

  • Namen AE, Lupton S, Hjerrild K, Wignall J, Mochizuki DY, Schmierer A, Mosley B, March CJ, Urdal D, Gillis S (1988) Stimulation of B-cell progenitors by cloned murine interleukin-7. Nature 333:571–573

    Article  CAS  PubMed  Google Scholar 

  • Noda M, Omatsu Y, Sugiyama T, Oishi S, Fujii N, Nagasawa T (2011) CXCL12-CXCR4 chemokine signaling is essential for NK-cell development in adult mice. Blood 117:451–458

    Article  CAS  PubMed  Google Scholar 

  • Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, Nagasawa T (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33:387–399

    Article  CAS  PubMed  Google Scholar 

  • Racanelli V, Rehermann B (2006) The liver as an immunological organ. Hepatology 43:S54-62

    Article  CAS  PubMed  Google Scholar 

  • Raeber ME, Zurbuchen Y, Impellizzieri D, Boyman O (2018) The role of cytokines in T-cell memory in health and disease. Immunol Rev 283:176–193

    Article  CAS  PubMed  Google Scholar 

  • Repass JF, Laurent MN, Carter C, Reizis B, Bedford MT, Cardenas K, Narang P, Coles M, Richie ER (2009) IL7-hCD25 and IL7-Cre BAC transgenic mouse lines: new tools for analysis of IL-7 expressing cells. Genesis 47:281–287

    Article  CAS  PubMed  Google Scholar 

  • Robinette ML, Bando JK, Song W, Ulland TK, Gilfillan S, Colonna M (2017) IL-15 sustains IL-7R-independent ILC2 and ILC3 development. Nat Commun 8:14601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodda LB, Lu E, Bennett ML, Sokol CL, Wang X, Luther SA, Barres BA, Luster AD, Ye CJ, Cyster JG (2018) Single-cell RNA sequencing of lymph node stromal cells reveals niche-associated heterogeneity. Immunity 48:1014-1028.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawa Y, Arima Y, Ogura H, Kitabayashi C, Jiang JJ, Fukushima T, Kamimura D, Hirano T, Murakami M (2009) Hepatic interleukin-7 expression regulates T cell responses. Immunity 30:447–457

    Article  CAS  PubMed  Google Scholar 

  • Sercan Alp O, Durlanik S, Schulz D, McGrath M, Grun JR, Bardua M, Ikuta K, Sgouroudis E, Riedel R, Zehentmeier S, Hauser AE, Tsuneto M, Melchers F, Tokoyoda K, Chang HD, Thiel A, Radbruch A (2015) Memory CD8+ T cells colocalize with IL-7+ stromal cells in bone marrow and rest in terms of proliferation and transcription. Eur J Immunol 45:975–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinoda K, Hirahara K, Iinuma T, Ichikawa T, Suzuki AS, Sugaya K, Tumes DJ, Yamamoto H, Hara T, Tani-ichi S, Ikuta K, Okamoto Y, Nakayama T (2016) Thy1+IL-7+ lymphatic endothelial cells in iBALT provide a survival niche for memory T-helper cells in allergic airway inflammation. Proc Natl Acad Sci USA 113:E2842-2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shitara S, Hara T, Liang B, Wagatsuma K, Zuklys S, Hollander GA, Nakase H, Chiba T, Tani-ichi S, Ikuta K (2013) IL-7 produced by thymic epithelial cells plays a major role in the development of thymocytes and TCRγδ+ intraepithelial lymphocytes. J Immunol 190:6173–6179

    Google Scholar 

  • Sojka DK, Plougastel-Douglas B, Yang L, Pak-Wittel MA, Artyomov MN, Ivanova Y, Zhong C, Chase JM, Rothman PB, Yu J, Riley JK, Zhu J, Tian Z, Yokoyama WM (2014) Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. Elife 3:e01659

    Google Scholar 

  • Sosinowski T, White JT, Cross EW, Haluszczak C, Marrack P, Gapin L, Kedl RM (2013) CD8α+ dendritic cell trans presentation of IL-15 to naive CD8+ T cells produces antigen-inexperienced T cells in the periphery with memory phenotype and function. J Immunol 190:1936–1947

    Article  CAS  PubMed  Google Scholar 

  • Sudo T, Ito M, Ogawa Y, Iizuka M, Kodama H, Kunisada T, Hayashi S, Ogawa M, Sakai K, Nishikawa S (1989) Interleukin 7 production and function in stromal cell-dependent B cell development. J Exp Med 170:333–338

    Article  CAS  PubMed  Google Scholar 

  • Sudo T, Nishikawa S, Ohno N, Akiyama N, Tamakoshi M, Yoshida H, Nishikawa S (1993) Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc Natl Acad Sci USA 90:9125–9129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tikhonova AN, Dolgalev I, Hu H, Sivaraj KK, Hoxha E, Cuesta-Dominguez A, Pinho S, Akhmetzyanova I, Gao J, Witkowski M, Guillamot M, Gutkin MC, Zhang Y, Marier C, Diefenbach C, Kousteni S, Heguy A, Zhong H, Fooksman DR, Butler JM, Economides A, Frenette PS, Adams RH, Satija R, Tsirigos A, Aifantis I (2019) The bone marrow microenvironment at single-cell resolution. Nature 569:222–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokoyoda K, Egawa T, Sugiyama T, Choi BI, Nagasawa T (2004) Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20:707–718

    Article  CAS  PubMed  Google Scholar 

  • Tsuneto M, Tokoyoda K, Kajikhina E, Hauser AE, Hara T, Tani-ichi S, Ikuta K, Melchers F (2013) B-cell progenitors and precursors change their microenvironment in fetal liver during early development. Stem Cells 31:2800–2812

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Ueno Y, Yajima T, Iwao Y, Tsuchiya M, Ishikawa H, Aiso S, Hibi T, Ishii H (1995) Interleukin 7 is produced by human intestinal epithelial cells and regulates the proliferation of intestinal mucosal lymphocytes. J Clin Invest 95:2945–2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitlock CA, Tidmarsh GF, Muller-Sieburg C, Weissman IL (1987) Bone marrow stromal cell lines with lymphopoietic activity express high levels of a pre-B neoplasia-associated molecule. Cell 48:1009–1021

    Article  CAS  PubMed  Google Scholar 

  • Whitlock CA, Witte ON (1982) Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc Natl Acad Sci USA 79:3608–3612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, Kihara S, Funahashi T, Tenner AJ, Tomiyama Y, Matsuzawa Y (2000) Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96:1723–1732

    Article  CAS  PubMed  Google Scholar 

  • Zhou BO, Yu H, Yue R, Zhao Z, Rios JJ, Naveiras O, Morrison SJ (2017) Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol 19:891–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Cui G, Miyauchi E, Nakanishi Y, Mukohira H, Shimba A, Abe S, Tani-ichi S, Hara T, Nakase H, Chiba T, Sehara-Fujisawa A, Seno H, Ohno H, Ikuta K (2020) Intestinal epithelial cell-derived IL-15 determines local maintenance and maturation of intra-epithelial lymphocytes in the intestine. Int Immunol 32:307–319

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grants 16H05172 and 20H03501 (K.I.), 16K08835 and 19K07604 (T.H.), and 19K16687 and 17K15721 (G.C.); a grant from the Takeda Science Foundation (G.C.); and from the Shimizu Foundation for Immunology and Neuroscience grant for 2016 (G.C.). It was also supported by the Joint Usage Research Center program of the Institute for Frontier Life and Medical Sciences, Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Ikuta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ikuta, K., Hara, T., Abe, S., Asahi, T., Takami, D., Cui, G. (2021). The Roles of IL-7 and IL-15 in Niches for Lymphocyte Progenitors and Immune Cells in Lymphoid Organs. In: Nagasawa, T. (eds) Bone Marrow Niche. Current Topics in Microbiology and Immunology, vol 434. Springer, Cham. https://doi.org/10.1007/978-3-030-86016-5_4

Download citation

Publish with us

Policies and ethics