Skip to main content

Introduction to Deep Learning in Clinical Neuroscience

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroscience

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 134))

Abstract

The use of deep learning (DL) is rapidly increasing in clinical neuroscience. The term denotes models with multiple sequential layers of learning algorithms, architecturally similar to neural networks of the brain. We provide examples of DL in analyzing MRI data and discuss potential applications and methodological caveats.

Important aspects are data pre-processing, volumetric segmentation, and specific task-performing DL methods, such as CNNs and AEs. Additionally, GAN-expansion and domain mapping are useful DL techniques for generating artificial data and combining several smaller datasets.

We present results of DL-based segmentation and accuracy in predicting glioma subtypes based on MRI features. Dice scores range from 0.77 to 0.89. In mixed glioma cohorts, IDH mutation can be predicted with a sensitivity of 0.98 and specificity of 0.97. Results in test cohorts have shown improvements of 5–7% in accuracy, following GAN-expansion of data and domain mapping of smaller datasets.

The provided DL examples are promising, although not yet in clinical practice. DL has demonstrated usefulness in data augmentation and for overcoming data variability. DL methods should be further studied, developed, and validated for broader clinical use. Ultimately, DL models can serve as effective decision support systems, and are especially well-suited for time-consuming, detail-focused, and data-ample tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim DH, MacKinnon T. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol. 2018;73:439–45. https://doi.org/10.1016/j.crad.2017.11.015.

    Article  PubMed  CAS  Google Scholar 

  2. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafò MR. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14:365–76. https://doi.org/10.1038/nrn3475.

    Article  PubMed  CAS  Google Scholar 

  3. Fischl B. FreeSurfer. NeuroImage. 2012;62:774–81.

    Article  PubMed  Google Scholar 

  4. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. NeuroImage. 2012;62:782–90. https://doi.org/10.1016/j.neuroimage.2011.09.015.

    Article  PubMed  Google Scholar 

  5. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage. 2011;54:2033–44. https://doi.org/10.1016/j.neuroimage.2010.09.025.

    Article  PubMed  Google Scholar 

  6. Selbekk T, Jakola AS, Solheim O, Johansen TF, Lindseth F, Reinertsen I, Unsgård G. Ultrasound imaging in neurosurgery: approaches to minimize surgically induced image artefacts for improved resection control. Acta Neurochir. 2013;155:973–80.

    Article  PubMed  Google Scholar 

  7. Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, Shinohara RT, Berger C, Ha SM, Rozycki M. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:181102629; 2018.

    Google Scholar 

  8. Kofler F, Berger C, Waldmannstetter D, Lipkova J, Ezhov I, Tetteh G, Kirschke J, Zimmer C, Wiestler B, Menze BH. BraTS toolkit: translating BraTS brain tumor segmentation algorithms into clinical and scientific practice. Front Neurosci. 2020;14:125.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kickingereder P, Isensee F, Tursunova I, Petersen J, Neuberger U, Bonekamp D, Brugnara G, Schell M, Kessler T, Foltyn M, Harting I, Sahm F, Prager M, Nowosielski M, Wick A, Nolden M, Radbruch A, Debus J, Schlemmer HP, Heiland S, Platten M, von Deimling A, van den Bent MJ, Gorlia T, Wick W, Bendszus M, Maier-Hein KH. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol. 2019;20:728–40. https://doi.org/10.1016/s1470-2045(19)30098-1.

    Article  PubMed  Google Scholar 

  10. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Berlin: Springer; 2015. p. 234–41.

    Google Scholar 

  11. Yogananda CGB, Shah BR, Vejdani-Jahromi M, Nalawade SS, Murugesan GK, Yu FF, Pinho MC, Wagner BC, Emblem KE, Bjørnerud A. A fully automated deep learning network for brain tumor segmentation. Tomography. 2020;6:186.

    Article  Google Scholar 

  12. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44. https://doi.org/10.1038/nature14539.

    Article  PubMed  CAS  Google Scholar 

  13. Saha S. A comprehensive guide to convolutional neural networks—the ELI5 way. Towards Data Science; 2018.

    Google Scholar 

  14. Wataya T, Nakanishi K, Suzuki Y, Kido S, Tomiyama N. Introduction to deep learning: minimum essence required to launch a research. Jpn J Radiol. 2020;38:907–21. https://doi.org/10.1007/s11604-020-00998-2.

    Article  PubMed  Google Scholar 

  15. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556; 2014.

    Google Scholar 

  16. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich a going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. p. 1–9.

    Google Scholar 

  17. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 770–8.

    Google Scholar 

  18. Samek W, Binder A, Montavon G, Lapuschkin S, Muller KR. Evaluating the visualization of what a deep neural network has learned. IEEE Trans Neural Netw Learn Syst. 2017;28:2660–73. https://doi.org/10.1109/tnnls.2016.2599820.

    Article  PubMed  Google Scholar 

  19. Natekar P, Kori A, Krishnamurthi G. Demystifying brain tumor segmentation networks: interpretability and uncertainty analysis. Front Comput Neurosci. 2020;14:6.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ali MB, Gu IY, Berger MS, Pallud J, Southwell D, Widhalm G, Roux A, Vecchio TG, Jakola AS. Domain mapping and deep learning from multiple MRI clinical datasets for prediction of molecular subtypes in low grade gliomas. Brain Sci. 2020;10(7):463. https://doi.org/10.3390/brainsci10070463.

    Article  PubMed  PubMed Central  Google Scholar 

  21. van den Bent MJ, Wefel JS, Schiff D, Taphoorn MJ, Jaeckle K, Junck L, Armstrong T, Choucair A, Waldman AD, Gorlia T. Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol. 2011;12:583–93.

    Article  PubMed  Google Scholar 

  22. Yogananda CGB, Shah BR, Yu FF, Pinho MC, Nalawade SS, Murugesan GK, Wagner BC, Mickey B, Patel TR, Fei B, Madhuranthakam AJ, Maldjian JA. A novel fully automated MRI-based deep-learning method for classification of 1p/19q co-deletion status in brain gliomas. Neurooncol Adv. 2020;2:vdaa066. https://doi.org/10.1093/noajnl/vdaa066.

    Article  PubMed  Google Scholar 

  23. Bangalore Yogananda CG, Shah BR, Vejdani-Jahromi M, Nalawade SS, Murugesan GK, Yu FF, Pinho MC, Wagner BC, Mickey B, Patel TR, Fei B, Madhuranthakam AJ, Maldjian JA. A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas. Neuro-Oncology. 2020;22:402–11. https://doi.org/10.1093/neuonc/noz199.

    Article  PubMed  CAS  Google Scholar 

  24. Li Z, Wang Y, Yu J, Guo Y, Cao W. Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep. 2017;7:5467. https://doi.org/10.1038/s41598-017-05848-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Akkus Z, Ali I, Sedlar J, Kline TL, Agrawal JP, Parney IF, Giannini C, Erickson BJ. Predicting 1p19q chromosomal deletion of low-grade gliomas from MR images using deep learning. arXiv preprint arXiv:161106939; 2016.

    Google Scholar 

  26. Chang K, Bai HX, Zhou H, Su C, Bi WL, Agbodza E, Kavouridis VK, Senders JT, Boaro A, Beers A, Zhang B, Capellini A, Liao W, Shen Q, Li X, Xiao B, Cryan J, Ramkissoon S, Ramkissoon L, Ligon K, Wen PY, Bindra RS, Woo J, Arnaout O, Gerstner ER, Zhang PJ, Rosen BR, Yang L, Huang RY, Kalpathy-Cramer J. Residual convolutional neural network for the determination of IDH status in low- and high-grade gliomas from MR imaging. Clin Cancer Res. 2018;24:1073–81. https://doi.org/10.1158/1078-0432.Ccr-17-2236.

    Article  PubMed  CAS  Google Scholar 

  27. Matsui Y, Maruyama T, Nitta M, Saito T, Tsuzuki S, Tamura M, Kusuda K, Fukuya Y, Asano H, Kawamata T, Masamune K, Muragaki Y. Prediction of lower-grade glioma molecular subtypes using deep learning. J Neuro-Oncol. 2020;146:321–7. https://doi.org/10.1007/s11060-019-03376-9.

    Article  Google Scholar 

  28. Ge C, Gu IY-H, Jakola AS, Yang J. Enlarged training dataset by pairwise GANs for molecular-based brain tumor classification. IEEE Access. 2020;8:22560–70.

    Article  Google Scholar 

  29. Liang S, Zhang R, Liang D, Song T, Ai T, Xia C, Xia L, Wang Y. Multimodal 3D DenseNet for IDH genotype prediction in gliomas. Genes (Basel). 2018;9:382. https://doi.org/10.3390/genes9080382.

    Article  PubMed  CAS  Google Scholar 

  30. Yordanova YN, Cochereau J, Duffau H, Herbet G. Combining resting state functional MRI with intraoperative cortical stimulation to map the mentalizing network. NeuroImage. 2019;186:628–36.

    Article  PubMed  Google Scholar 

  31. van der Voort SR, Incekara F, Wijnenga MM, Kapas G, Gardeniers M, Schouten JW, Starmans MP, Tewarie RN, Lycklama GJ, French PJ. Predicting the 1p/19q codeletion status of presumed low-grade glioma with an externally validated machine learning algorithm. Clin Cancer Res. 2019;25:7455–62.

    Article  PubMed  Google Scholar 

  32. Jakola AS, Reinertsen I. Radiological evaluation of low-grade glioma: time to embrace quantitative data? Acta Neurochir. 2019;161:577–8.

    Article  PubMed  Google Scholar 

  33. Chaudhari AS, Sandino CM, Cole EK, Larson DB, Gold GE, Vasanawala SS, Lungren MP, Hargreaves BA, Langlotz CP. Prospective deployment of deep learning in MRI: a framework for important considerations, challenges, and recommendations for best practices. J Magn Reson Imaging. 2020;54(2):357–71. https://doi.org/10.1002/jmri.27331.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shah ND, Steyerberg EW, Kent DM. Big data and predictive analytics: recalibrating expectations. JAMA. 2018;320:27–8. https://doi.org/10.1001/jama.2018.5602.

    Article  PubMed  Google Scholar 

  35. Ibrahim A, Primakov S, Beuque M, Woodruff HC, Halilaj I, Wu G, Refaee T, Granzier R, Widaatalla Y, Hustinx R, Mottaghy FM, Lambin P. Radiomics for precision medicine: current challenges, future prospects, and the proposal of a new framework. Methods. 2021;188:20–9. https://doi.org/10.1016/j.ymeth.2020.05.022.

    Article  PubMed  CAS  Google Scholar 

  36. Wickstrom KK, OyvindMikalsen K, Kampffmeyer M, Revhaug A, Jenssen R. Uncertainty-aware deep ensembles for reliable and explainable predictions of clinical time series. IEEE J Biomed Health Inform. 2020. https://doi.org/10.1109/jbhi.2020.3042637.

  37. Windisch P, Weber P, Fürweger C, Ehret F, Kufeld M, Zwahlen D, Muacevic A. Implementation of model explainability for a basic brain tumor detection using convolutional neural networks on MRI slices. Neuroradiology. 2020;62:1515–8. https://doi.org/10.1007/s00234-020-02465-1.

    Article  PubMed  Google Scholar 

  38. Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, Mahajan V, Rao P, Warier P. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 2018;392:2388–96. https://doi.org/10.1016/s0140-6736(18)31645-3.

    Article  PubMed  Google Scholar 

  39. Gleichgerrcht E, Munsell B, Bhatia S, Vandergrift WA 3rd, Rorden C, McDonald C, Edwards J, Kuzniecky R, Bonilha L. Deep learning applied to whole-brain connectome to determine seizure control after epilepsy surgery. Epilepsia. 2018;59:1643–54. https://doi.org/10.1111/epi.14528.

    Article  PubMed  Google Scholar 

  40. Roy Y, Banville H, Albuquerque I, Gramfort A, Falk TH, Faubert J. Deep learning-based electroencephalography analysis: a systematic review. J Neural Eng. 2019;16:051001. https://doi.org/10.1088/1741-2552/ab260c.

    Article  PubMed  Google Scholar 

  41. Chen D, Liu S, Kingsbury P, Sohn S, Storlie CB, Habermann EB, Naessens JM, Larson DW, Liu H. Deep learning and alternative learning strategies for retrospective real-world clinical data. NPJ Digit Med. 2019;2:43. https://doi.org/10.1038/s41746-019-0122-0.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Munkhdalai T, Liu F, Yu H. Clinical relation extraction toward drug safety surveillance using electronic health record narratives: classical learning versus deep learning. JMIR Public Health Surveill. 2018;4:e29. https://doi.org/10.2196/publichealth.9361.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Buturovic L, Miljkovic D. A novel method for classification of tabular data using convolutional neural networks. BioRxiv; 2020.

    Google Scholar 

  44. López-García G, Jerez JM, Franco L, Veredas FJ. Transfer learning with convolutional neural networks for cancer survival prediction using gene-expression data. PLoS One. 2020;15:e0230536. https://doi.org/10.1371/journal.pone.0230536.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sharma A, Vans E, Shigemizu D, Boroevich KA, Tsunoda T. DeepInsight: a methodology to transform a non-image data to an image for convolution neural network architecture. Sci Rep. 2019;9:11399. https://doi.org/10.1038/s41598-019-47765-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This project was partly funded by research grant from the Swedish Research Council (2017-00944).

Conflict of Interests

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asgeir S. Jakola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Dios, E., Ali, M.B., Gu, I.YH., Vecchio, T.G., Ge, C., Jakola, A.S. (2022). Introduction to Deep Learning in Clinical Neuroscience. In: Staartjes, V.E., Regli, L., Serra, C. (eds) Machine Learning in Clinical Neuroscience. Acta Neurochirurgica Supplement, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-030-85292-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85292-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85291-7

  • Online ISBN: 978-3-030-85292-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics