Skip to main content

Machine Intelligence in Clinical Neuroscience: Taming the Unchained Prometheus

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroscience

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 134))

Abstract

The democratization of machine learning (ML) through availability of open-source learning libraries, the availability of datasets in the “big data” era, increasing computing power even on mobile devices, and online training resources have both led to an explosion in applications and publications of ML in the clinical neurosciences, but has also enabled a dangerous amount of flawed analyses and cardinal methodological errors committed by benevolent authors. While powerful ML methods are nowadays available to almost anyone and can be applied after just few minutes of familiarizing oneself with these methods, that does not imply that one has mastered these techniques. This textbook for clinicians aims to demystify ML by illustrating its methodological foundations, as well as some specific applications throughout clinical neuroscience, and its limitations. While our mind can recognize, abstract, and deal with the many uncertainties in clinical practice, algorithms cannot. Algorithms must remain tools of our own mind, tools that we should be able to master, control, and apply to our advantage in an adjunctive manner. Our hope is that this book inspires and instructs physician-scientists to continue to develop the seeds that have been planted for machine intelligence in clinical neuroscience, not forgetting their inherent limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Minsky M. The Society of Mind. Simon and Schuster. 1986.

    Google Scholar 

  2. Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med. 2001;23:89. https://doi.org/10.1016/S0933-3657(01)00077-X.

    Article  PubMed  CAS  Google Scholar 

  3. Senders JT, Staples PC, Karhade AV, Zaki MM, Gormley WB, Broekman MLD, Smith TR, Arnaout O. Machine learning and neurosurgical outcome prediction: a systematic review. World Neurosurg. 2018;109:476. https://doi.org/10.1016/j.wneu.2017.09.149.

    Article  PubMed  Google Scholar 

  4. Staartjes VE, Stumpo V, Kernbach JM, et al. Machine learning in neurosurgery: a global survey. Acta Neurochir. 2020;162(12):3081–91.

    Article  PubMed  Google Scholar 

  5. Saposnik G, Cote R, Mamdani M, Raptis S, Thorpe KE, Fang J, Redelmeier DA, Goldstein LB. JURaSSiC: accuracy of clinician vs risk score prediction of ischemic stroke outcomes. Neurology. 2013;81:448. https://doi.org/10.1212/WNL.0b013e31829d874e.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and updating. New York, NY: Springer Science & Business Media; 2008.

    Google Scholar 

  7. Mathew B, Norris D, Mackintosh I, Waddell G. Artificial intelligence in the prediction of operative findings in low back surgery. Br J Neurosurg. 1989;3:161. https://doi.org/10.3109/02688698909002791.

    Article  PubMed  CAS  Google Scholar 

  8. Grigsby J, Kramer RE, Schneiders JL, Gates JR, Smith WB. Predicting outcome of anterior temporal lobectomy using simulated neural networks. Epilepsia. 1998;39:61. https://doi.org/10.1111/j.1528-1157.1998.tb01275.x.

    Article  PubMed  CAS  Google Scholar 

  9. Arle JE, Perrine K, Devinsky O, Doyle WK. Neural network analysis of preoperative variables and outcome in epilepsy surgery. J Neurosurg. 1999;90:998. https://doi.org/10.3171/jns.1999.90.6.0998.

    Article  PubMed  CAS  Google Scholar 

  10. Azimi P, Mohammadi HR, Benzel EC, Shahzadi S, Azhari S, Montazeri A. Artificial neural networks in neurosurgery. J Neurol Neurosurg Psychiatry. 2015;86:251. https://doi.org/10.1136/jnnp-2014-307807.

    Article  PubMed  Google Scholar 

  11. Senders JT, Zaki MM, Karhade AV, Chang B, Gormley WB, Broekman ML, Smith TR, Arnaout O. An introduction and overview of machine learning in neurosurgical care. Acta Neurochir. 2018;160:29. https://doi.org/10.1007/s00701-017-3385-8.

    Article  PubMed  Google Scholar 

  12. Swinburne NC, Schefflein J, Sakai Y, Oermann EK, Titano JJ, Chen I, Tadayon S, Aggarwal A, Doshi A, Nael K. Machine learning for semi-automated classification of glioblastoma, brain metastasis and central nervous system lymphoma using magnetic resonance advanced imaging. Ann Transl Med. 2019;7(11):232.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Titano JJ, Badgeley M, Schefflein J, et al. Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nat Med. 2018;24(9):1337–41.

    Article  PubMed  CAS  Google Scholar 

  14. Senders JT, Karhade AV, Cote DJ, et al. Natural language processing for automated quantification of brain metastases reported in free-text radiology reports. JCO Clin Cancer Inform. 2019;3:1–9.

    Article  PubMed  Google Scholar 

  15. Chang K, Bai HX, Zhou H, et al. Residual convolutional neural network for the determination of IDH status in low- and high-grade gliomas from MR imaging. Clin Cancer Res. 2018;24(5):1073–81.

    Article  PubMed  CAS  Google Scholar 

  16. Kernbach JM, Yeo BTT, Smallwood J, et al. Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants. Proc Natl Acad Sci U S A. 2018;115(48):12295–300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Varatharajah Y, Berry B, Cimbalnik J, Kremen V, Van Gompel J, Stead M, Brinkmann B, Iyer R, Worrell G. Integrating artificial intelligence with real-time intracranial EEG monitoring to automate interictal identification of seizure onset zones in focal epilepsy. J Neural Eng. 2018;15(4):046035.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schwab P, Keller E, Muroi C, Mack DJ, Strässle C, Karlen W. Not to cry wolf: distantly supervised multitask learning in critical care. ArXiv. 2018:1802.05027. [cs, stat].

    Google Scholar 

  19. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594.

    Article  PubMed  Google Scholar 

  20. Zamanipoor Najafabadi AH, Ramspek CL, Dekker FW, Heus P, Hooft L, Moons KGM, Peul WC, Collins GS, Steyerberg EW, van Diepen M. TRIPOD statement: a preliminary pre-post analysis of reporting and methods of prediction models. BMJ Open. 2020;10(9):e041537.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chollet F. Keras: deep learning library for Theano and TensorFlow. 2015. https://keras.io/k.

  22. Kuhn M, Wing J, Weston S, Williams A, et al. caret: classification and regression training. 2019.

    Google Scholar 

  23. Jonas H. Das Prinzip Verantwortung: Versuch einer Ethik für die technologische Zivilisation. Berlin: Suhrkamp; 2003.

    Google Scholar 

  24. Yang Q, Liu Y, Chen T, Tong Y. Federated machine learning: concept and applications. ArXiv. 2019:1902.04885. [cs].

    Google Scholar 

  25. Oppy G, Dowe D. The turing test. Stanford, CA: The Stanford Encyclopedia of Philosophy; 2020.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor E. Staartjes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Staartjes, V.E., Regli, L., Serra, C. (2022). Machine Intelligence in Clinical Neuroscience: Taming the Unchained Prometheus. In: Staartjes, V.E., Regli, L., Serra, C. (eds) Machine Learning in Clinical Neuroscience. Acta Neurochirurgica Supplement, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-030-85292-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85292-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85291-7

  • Online ISBN: 978-3-030-85292-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics