Skip to main content

Capillary Adhesion Effect in Contact Interaction of Soft Materials

  • Chapter
  • First Online:
Contact Problems for Soft, Biological and Bioinspired Materials

Part of the book series: Biologically-Inspired Systems ((BISY,volume 15))

Abstract

A model of capillary adhesion between an elastic half-space and an axisymmetric asperity or a periodic system of asperities is presented. The model is based on the contact problem solution for an indenter, whose shape is described by the power law function, in contact with an elastic half-space in the presence of an additional load (Laplace capillary pressure) outside the contact region. The volume of fluid in each meniscus is assumed constant during loading and unloading processes. Methods of calculation of the contact characteristics such as contact and capillary pressures, contact area, and load-distance dependencies are developed. The results obtained are used to analyze the effects of fluid volume in a meniscus, surface tension of fluid, elastic properties of the half-space, shape of an asperity, and mutual influence of neighbor asperities on the contact characteristics. The load-distance dependencies for an asperity and a half-space are shown to have hysteresis, and the corresponding energy dissipation in an approach-retraction cycle is calculated and analyzed depending on the fluid volume, its surface tension, elastic properties of contacting bodies, and shape of the asperity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Argatov II, Mishuris GS, Popov VL (2016) Asymptotic modelling of the JKR adhesion contact for a thin elastic layer. Q J Mech Appl Math 69(2):161–179

    Article  Google Scholar 

  • Attard P, Parker JL (1992) Deformation and adhesion of elastic bodies in contact. Phys Rev A 46(12):7959–7971

    Article  CAS  PubMed  Google Scholar 

  • Barnes WJP (2012) Adhesion in wet environments—frogs. In: Bhushan B (ed) Encyclopedia of nanotechnology, Part 2. Springer, Berlin, pp 70–83

    Google Scholar 

  • Barthel E (1998) On the description of the adhesive contact of spheres with arbitrary interaction potentials. J Colloid Interface Sci 200:7–18

    Article  CAS  Google Scholar 

  • Borodich FM, Galanov BA, Prostov YI, Suarez-Alvarez MM (2012) Influence of complete sticking on the indentation of a rigid cone into an elastic half-space in the presence of molecular adhesion. J Appl Math Mech 76(5):590–596

    Article  Google Scholar 

  • Borodich FM, Galanov BA, Suarez-Alvarez MM (2014a) The JKR-type adhesive contact problems for power-law shaped axisymmetric punches. J Mech Phys Sol 68:14–32

    Article  Google Scholar 

  • Borodich FM, Galanov BA, Keer LM, Suarez-Alvarez MM (2014b) The JKR-type adhesive contact problems for transversely isotropic elastic solids. Mech Mater 75:34–44

    Article  Google Scholar 

  • Borodich FM, Galanov BA, Perepelkin NV, Prikazchikov DA (2019) Adhesive contact problems for a thin elastic layer: asymptotic analysis and the JKR theory. Math Mech Sol 24(5):1405–1424

    Article  Google Scholar 

  • Butt HJ, Barnes WJP, Del Campo A, Kappl M (2010) Capillary forces between soft, elastic spheres. Soft Matter 6:5930–5936

    Article  CAS  Google Scholar 

  • Creton C, Gorb SN (2007) Sticky feet: from animals to materials. MRS Bull 32:466–468

    Article  Google Scholar 

  • Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53(2):314–326

    Article  CAS  Google Scholar 

  • Feng JQ (2001) Adhesive contact of elastically deformable spheres: a computational study of pull-off force and contact radius. J Colloids Interface Sci 238:318–323

    Article  CAS  Google Scholar 

  • Goryacheva IG (1997) Contact mechanics in tribology. Kluwer Academic Publishers, Dordreht

    Google Scholar 

  • Goryacheva IG, Makhovskaya YY (1999) Capillary adhesion in the contact between elastic solids. J Appl Math Mech 63(1):117–125

    Article  Google Scholar 

  • Goryacheva IG, Makhovskaya YY (2001) Adhesive interaction of elastic bodies. J Appl Math Mech 65(2):273–282

    Article  Google Scholar 

  • Goryacheva IG, Makhovskaya YY (2004) Approach to solving the problems on interaction between elastic bodies in the presence of adhesion. Dokl Phys 49(9):534–538

    Article  CAS  Google Scholar 

  • Goryacheva I, Makhovskaya Y (2008) Adhesion effect in contact interaction of solids. Comptes Rendus Mecanique 336:118–112

    Article  CAS  Google Scholar 

  • Greenwood JA (1997) Adhesion of elastic spheres. Proc R Soc London A 453(1961):1277–1297

    Article  CAS  Google Scholar 

  • Greenwood JA, Johnson KL (1998) An alternative to the Maugis model of adhesion between elastic spheres. J Phys D Appl Phys 31(22):3279–3290

    Article  CAS  Google Scholar 

  • Huber G et al (2005) Evidence for capillary contribution to gecko adhesion from single spatula nanomechanical measurements. Proc Natl Acad Sci U S A 102:16293–16296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Israelachvili J (1992) Intermolecular and surface forces. Academic, New York

    Google Scholar 

  • Johnson K (1985) Contact mechanics. Cambridge University Press

    Book  Google Scholar 

  • Johnson KL, Greenwood JA (2005) An approximate JKR theory for elliptical contacts. J Phys D Appl Phys 38:1042

    Article  CAS  Google Scholar 

  • Johnson K, Kendall K, Roberts A (1971) Surface energy and the contact of elastic solids. Proc R Soc A 324:301–313

    CAS  Google Scholar 

  • Liu CC, Mee PB (1983) Stiction at the Winchester head-disk interface. IEEE Trans Magn 19(5):1569–1661

    Google Scholar 

  • Makhovskaya YY (2003) Discrete contact of elastic bodies in the presence of adhesion. Mech Solids 38(2):39–48

    Google Scholar 

  • Makhovskaya YY (2016) Modeling contact of indenter with elastic half-space with adhesive attraction assigned in arbitrary form. J Frict Wear 37(4):301–307

    Article  Google Scholar 

  • Makhovskaya YY, Goryacheva IG (1999) The combined effect of capillarity and elasticity in contact interaction. Tribology Int 32:507–515

    Article  Google Scholar 

  • Mattewson MJ, Mamin HJ (1988) Liquid mediated adhesion of ultra-flat solid surfaces. Mat Res Soc Symp Proc 119:87–92

    Article  Google Scholar 

  • Maugis D (1991) Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J Colloid Interface Sci 150:243–269

    Article  Google Scholar 

  • Maugis D, Gauthier-Manuel B (1994) JKR-DMT transition in the presence of a liquid meniscus. J Adhesion Sci Technol 8(11):1311–1322

    Article  CAS  Google Scholar 

  • Megias-Alguacil D, Gauckler LJ (2009) Capillary forces between two solid spheres linked by a concave liquid bridge: regions of existence and forces mapping. AICHE J 55:1103–1109

    Article  CAS  Google Scholar 

  • Muller VM, Yushchenko VS, Derjaguin BV (1980) On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. J Colloid Interface Sci 77(1):91–101

    Article  CAS  Google Scholar 

  • Rabinovich YI, Esayanur MS, Moudgil BM (2005) Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment. Langmuir 21:10992–10997

    Article  CAS  PubMed  Google Scholar 

  • Rozhok S et al (2004) AFM study of water meniscus formation between an AFM tip and NaCl substrate. J Phys Chem B 108. https://doi.org/10.1021/jp0401269

  • Soldatenkov IA (2012) The use of the method of successive approximations to calculate an elastic contact in the presence of molecular adhesion. J Appl Math Mech 76(5):597–603

    Article  Google Scholar 

  • Soldatenkov IA (2019) Contact problem with bulk-applied intermolecular interaction forces: a simplified solution method (two-level model). Mech Solids 54(2):303–310

    Article  Google Scholar 

  • Thundat T et al (1993) Role of relative-humidity in atomic-force microscopy imaging. Surf Sci 294:L939–L943

    Article  CAS  Google Scholar 

  • Tian H, Matsudaira T (1992) Effect of relative humidity on friction behavior of the head/disk interface. IEEE Trans Magn 28(5):2530–2532

    Article  CAS  Google Scholar 

  • Zakerin M et al (2013) Capillary forces between rigid spheres and elastic supports: the role of Young's modulus and equilibrium vapor adsorption. Soft Matter 9:4534–4543

    Article  CAS  Google Scholar 

  • Zheng Z, Yu J (2007) Using the Dugdale approximation to match a specific interaction in the adhesive contact of elastic objects. J Colloid Interface Sci 310(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Zhou SS, Gao XL, He QC (2011) A unified treatment of axisymmetric adhesive contact problems using the harmonic potential function method. J Mech Phys Sol 59:145–159

    Article  Google Scholar 

Download references

Acknowledgements

The work was carried out under the financial support of the Russian Foundation for Basic Research (grant 20-01-00400-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Goryacheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goryacheva, I.G., Makhovskaya, Y.Y. (2022). Capillary Adhesion Effect in Contact Interaction of Soft Materials. In: Borodich, F.M., Jin, X. (eds) Contact Problems for Soft, Biological and Bioinspired Materials. Biologically-Inspired Systems, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-85175-0_4

Download citation

Publish with us

Policies and ethics