Skip to main content

Drug Metabolism

  • Reference work entry
  • First Online:
The ADME Encyclopedia

Synonyms

Drug biotransformation

Definition

Drug metabolism (also known as drug biotransformation) involves the (bio)chemical modification of a drug by the body. Drug metabolism comprises enzyme-catalyzed reactions, which are generally (but not always) irreversible, as they involve the cleavage and formation of high-energy covalent bonds, which are approximately in the range of 200–400 kJ mol−1 [1]. The product of a biotransformation reaction is called metabolite. Drug metabolism reactions have evolved to enhance the hydrophilicity of their substrates, hence facilitating their biliary and urinary excretion [1, 2].

While practically all tissues and organs present some degree of biotransformation capacity, the liver is with no doubt (and generally speaking) the most relevant site of drug metabolism, since most drug-metabolizing enzymes are expressed there at comparatively high levels. Organs and tissues of secondary importance to drug metabolism (either for the variety of metabolizing...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Testa B, Krämer SD. The biochemistry of drug metabolism – an introduction. Part 1. Principles and overview. Chem Biodivers. 2006;3:1053–101.

    Article  CAS  PubMed  Google Scholar 

  2. Bachmann K. Drug metabolism. In: Hacker M, Messer W, Bachmann K, editors. Pharmacology. Burlington: Academic Press; 2009. p. 131–73.

    Chapter  Google Scholar 

  3. Di L, Kerns EH. Lipophilicity. In Drug-like properties. concepts, structure design and methods from ADME to toxicity optimization (2nd). Elsevier; 2016. p. 39–50.

    Google Scholar 

  4. Smith FC. Pharmacokinetics of drug metabolites. In: Pearson PG, Wienkers LC, editors. Handbook of drug metabolism. New York: Informa Healthcare; 2008. p. 17–59.

    Google Scholar 

  5. Testa B, Krämer SD. The biochemistry of drug metabolism – an introduction. Part 2. Redox reactions and their enzymes. Chem Biodivers. 2007;4:257–405.

    Article  CAS  PubMed  Google Scholar 

  6. Dekant W. The role of biotransformation and bioactivation in toxicity. In: Luch A, editor. Molecular, clinical and environmental toxicology. Experientia Supplementum, vol. 99. Birkhäuser Basel: Springer; 2009. p. 57–86.

    Chapter  Google Scholar 

  7. Talevi A. The importance of bioactivation in computer-guided drug repositioning. Why the parent drug is not always enough. Curr Top Med Chem. 2016;16:2078–87.

    Article  CAS  PubMed  Google Scholar 

  8. Kang MJ, Song WH, Shim BH, Oh SY, Lee HY, Chung EY, et al. Pharmacologically active metabolites of currently marketed drugs: potential resources for new drug discovery and development. Yakugaku Zasshi. 2010;130:1325–37.

    Article  CAS  PubMed  Google Scholar 

  9. De Gregori S, De Gregori M, Ranzani GN, Allegri M, Minella C, Regazzi M. Morphine metabolism, transport and brain disposition. Metab Brain Dis. 2012;27:1–5.

    Article  PubMed  CAS  Google Scholar 

  10. Testa B, Krämer SD. The biochemistry of drug metabolism – an introduction. Part 4. Reactions of conjugation and their enzymes. Chem Biodivers. 2008;5:2171–336.

    Article  CAS  PubMed  Google Scholar 

  11. Testa B, Pedretti A, Vistoli G. Foundation review: reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discov Today. 2012;17:549–60.

    Article  CAS  PubMed  Google Scholar 

  12. Josephy PD, Guengerich FP, Miners JO. “Phase I and phase II” drug metabolism: terminology that we should phase out. Drug Metab Rev. 2005;37:575–80.

    Article  CAS  Google Scholar 

  13. Yao M, Zhu M. Chang SY, Zhang D, Rodrigues AD. Applications of recombinant and purified human drug-metabolizing enzymes: an industrial perspective. In: Pearson PG, Wienkers LC, editors. Handbook of drug metabolism. New York: Informa Healthcare; 2008. p. 17–59.

    Google Scholar 

  14. Hutzler JM, Tracy TS. Atypical kinetic profiles in drug metabolism reactions. Drug Metab Dispos. 2002;30:355–62.

    Article  CAS  PubMed  Google Scholar 

  15. Korzekwa KT, Shou M, Ogai A, Pairse RA, Rettie AE, Gonzalez FJ, et al. Evaluation of atypical cytochrome P450 kinetics with two-substrate models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites. Biochemistry. 1998;37:4137–47.

    Article  CAS  PubMed  Google Scholar 

  16. Hutzler JM, Hauer MJ, Tracy TS. Dapsone activation of CYP2C9-mediated metabolism: evidence for activation of multiple substrates and a two-site model. Drug Metab Dispos. 2001;29:1029–34.

    CAS  PubMed  Google Scholar 

  17. Ekins S, Ring BJ, Binkley SN, Hall SD, Wrighton SA. Autoactivation and activation of the cytochrome P450s. Int J Clin Pharmacol Ther. 1998;36:642–51.

    CAS  PubMed  Google Scholar 

  18. Kandel SE, Han LW, Mao Q, Lampe JN. Digging deeper into CYP3A testosterone metabolism: kinetic, regioselectivity, and stereoselectivity differences between CYP3A4/5 and CYP3A7. Drug Metab Dispos. 2017;45:1266–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reed MC, Lieb A, Nijhout HF. The biological significance of substrate inhibition: a mechanism with diverse functions. BioEssays. 2010;32:422–9.

    Article  CAS  PubMed  Google Scholar 

  20. Lin Y, Lu P, Tang C, Mei Q, Sandig G, Rodrigues AD, et al. Substrate inhibition kinetics for cytochrome P450-catalyzed reactions. Drug Metab Dispos. 2001;29:368–37.

    CAS  PubMed  Google Scholar 

  21. Sevrioukova IF, Poulosa TL. Understanding the mechanism of cytochrome P450 3A4: recent advances and remaining problems. Dalton Trans. 2013;42:3116–26.

    Article  CAS  PubMed  Google Scholar 

  22. Carreiro C, Brito J, Bilreiro C, Barros M, Bahia C, Santiago I, et al. All about portal vein: a pictorial display to anatomy, variants and physiopathology. Insights Imaging. 2019;10:38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Talevi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Talevi, A., Bellera, C.L. (2022). Drug Metabolism. In: Talevi, A. (eds) The ADME Encyclopedia. Springer, Cham. https://doi.org/10.1007/978-3-030-84860-6_6

Download citation

Publish with us

Policies and ethics