Skip to main content

pKa Determination

  • Reference work entry
  • First Online:
The ADME Encyclopedia

Synonyms

Acid dissociation constant; Acid dissociation constant determination; Acidic dissociation constant; Acidity constant; Acidity constant determination; Ionization constant; Ionization constant determination

Definition

The acid dissociation constant (Ka) (also known as ionization constant, as acidic dissociation constant, or sometimes as acidity constant) is among the most relevant physicochemical parameters from a (bio)pharmaceutical perspective. For a weak acid AH, Ka is provided by the following equilibrium and expression:

$$ \mathrm{AH}\rightleftharpoons {\mathrm{A}}^{-}+{\mathrm{H}}^{+}\, {K}_a=\frac{\left[{\mathrm{A}}^{-}\right]\left[{\mathrm{H}}^{+}\right]}{\left[\mathrm{AH}\right]} $$
(1)

whereas for a weak base B:

$$ {\mathrm{BH}}^{+}\rightleftharpoons \mathrm{B}+{\mathrm{H}}^{+}\quad {K}_a=\frac{\left[\mathrm{B}\right]\left[{\mathrm{H}}^{+}\right]}{\left[{\mathrm{BH}}^{+}\right]}\, $$
(2)

Generalizing, Kacan be thus obtained from the concentration ratio of the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babić S, Horvat AJM, Mutavdžić Pavlović D, Kaštelan-Macan M. Determination of pKa values of active pharmaceutical ingredients. Trends Anal Chem. 2007;26:1043–61.

    Article  CAS  Google Scholar 

  2. Shannon AL, Woolridge A. Medical waste. In: Letcher TM, Vallero DA, editors. Waste: a handbook for management. Amsterdam: Academic; 2011. p. 329–39.

    Chapter  Google Scholar 

  3. Erdemgil FZ, Sanli S, Sanli N, Ozkan G, Barbosa J, Guiteras J, et al. Determination of pK(a) values of some hydroxylated benzoic acids in methanol-water binary mixtures by LC methodology and potentiometry. Talanta. 2007;72:489–96.

    Article  CAS  PubMed  Google Scholar 

  4. Kelen M, Sanli N. Determination of pKa values of some auxins in methanol-water mixtures by reversed phase liquid chromatography and potentiometric methods. J Braz Chem Soc. 2009;20:133–40.

    Article  CAS  Google Scholar 

  5. Cruciani G, Milletti F, Storchi L, Sforna G, Goracci L. In silico pKa prediction and ADME profiling. Chem Biodivers. 2009;6:1812–21.

    Article  CAS  PubMed  Google Scholar 

  6. Körner R, Sushko I, Novotarskyi S, Tetko IV. In silico pKa prediction. J Cheminform. 2012;4(Suppl 1):P55.

    Article  PubMed Central  Google Scholar 

  7. Reijenga J, van Hoof A, van Loon A, Teunissen B. Development of methods for the determination of pKa values. Anal Chem Insights. 2013;8:53–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gran G. Determination of the equivalent point in potentiometric titrations. Acta Chem Scand. 1950;4:559–77.

    Article  CAS  Google Scholar 

  9. Greschonig H, Glatter O. Determination of equivalence points of sigmoidal potentiometric titration curves. Mikrochim Acta. 1986;89:401–9.

    Article  Google Scholar 

  10. Qiang Z, Adams C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res. 2004;38:2874–90.

    Article  CAS  PubMed  Google Scholar 

  11. Avdeef A, Comer JEA, Thomson SJ. pH-Metric log P. 3. Glass electrode calibration in methanol-water, applied to pKa determination of water-insoluble substances. Anal Chem. 1993;65:42–9.

    Article  CAS  Google Scholar 

  12. Ravichandiran V, Devajaran V, Masilamani K. Determination of ionization constant (pKa) for poorly soluble drugs by using surfactants: a novel approach. Pharm Lett. 2011;3:183–92.

    CAS  Google Scholar 

  13. Saurina J, Hernández-Cassou S, Tauler R, Izquierdo-Ridorsa A. Spectrophotometric determination of pK(a) values based on a pH gradient flow-injection system. Anal Chim Acta. 2000;408:135–43.

    Article  CAS  Google Scholar 

  14. Martínez CH, Dardonville C. Rapid Determination of Ionization Constants (pK a) by UV Spectroscopy Using 96-Well Microtiter Plates [published correction appears in ACS Med Chem Lett. 2012;4:142–5.

    Google Scholar 

  15. Box K, Bevan C, Comer J, Hill A, Allen R, Reynolds D. High-throughput measurement of pKa values in a mixed-buffer linear pH gradient system. Anal Chem. 2003;75:883–92.

    Article  CAS  PubMed  Google Scholar 

  16. Cabot JM, Fuguet E, Rosés M. Internal standard capillary electrophoresis as a high-throughput method for pKa determination in drug discovery and development. ACS Comb Sci. 2014;16:518–25.

    Article  CAS  PubMed  Google Scholar 

  17. Zimmermann I. Determination of pKa values from solubility data. Int J Pharm. 1982;13:57–65.

    Article  CAS  Google Scholar 

  18. Stuart M, Box K. Chasing equilibrium: measuring the intrinsic solubility of weak acids and bases. Anal Chem. 2005;77:983–90.

    Article  CAS  PubMed  Google Scholar 

  19. Streng WH, Tan HGH. General treatment of pH solubility profiles pf weak acids and bases. II. Evaluation of thermodynamic parameters from the temperature dependence of solubility profiles applied to a Zwitterionic compound. Int J Pharm. 1985;25:135–45.

    Article  CAS  Google Scholar 

  20. Zimmermann I. Determination of overlapping pKa values from solubility data. Int J Pharm. 1986;31:69–74.

    Article  CAS  Google Scholar 

  21. Golumbic C, Orchin M, Weller S. Relation between partition coefficient and ionization constant. J Am Chem Soc. 1949;71:2624–7.

    Article  CAS  Google Scholar 

  22. Hasegawa J, Fujita T, Hayashi Y, Iwamoto K, Watanabe J. pKa determination of verapamil by liquid-liquid partition. J Pharm Sci. 1984;73:442–5.

    Article  CAS  PubMed  Google Scholar 

  23. Grunwald E, Loewenstein A, Meiboom S. Rates and mechanisms of protolysis of methylammonium ion in aqueous solution studied by proton magnetic resonance. J Chem Phys. 1957;27:641.

    Article  CAS  Google Scholar 

  24. Lee DG, Cameron R. The basicity of aliphatic ethers. Can J Chem. 1972;50:445–8.

    Article  CAS  Google Scholar 

  25. Katzin LI, Gulyas E. Dissociation constants of tartaric acid with the aid of polarimetry. J Phys Chem. 1960;64:1739–41.

    Article  CAS  Google Scholar 

  26. Schulman SG, Capomacchia AC. Variations of fluorescence quantum yields with pH or Hammett acidity. Near equilibrium vs. nonequilibrium excited state proton exchange. J Phys Chem. 1975;79:1337–43.

    Article  CAS  Google Scholar 

  27. Balogh GT, Gyarmati B, Nagy B, Molnár L, Keserű GM. Comparative evaluation of in silico pKa prediction tools on the gold standard dataset. QSAR Comb Sci. 2009;28:1148–55.

    Article  CAS  Google Scholar 

  28. Müller P. Glossary of terms used in physical organic chemistry. Pure Appl Chem. 1994;66:1077–184.

    Article  Google Scholar 

  29. Roszak R, Beker W, Molga K, Grzybowski BA. Rapid and accurate prediction of pKa values of C-H acids using graph convolutional neural networks. J Am Chem Soc. 2019;141:17142–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Talevi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Talevi, A., Bellera, C.L. (2022). pKa Determination. In: Talevi, A. (eds) The ADME Encyclopedia. Springer, Cham. https://doi.org/10.1007/978-3-030-84860-6_49

Download citation

Publish with us

Policies and ethics