Skip to main content

Archimedean and Non-Archimedean Approaches to Mathematical Modeling

  • Chapter
  • First Online:
The Mathematics of Patterns, Symmetries, and Beauties in Nature

Abstract

This chapter presents the two most relevant approaches to mathematical modeling: the long standing and by now classic Archimedean model, based on the Archimedean Principle, named by Otto Stolz after the ancient Greek mathematician Archimedes de Syracuse: an Archimedean space has no infinitely large or infinitely small elements. We illustrate this model with an example from the signed qualitative mathematical modeling, that is, the so-called Jacobian Feedback Loop Methodology which stresses qualitative understanding of systems as the primary goal rather the numerical prediction and the more familiar large scale quantitative methods. The other approach we present is the Non-Archimedean/Ultrametric/p-adic mathematical model: it is based on the violation of the Archimedean principle, and it is proving to be more adequate and appropriate for systems with intrinsic hierarchical structure; the associated geometry is non-intuitive, where the topological concept of openess/closeness is rendered meaningless (clopen balls topology), all triangles are isosceles, and the space is totally disconnected; we present the most recent areas of applications from mathematical physics (spin glasses, p-adic string theory,…) to p-adic arithmetic dynamics to the analysis of Mental spaces (p-adic cognitive sciences).

We introduce the chapter with a note on the influence of cultures (e.g., French and Russian) on mathematical concepts and models, as well as a note of the upcoming post-human mathematics to be featured by computer/artificial mathematical creativity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graham, Loren and Kantor, Jean-Michel, A Comparison of Two Cultural Approaches to Mathematics: France and Russia, 1890–1930. Isis, Vol 97(1) (2006), 56–74.

    Google Scholar 

  2. Weyl, Hermann, God and the universe: the open world. New Haven, Conn.: yale University Press, 1932

    Google Scholar 

  3. Lebesgue, Henri, “Préface” in Nicolas Lusin Lecons sue les ensembles analytiques et leurs applications Paris Gauthier-Villars, 1930.

    Google Scholar 

  4. von Neumann, J., The Computer and the Brain. Yale U.P., New Haven, 1958

    Google Scholar 

  5. Ruelle, David, Post-Human Maathematics. arXiv: 1308.4678v[math.HO] 21 Aug 2013.

    Google Scholar 

  6. Justus, J. Loop Analysis and Qualitative Modeling: Limitations and Merits. Biology and Philosophy 21 (2006): 647–666.

    Google Scholar 

  7. Levins, R., 1974 The qualitative analysis of partially specified systems, Ann.N.Y.Acad.Sci., 231, 123–138

    Google Scholar 

  8. Ehrlich, Philip, The Rise on non-Archimedean Mathematics and the Roots of a misconception I: The Emergence of non-Archimedean Systems of Magnitudes. Arch.Hist.Exact Sci. 60 (2006) 1-121

    Google Scholar 

  9. Volovich I. V., p-adic string, Classical Quantum Gravity 4(4), L83–L87 (1987).

    Google Scholar 

  10. Dragovich B., Khrennikov A. Yu., Kozyrev S. V., Volovich I. V., Zelenov E. I., p-Adic mathematical physics: the first 30 years, p-Adic Numbers Ultrametric Anal. Appl. 9 (2017), no. 2, 87–121.

    Google Scholar 

  11. Murtagh Fionn, Thinking ultrametrically, thinking p-adically. Clusters, orders, and trees: methods and applications, 249–272, Springer Optim. Appl., 92, Springer, New York, 2014.

    Google Scholar 

  12. Frauenfelder H, Chan S. S., Chan W. S. (eds), The Physics of Proteins. Springer-Verlag, 2010.

    Google Scholar 

  13. Vladimirov V. S., Volovich I. V., Zelenov E. I., p-adic analysis and mathematical physics. Series on Soviet and East European Mathematics, 1. World Scientific Publishing Co., Inc., River Edge, NJ, 1994.

    Google Scholar 

  14. Khrennikov Andrei, Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models. Mathematics and its Applications, 427. Kluwer Academic Publishers, Dordrecht, 1997.

    Google Scholar 

  15. Khrennikov, A., Information Dynamics in Cognitive, Psychological and social Phenomena (Fundamental Theories of Physics), Kluwer, Dordrecht, 2004.

    Google Scholar 

  16. Toni, B., Dynamical Roles of Jacobian Feedback Loops and Qualitative Modeling, Springer PROMS vol 90(2014), 205–240

    Google Scholar 

  17. Thomas, R., 1994 The role of Feedback Circuits: positive feedback circuits are a necessary condition for positive eigenvalues in the feedback matrix, Ber. Bunzenges. Phys. Chem. vol. 98 1148–1151

    Google Scholar 

  18. Thomas, R., 1996 Analyse et synthèse de systèmes à dynamique chaotique en terme de loops de rétroaction Académie Royale de Belgique 6e série, Tome VII, 101–124

    Google Scholar 

  19. Toni, B., Thieffry, D., Bulajich, R., Feedback Loops analysis for chaotic dynamics with an application to Lorenz system, Fields Inst.Commun. 21,473–483 (1999)

    Google Scholar 

  20. Toni, B., Jacobian Feedback Loops Analysis I. International Journal of Evolution Equations, 1(4), 415–428 (2005)

    Google Scholar 

  21. Toni, B. Jacobian Feedback Loops Analysis II: Stabilty and Instability, International Journal of Evolution Equations, 2(4), 355–366 (2008)

    Google Scholar 

  22. Toni, B., Parmananda, P., Bulajich, R., and Thieffry, D., Dynamics of a two-dimensional Modelfor Electrochemical Corrosion Using Feedback Circuit and Nullcline Analysis, J.Phys.Chem.B. 1998, 102, 4118–4122.

    Google Scholar 

  23. Verhulst, F., 1990 Nonlinear Differential Equations and Dynamical Systems, Springer-Verlag Universitext

    Google Scholar 

  24. Bellman, R., 1997 Introduction to Matrix Analysis, Classics in Applied Matematics 19, 2nd Ed. SIAM

    Google Scholar 

  25. Puccia, Charles, and Richard Levins (1985), Qualitative Modeling of Complex Systems. Cambridge, MA: Harvard University Press.

    Google Scholar 

  26. Kaufman, M., Soulé, C., Thomas, R., A new necessary condition on interaction graphs for multistationarity Journal of Theoretical Biology, (2007) 248, 675–685

    Google Scholar 

  27. Snoussi, E.H., 1998 Necessary condition for Multistationarity and stable periodicity J.Biol.Syst., 6, 3–9

    Google Scholar 

  28. Soulé, C., 2003. Graphic requirements for multistationarity. ComplexUs 1, 123–133.

    Google Scholar 

  29. Thomas, R. and D’Ari, R. Biological Feedback CRC Press Inc., Boca Raton, 1990

    Google Scholar 

  30. Thomas, R., Thieffry, D. and Kaufman, M., 1995 Dynamical behaviour of biological regulatory networks. I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state Bull. Math. Biol. 57, 247–276

    Google Scholar 

  31. Cinquin, P., Demongeot, J., 2002. Positive and negative feedback: striking a balance between necessary antagonists. J. Theor. Biol. 216, 229–241.

    Google Scholar 

  32. Gouzé, J.L., 1998 Positive and negative circuits in Dynamical Systems, J. Biol. Syst. Vol. 6 pp. 11–15

    Google Scholar 

  33. Plahte, E. Mestl, T. and Omholt, W., 1995, Feedback Loop, Stability and Multistationarity in Dynamical Systems, J.Biol.Syst.,3(2), 409–413

    Google Scholar 

  34. Demongeot, J., Kaufman, M., Thomas, R., 2000. Positive feedback circuits and memory. C.R.Acad.Sci. Paris Life Sci. 323, 69–79.

    Google Scholar 

  35. Eisenfeld, J. and De Lisi, C., 1994 On conditions for qualitative instability of regulatory loops with applications to immunoqualitative control loops, Mathematics and Computers in Biomathematical Applications, Elsevier, New York pp. 39–53

    Google Scholar 

  36. Kirkland, S.J., McDonald, J.J., Tsatsomeros, M.J., Sign-patterns which require a positive eigenvalue, Linear and Multilinear Algebra 41(3), 199–210, 1996.

    Google Scholar 

  37. Lorenz E. N., Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963), 130–141.

    Google Scholar 

  38. Rossler, O. E. Continuous Chaos – Four prototype equations, Ann. N.Y. Acad. Sci. (1979), 316, 376–392.

    Google Scholar 

  39. Quirk, R. and Ruppert, R., 1965 Qualitative economics and the stability of equilibrium, Rev. Econ. Studies, 32, 311–326

    Google Scholar 

  40. Samuelson, P., Foundations of economic analysis. Harvard University Press, Cambridge, 1947.

    Google Scholar 

  41. Sensse, A., Hauser, M., Eiswirth, M., Feedback loops for Shil’nikov chaos: The peroxidase-oxidase reaction, J.Chem.Phys. 125, 014901–12 (2006)

    Google Scholar 

  42. Tyson, J., 1975 Classification of Instabilities in Chemical reaction systems, J. Chem. Phys. 62, 1010–1015

    Google Scholar 

  43. Kochubei Anatoly N., Pseudo-differential equations and stochastics over non-Archimedean fields. Marcel Dekker, Inc., New York, 2001.

    Google Scholar 

  44. Abdelmalek Abdesselam, Ajay Chandra and Gianluca Guadagni, Rigorous quantum field theory functional integrals over the p-adics I: anomalous dimensions. arXiv:1302.5971.

    Google Scholar 

  45. Soulé, C., Mathematical approaches to differentiation and gene regulation, C.R.Biologies 329 (2006) 13–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bourama Toni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toni, B. (2021). Archimedean and Non-Archimedean Approaches to Mathematical Modeling. In: Toni, B. (eds) The Mathematics of Patterns, Symmetries, and Beauties in Nature. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham. https://doi.org/10.1007/978-3-030-84596-4_8

Download citation

Publish with us

Policies and ethics