Skip to main content

Valorisation of Apple (Malus domestica) Wastes

  • Chapter
  • First Online:
Mediterranean Fruits Bio-wastes

Abstract

Worldwide, one of the most consumed fruit is apple (Malus domestica). Mainly containing water and carbohydrates, including fiber and sugar (fructose), this fruit is consumed raw or processed, and it is an essential source of vitamins, minerals, and phenolics. Consumption of apples has beneficial effects on human health, especially on vascular function, blood pressure, lipids, inflammation, and hyperglycemia. Significant amounts of apples are wasted during the agricultural (3%), distribution (15%), and household consumption (17%) stages. Annually, through apple juice, cider, jam, and sweets production, a huge amount of waste is generated. The mixture of skin, pulp, and seeds or apple pomace is highly biodegradable and could lead to environmental and economic issues if this solid waste disposal is not done properly. Therefore, there is an ongoing interest in valorizing this type of solid waste through the various applications of bioactive extracts and compounds from apple waste in the food industry and non-health purposes. In this work, the main research questions are: What is the apple waste's economic value? What is the chemical composition of apple waste extracts? Which are the biological and functional properties of the apple waste extracts? What are the applications of bioactive extracts and compounds from apple waste? In this work, the novel extraction techniques of bioactive compounds from apple pomace are also discussed. The apple pomace is a suitable raw material for producing high-value bio-products such as enzymes, organic acids, and biofuels. The main ways to dispose of apple waste are landfilling, incineration, composting, or low-quality animal feed and land spreading. These traditional ways have several adverse impacts like greenhouse gas production, smell, underground water pollution, negative impacts on human health, or cost-effectiveness. Instead, the alternative ways to recover this type of waste can lead to various benefits, generate economic and environmental benefits, and contribute to sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahzadeh, F., Pirmohammadi, R., Farhoomand, P., Fatehi, F., & Pazhoh, F. F. (2010). The effect of ensiled mixed tomato and apple pomace on Holstein dairy cow. Italian Journal of Animal Science, 9, 212–216.

    Google Scholar 

  • Acatrinei-Însurățelu, O., Buftia, G., Lazăr, I. M., & Rusu, L. (2019). Aerobic composting of mixing sewage sludge with green waste from lawn grass. Environmental Engineering and Management Journal, 18, 1789–1798.

    Google Scholar 

  • Ahmed, G. H. G., Fernandez-Gonzalez, A., & Garcia, M. E. D. (2020). Nano-encapsulation of grape and apple pomace phenolic extract in chitosan and soy protein via nanoemulsification. Food Hydrocolloids, 108, 105806.

    Google Scholar 

  • Akagić, A., Vranac, A., Gaši, F., Drkenda, P., Spaho, N., Oručević Žuljević, S., Kurtović, M., Musić, O., Murtić, S., & Hudina, M. (2019). Sugars, acids and polyphenols profile of commercial and traditional apple cultivars for processing. Acta agriculturae Slovenica, 113(2), 239–250.

    Google Scholar 

  • Alongi, M., Melchior, S., & Anese, M. (2019). Reducing the glycemic index of short dough biscuits by using apple pomace as a functional ingredient. LWT-Food Science and Technology, 100, 300–305.

    CAS  Google Scholar 

  • Aprea, E., Charles, M., Endrizzi, I., Corollaro, M. L., Betta, E., Biasioli, F., & Gasperi, F. (2017). Sweet taste in apple: The role of sorbitol, individual sugars, organic acids and volatile compounds. Scientific Reports, 7, 44950.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayhan, V., Duru, A. A., & Özkaya, S. (2009). Possibilities of using dried apple pomace in broiler chicken diets. Kafkas Universitesi Veteriner Fakultesi Dergisi, 15, 669–672.

    Google Scholar 

  • Barilla Center. (2012). Food waste: Causes, impacts and proposals. Center for food and nutrition.

    Google Scholar 

  • Barreira, J. C. M., Arraibi, A. A., & Ferreira, I. C. F. R. (2019). Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends in Food Science & Technology, 90, 76–87.

    CAS  Google Scholar 

  • Bchir, B., Rabetafika, H. N., Paquot, M., & Blecker, C. (2014). Effect of pear, apple and date fibres from cooked fruit by-products on dough performance and bread quality. Food and Bioprocess Technology, 7, 1114–1127.

    CAS  Google Scholar 

  • Begić-Akagić, A., Spaho, N., Gaši, F., Drkenda, P., Vranac, A., Meland, M., & Salkić, B. (2014). Sugar and organic acid profiles of the traditional and international apple cultivars for processing. Journal of Hygienic Engineering and Design, 7, 190–196.

    Google Scholar 

  • Bhushan, S., Kalia, K., Sharma, M., & Singh, B. (2008). Processing of apple pomace for bioactive molecules. Critical Reviews in Biotechnology, 28(4), 285–296.

    CAS  PubMed  Google Scholar 

  • Bortolini, D. G., Benvenutti, L., Demiate, I. M., Nogueira, A., Alberti, A., & Zielinski, A. A. F. (2020). A new approach to the use of apple pomace in cider making for the recovery of phenolic compounds. LWT-Food Science and Technology, 126, 109316.

    CAS  Google Scholar 

  • Caldeira, C., Corrado, S., & Sala, S. (2017). Food waste accounting: Methodologies, challenges and opportunities, EUR 28988 EN (p. JRC109202). Publications Office of the European Union. https://doi.org/10.2760/54845

    Book  Google Scholar 

  • Călinoiu, L. F., Mitrea, L., Precup, G., Bindea, M., Rusu, B., Dulf, V.-F., Ştefănescu, B. E., & Vodnar, D. C. (2017). Characterization of grape and apple peel wastes’ bioactive compounds and their increased bioavailability after exposure to thermal process. Bulletin UASVM Food Science and Technology, 74, 80–89.

    Google Scholar 

  • Campeanu, G., Neata, G., & Darjanschi, G. (2009). Chemical composition of the fruits of several apple cultivars growth as biological crop. Notulae Botanicae Horti Agrobotanici, 37, 161–164.

    CAS  Google Scholar 

  • Cargnin, S. T., & Gnoatto, S. B. (2017). Ursolic acid from apple pomace and traditional plants: A valuable triterpenoid with functional properties. Food Chemistry, 220, 477–489.

    CAS  PubMed  Google Scholar 

  • Cebulj, A., Cunja, V., Mikulic-Petkovsek, M., & Veberic, R. (2017). Importance of metabolite distribution in apple fruit. Scientia Horticulturae, 214, 214–220.

    CAS  Google Scholar 

  • Ceymann, M., Arrigoni, E., Schärer, H., Nising, A. B., & Hurrell, R. F. (2012). Identification of apples rich in health-promoting flavan-3-ols and phenolic acids by measuring the polyphenol profile. Journal of Food Composition and Analysis, 26(1-2), 128–135.

    CAS  Google Scholar 

  • Cho, E. J., Trinh, L. T. P., Song, Y., Lee, Y. G., & Bae, H. J. (2020). Bioconversion of biomass waste into high value chemicals. Bioresource Technology, 298, 122386.

    CAS  PubMed  Google Scholar 

  • Choi, Y. S., Kim, Y. B., Hwang, K. E., Song, D. H., Ham, Y. K., Kim, H. W., Sung, J. M., & Kim, C. J. (2016). Effect of apple pomace fiber and pork fat levels on quality characteristics of uncured, reduced-fat chicken sausages. Poultry Science, 95(6), 1465–1471.

    CAS  PubMed  Google Scholar 

  • De Cicco A. (2019). The fruit and vegetable sector in the EU: A statistical overview. Retrieved from http://ec.europa.eu/eurostat/statistics-explained/index.php/.

  • Dhillon, G. S., Brar, S. K., Verma, M., & Tyagi, R. D. (2011). Apple pomace ultrafiltration sludge: A novel substrate for fungal bioproduction of citric acid: Optimisation studies. Food Chemistry, 128, 864–871.

    CAS  Google Scholar 

  • Dhillon, G. S., Kaur, S., Brar, S. K., & Verma, M. (2012). Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase production through solid-state fermentation. Industrial Crops and Products, 38, 6–13.

    CAS  Google Scholar 

  • Djilas, S., Čanadanović-Brunet, J., & Ćetković, G. (2009). By-products of fruits processing as a source of phytochemicals. Chemical Industry & Chemical Engineering Quarterly, 15(4), 191–202.

    CAS  Google Scholar 

  • EC. (2020). Dgagri Dashboard: Apples. Agriculture and Rural Development.

    Google Scholar 

  • Eurostat. (2019). Do you eat fruit and vegetables daily? Retrieved from https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN-20190401-1

  • FAO/WHO. (2004). Fruit and vegetables for health. Report of a joint FAO/WHO workshop. Retrieved from http://www.fao.org/3/a-y5861e.pdf.

  • Fernandes, P. A., Silva, A. M., Evtuguin, D. V., Nunes, F. M., Wessel, D. F., Cardoso, S. M., & Coimbra, M. A. (2019a). The hydrophobic polysaccharides of apple pomace. Carbohydrate Polymers, 223, 115132.

    CAS  PubMed  Google Scholar 

  • Fernandes, P. A. R., Ferreira, S. S., Bastos, R., Ferreira, I., Cruz, M. T., Pinto, A., Coelho, E., Passos, C. P., Coimbra, M. A., Cardoso, S. M., & Wessel, D. F. (2019b). Apple pomace extract as a sustainable food ingredient. Antioxidants, 8, 189.

    CAS  PubMed Central  Google Scholar 

  • Fidelis, M., de Moura, C., Kabbas Junior, T., Pap, N., Mattila, P., Mäkinen, S., Putnik, P., Bursać Kovačević, D., Tian, Y., Yang, B., & Granatom, D. (2019). Fruit seeds as sources of bioactive compounds: Sustainable production of high value-added ingredients from by-products within circular economy. Molecules, 24(21), 3854.

    CAS  PubMed Central  Google Scholar 

  • Fierascu, R. C., Sieniawska, E., Ortan, A., Fierascu, I., & Xiao, J. (2020). Fruits by-products: A source of valuable active principles. A short review. Frontiers in Bioengineering and Biotechnology, 8, 1–8.

    Google Scholar 

  • Freshfel Europe’s. (2020). Consumption data. Retrieved from https://freshfel.org/what-we-do/consumption-monitor/.

  • Fruit Logistica. (2020). European statistics handbook. Retrieved from https://www.fruitlogistica.com/.

  • Gaikwad, K. K., Lee, J. Y., & Lee, Y. S. (2016). Development of polyvinyl alcohol and apple pomace bio-composite film with antioxidant properties for active food packaging application. Journal of Food Science and Technology, 53(3), 1608–1619.

    CAS  PubMed  Google Scholar 

  • Ghinea, C. (2017). Assessment of environmental impact of food waste: A case study apple fruits. Food and Environment Safety, 16, 21–28.

    Google Scholar 

  • Ghinea, C., Apostol, L. C., Prisacaru, A., & Leahu, A. (2019). Development of a model for food waste composting. Environmental Science and Pollution Research, 26, 4056–4069.

    CAS  PubMed  Google Scholar 

  • Ghinea, C., & Gavrilescu, M. (2010). Decision support models for solid waste management: An overview. Environmental Engineering and Management Journal, 9, 869–880.

    CAS  Google Scholar 

  • Ghinea, C., & Gavrilescu, M. (2019). Solid waste management for circular economy: Challenges and opportunities in Romania – The case study of Iasi county. In M.-L. Franco-García et al. (Eds.), Towards zero waste, greening of industry networks studies 6 (pp. 25–60) (Chapter 3).

    Google Scholar 

  • Ghinea, C., & Leahu, A. (2020). Monitoring of fruit and vegetable waste composting process: Relationship between microorganisms and physico-chemical parameters. Processes, 8, 302.

    CAS  Google Scholar 

  • Grigoras, C. G., Destandau, E., Fougére, L., & Elfakir, C. (2013). Evaluation of apple pomace extracts as a source of bioactive compounds. Industrial Crops and Products, 49, 794–804.

    CAS  Google Scholar 

  • Guerrero, M. R. B., da Silva Paula, M. M., Zaragoza, M. M., Gutierrez, J. S., Velderrain, V. G., Ortiz, A. L., & Collins-Martınez, V. (2014). Thermogravimetric study on the pyrolysis kinetics of apple pomace as waste biomass. International Journal of Hydrogen Energy, 39, 16619–16627.

    CAS  Google Scholar 

  • Gullon, B., Yanez, R., Alonso, J. L., & Parajo, J. C. (2008). L-Lactic acid production from apple pomace by sequential hydrolysis and fermentation. Bioresource Technology, 99, 308–319.

    CAS  PubMed  Google Scholar 

  • Gumul, D., Korus, J., Ziobro, R., & Kruczek, M. (2019). Enrichment of wheat bread with apple pomace as a way to increase pro-health constituents. Quality Assurance and Safety of Crops & Foods, 11(3), 231–240.

    CAS  Google Scholar 

  • Gustafsson, J., Landberg, M., Bátori, V., Åkesson, D., Taherzadeh, M. J., & Zamani, A. (2019). Development of bio-based films and 3D objects from apple pomace. Polymers, 11, 289.

    PubMed Central  Google Scholar 

  • Hanc, A., Boucek, J., Svehla, P., Dreslova, M., & Tlustos, P. (2017). Properties of vermicompost aqueous extracts prepared under different conditions. Environmental Technology, 38, 1428–1434.

    Google Scholar 

  • Hanc, A., & Chadimova, Z. (2014). Nutrient recovery from apple pomace waste by vermicomposting technology. Bioresource Technology, 168, 240–244.

    CAS  PubMed  Google Scholar 

  • He, Y., & Lu, Q. (2015). Impact of apple pomace on the property of French bread. Advance Journal of Food Science and Technology, 8(3), 167–172.

    Google Scholar 

  • Huda, A. B., Parveen, S., Rather, S. A., Akhter, R., & Hassan, M. (2014). Effect of incorporation of apple pomace on the physico-chemical, sensory and textural properties of mutton nuggets. International Journal of Advanced Research, 2, 974–983.

    Google Scholar 

  • Issa, N. K., Abdul, J. R. S., Hammo, Y. H., & Kamal, I. M. (2016). Antioxidant activity of apple peels bioactive molecules extractives. Science and Technology, 6(3), 76–88.

    Google Scholar 

  • Jaeger, S. R., Machín, L., Aschemann-Witzel, J., Antúnez, L., Harker, F. R., & Ares, G. (2018). Buy, eat or discard? A case study with apples to explore fruit quality perception and food waste. Food Quality and Preference, 69, 10–20.

    Google Scholar 

  • Jakobek, L., & Barron, A. R. (2016). Ancient apple varieties from Croatia as a source of bioactive polyphenolic compounds. Journal of Food Composition and Analysis, 45, 9–15.

    CAS  Google Scholar 

  • Jiang, J., Huang, Y., Liu, X., & Huang, H. (2014). The effects of apple pomace, bentonite and calcium superphosphate on swine manure aerobic composting. Waste Management, 34, 1595–1602.

    CAS  PubMed  Google Scholar 

  • Jin, Q., Qureshi, N., Wang, H., & Huang, H. (2019). Acetone-butanol-ethanol (ABE) fermentation of soluble and hydrolysed sugars in apple pomace by Clostridium beijerinckii P260. Fuel, 244, 536–544.

    CAS  Google Scholar 

  • Joshi, V. K., Parmar, M., & Rana, N. (2011). Purification and characterization of pectinase produced from Apple pomace and evaluation of its efficacy in fruit juice extraction and clarification. Indian Journal of Natural Products and Resources, 2, 189–197.

    CAS  Google Scholar 

  • Jovanovic, M., Petrovic, M., Miocinovic, J., Zlatanovic, S., Petronijevic, J. L., & Mitic- Culafic, D., & Gorjanovic, S. (2020). Bioactivity and sensory properties of probiotic yogurt fortified with apple pomace flour. Foods, 9, 763.

    CAS  PubMed Central  Google Scholar 

  • Jung, J., Cavender, G., & Zhao, Y. (2015). Impingement drying for preparing dried apple pomace flour and its fortification in bakery and meat products. Journal of Food Science and Technology, 52(9), 5568–5578.

    CAS  PubMed  Google Scholar 

  • Kaushal, N., & Joshi, V. (1995). Preparation and evaluation of apple pomace based cookies. Indian Food Pack, 49, 17–24.

    Google Scholar 

  • Khan, S. A., Beekwilder, J., Schaart, J. G., Mumm, R., Soriano, J. M., Jacobsen, E., & Schouten, H. J. (2013). Differences in acidity of apples are probably mainly caused by a malic acid transporter gene on LG16. Tree Genetics & Genomes, 9, 475–487.

    Google Scholar 

  • Khgk, K., & Rauj, M. (2017). Utilization of fruit processing by-products for industrial applications: A review. International Journal of Food Science and Nutrition, 2, 24–30.

    Google Scholar 

  • Kim, I., Ku, K. H., Jeong, M. C., Kim, S. S., Mitchell, A. M., & Lee, J. (2019). A comparison of the chemical composition and antioxidant activity of several new early- to mid-season apple cultivars for a warmer climate with traditional cultivars. Journal of the Science of Food and Agriculture, 99, 4712–4724.

    CAS  PubMed  Google Scholar 

  • Kohajdová, Z., Karovičová, J., Magala, M., & Kuchtová, V. (2014). Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality. Chemical Papers, 68(8), 1059–1065.

    Google Scholar 

  • Konopacka, D., Jesionkowska, K., Kruczynska, D., Stehr, R., Schoorl, F., Buehler, A., Egger, S., Codarin, S., Hilaire, C., Holler, I., Guerra, W., Liverani, A., Donati, F., Sansavini, S., Martinelli, A., Petiot, C., Carbo, J., Echeverria, K., Iglesias, I., & Bonany, J. (2010). Apple and peach consumption habits across European countries. Appetite, 55, 478–483.

    CAS  PubMed  Google Scholar 

  • Kopcic, N., Domanovac, M. V., Kucic, D., & Briški, F. (2014). Evaluation of laboratory-scale in-vessel co-composting of tobacco and apple waste. Waste Management, 34, 323–328.

    CAS  PubMed  Google Scholar 

  • Kruczek, M., Gumul, D., Kačániová, M., Ivanišhová, E., Mareček, J., & Gambuś, A. (2017). Industrial apple pomace by-products as a potential source of pro-health compounds in functional food. Journal of Microbiology, Biotechnology and Food Science, 7(1), 22–26.

    CAS  Google Scholar 

  • Ktenioudaki, A., O’Shea, N., & Gallagher, E. (2013). Rheological properties of wheat dough supplemented with functional by-products of food processing: Brewer’s spent grain and apple pomace. Journal of Food Engineering, 116(2), 362–368.

    Google Scholar 

  • Leahu, A., Ghinea, C., & Oroian, M. A. (2020). Osmotic dehydration of apple and pear slices: Color and chemical characteristics. Ovidius University Annals of Chemistry, 31, 73–79.

    CAS  Google Scholar 

  • Liu, L., You, Y., Deng, H., Guo, Y., & Meng, Y. (2019). Promoting hydrolysis of apple pomace by pectinase and cellulase to produce microbial oils using engineered Yarrowia lipolytica. Biomass and Bioenergy, 126, 62–69.

    CAS  Google Scholar 

  • Lončarić, A., Matanović, K., Ferrer, P., Kovač, T., Šarkanj, B., Skendrović, B. M., & Lores, M. (2020). Peel of traditional apple varieties as a great source of bioactive compounds: Extraction by micro-matrix solid-phase dispersion. Foods, 9(1), 80.

    PubMed Central  Google Scholar 

  • Lu, C., Zhang, Z., Ge, X., Wang, Y., Zhou, X., You, X., Liu, H., & Zhang, Q. (2016). Bio-hydrogen production from apple waste by photosynthetic bacteria HAU-M1. International Journal of Hydrogen Energy, 41, 13399–13407.

    CAS  Google Scholar 

  • Lu, Z., Ye, F., Zhou, G., Gao, R., Qin, D., & Zhao, G. (2020). Micronized apple pomace as a novel emulsifier for food O/W Pickering emulsion. Food Chemistry, 330, 127325.

    CAS  PubMed  Google Scholar 

  • Lyu, F., Luiz, S. F., Azeredo, D. R. P., Cruz, A. G., Ajlouni, S., & Ranadheera, C. S. (2020). Apple pomace as a functional and healthy ingredient in food products: A review. Processes, 8, 319.

    CAS  Google Scholar 

  • Ma, B., Yuan, Y., Gao, M., Li, C., Ogutu, C., Li, M., & Ma, F. (2018). Determination of predominant organic acid components in malus species: Correlation with apple domestication. Metabolites, 8, 74.

    PubMed Central  Google Scholar 

  • Macagnan, F. T., dos Santos, L. R., Roberto, B. S., de Moura, F. A., Bizzani, M., & da Silva, L. P. (2015). Biological properties of apple pomace, orange bagasse and passion fruit peel as alternative sources of dietary fibre. Bioactive Carbohydrates and Dietary Fibre, 6, 1–6.

    CAS  Google Scholar 

  • Madrera, R. R., Bedrinana, R. P., Hevia, A. G., Arce, M. B., & Valles, B. S. (2013). Production of spirits from dry apple pomace and selected yeasts. Food and Bioproducts Processing, 91, 623–631.

    Google Scholar 

  • Majerska, J., Michalska, A., & Figiel, A. (2019). A review of new directions in managing fruit and vegetable processing by-products. Trends in Food Science & Technology, 88, 207–219.

    CAS  Google Scholar 

  • Maslovarić, M., Vukmirović, Đ., Čolović, R., Jovanović, R., Spasevski, N., & Tolimir, N. (2015). Pelleting properties and pellet quality of apple pomace. Food and Feed Research, 42, 147–154.

    Google Scholar 

  • Maslovarić, M. D., Vukmirović, D., Pezo, L., Čolović, R., Jovanović, R., Spasevski, N., & Tolimir, N. (2017). Influence of apple pomace inclusion on the process of animal feed pelleting. Food Additives & Contaminants: Part A, 34(8), 1353–1363.

    Google Scholar 

  • Mattsson, L., Williams, H., & Berghel, J. (2018). Waste of fresh fruit and vegetables at retailers in Sweden-Measuring and calculation of mass, economic cost and climate impact. Resources, Conservation & Recycling, 130, 118–126.

    Google Scholar 

  • McCann, M. J., Gill, C. I. R., O’Brien, G., Rao, J. R., McRoberts, W. C., Hughes, P., McEntee, R., & Rowland, I. R. (2007). Anti-cancer properties of phenolics from apple waste on colon carcinogenesis in vitro. Food and Chemical Toxicology, 45, 1224–1230.

    CAS  PubMed  Google Scholar 

  • ME (2018). Fresh fruits and vegetables. Republic of Turkey, Ministry of Economy (ME).

    Google Scholar 

  • Molinuevo-Salces, B., Riano, B., Hijosa-Valsero, M., Gonzalez-García, I., Paniagua-García, A. I., Hernandez, D., Garita-Cambronero, J., Díez-Antolínez, R., & García-Gonzalez, M. C. (2020). Valorization of apple pomaces for biofuel production: A biorefinery approach. Biomass and Bioenergy, 142, 105785.

    CAS  Google Scholar 

  • Morales-Contreras, B. E., Wicker, L., Rosas-Flores, W., Contreras-Esquivel, J. C., Gallegos-Infante, J. A., Reyes-Jaquez, D., & Morales-Castro, J. (2020). Apple pomace from variety “Blanca de Asturias” as sustainable source of pectin: Composition, rheological, and thermal properties. LWT-Food Science and Technology, 117, 108641.

    CAS  Google Scholar 

  • Nasreen, Z., & Qazi, J. I. (2012). Lab scale composting of fruits and vegetable waste at elevated temperature and forced aeration. Pakistan Journal of Zoology, 44, 1285–1290.

    Google Scholar 

  • Novelli, V., Geatti, P., Ceccon, L., & Gratton, S. (2019). Biomass exploitation for energy supply and quality compost production. an exemplary case of circular economy in the north east of Italy. Environmental Engineering and Management Journal, 18, 2163–2169.

    Google Scholar 

  • O’Shea, N., Ktenioudaki, A., Smyth, T. P., McLoughlin, P., Doran, L., Auty, M. A. E., Arendt, E., & Gallagher, E. (2015). Physicochemical assessment of two fruit by-products as functional ingredients: Apple and orange pomace. Journal of Food Engineering, 153, 89–95.

    Google Scholar 

  • Oszmiański, J., Lachowicz, S., Gławdel, E., Cebulak, T., & Ochmian, I. (2018). Determination of phytochemical composition and antioxidant capacity of 22 old apple cultivars grown in Poland. European Food Research and Technology, 244, 647–662.

    Google Scholar 

  • Panzella, L., Moccia, F., Nasti, R., Marzorati, S., Verotta, L., & Napolitano, A. (2020). Bioactive phenolic compounds from agri-food wastes: An update on green and sustainable extraction methodologies. Frontiers in Nutrition, 7, 1–27.

    Google Scholar 

  • Parmar, I., & Rupasinghe, H. P. (2013). Bio-conversion of apple pomace into ethanol and acetic acid: Enzymatic hydrolysis and fermentation. Bioresource Technology, 130, 613–620.

    CAS  PubMed  Google Scholar 

  • Persic, M., Mikulic-Petkovsek, M., Slatnar, A., & Veberic, R. (2017). Chemical composition of apple fruit, juice and pomace and the correlation between phenolic content, enzymatic activity and browning. LWT-Food Science and Technology, 82, 23–31.

    CAS  Google Scholar 

  • Perussello, C. A., Zhang, Z., Marzocchella, A., & Tiwari, B. K. (2017). Valorization of apple pomace by extraction of valuable compounds. Comprehensive Reviews in Food Science and Food Safety, 16, 776–796.

    CAS  PubMed  Google Scholar 

  • Philippidis, G., Sartori, M., Ferrari, E., & M'Barek, R. (2019). Waste not, want not: A bio-economic impact assessment of household food waste reductions in the EU. Resources, Conservation & Recycling, 146, 514–522.

    Google Scholar 

  • Pieszka, M., Szczurek, P., Bederska-Łojewska, D., Władysław, M., Pieszka, M., Gogol, P., & Jagusiak, W. (2017). The effect of dietary supplementation with dried fruit and vegetable pomaces on production parameters and meat quality in fattening pigs. Meat Science, 126, 1–10.

    CAS  PubMed  Google Scholar 

  • Prochazkova, P., Hanc, A., Dvorak, J., Roubalova, R., Dreslova, M., Částková, T., Šustr, V., Škanta, F., Pacheco, N. I. N., & Bilej, M. (2018). Contribution of Eisenia Andrei earthworms in pathogen reduction during vermicomposting. Environmental Science and Pollution Research, 25, 26267–26278.

    PubMed  Google Scholar 

  • Rabetafika, H. N., Bchir, B., Blecker, C., & Richel, A. (2014). Fractionation of apple by-products as source of new ingredients: Current situation and perspectives. Trends in Food Science & Technology, 40, 99–114.

    CAS  Google Scholar 

  • Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17, 512–531.

    CAS  PubMed  Google Scholar 

  • Saini, A., Panesar, P. S., & Bera, M. B. (2019). Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresources and Bioprocessing, 6, 26.

    Google Scholar 

  • Schiopu, A. M., & Ghinea, C. (2013). Municipal solid waste management and treatment of effluents resulting from their landfilling. Environmental Engineering and Management Journal, 12, 1699–1719.

    CAS  Google Scholar 

  • Shalini, R., & Gupta, D. K. (2010). Utilization of pomace from apple processing industries: A review. Journal of Food Science and Technology, 47(4), 365–371.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner, R. C., Gigliotti, J. C., Ku, K. M., & Tou, J. C. (2018). A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutrition Reviews, 76(12), 893–909.

    PubMed  Google Scholar 

  • Statista. (2020). Global leading apple producing countries in 2018. Retrieved from https://www.statista.com/.

  • Sudha, M. L., Baskaran, V., & Leelavathi, K. (2007). Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chemistry, 104, 686–692.

    CAS  Google Scholar 

  • Urbina, L., Eceiza, A., Gabilondo, N., Corcuera, M. A., & Retegi, A. (2019). Valorization of apple waste for active packaging: Multicomponent polyhydroxyalkanoate coated nanopapers with improved hydrophobicity and antioxidant capacity. Food Packaging and Shelf Life, 21, 100356.

    Google Scholar 

  • Vendruscolo, F., Albuquerque, P. M., Streit, F., Esposito, E., & Ninow, J. L. (2008). Apple pomace: A versatile substrate for biotechnological applications. Critical Reviews in Biotechnology, 28, 1–12.

    CAS  PubMed  Google Scholar 

  • Vendruscolo, F., & Ninow, J. L. (2014). Apple pomace as a substrate for fungal chitosan production in an airlift bioreactor. Biocatalysis and Agricultural Biotechnology, 3, 338–342.

    Google Scholar 

  • Verma, A. K., Sharma, B. D., & Banerjee, R. (2010). Effect of sodium chloride replacement and apple pulp inclusion on the physico-chemical, textural and sensory properties of low fat chicken nuggets. LWT-Food Science and Technology, 43, 715–719.

    CAS  Google Scholar 

  • Vukušić, J. L., Millenautzki, T., Cieplik, R., Obst, V., Saaid, A. M., Clavijo, L., Zlatanovic, S., Hof, J., Mösche, M., & Barbe, S. (2020). Reshaping apple juice production into a zero discharge biorefinery process. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-020-01245-5

  • Waldbauer, K., McKinnon, R., & Kopp, B. (2017). Apple pomace as potential source of natural active compounds. Planta Medica, 83, 994–1010.

    CAS  PubMed  Google Scholar 

  • Wang, X., Kristo, E., & LaPointe, G. (2019). The effect of apple pomace on the texture, rheology and microstructure of set type yogurt. Food Hydrocolloids, 91, 83–91.

    CAS  Google Scholar 

  • Wang, X., Kristo, E., & LaPointe, G. (2020). Adding apple pomace as a functional ingredient in stirred-type yogurt and yogurt drinks. Food Hydrocolloids, 100, 105453.

    CAS  Google Scholar 

  • Wojdalski, J., Grochowiz, J., Ekielski, A., Radecka, K., Stępniak, S., Orlowski, A., Florczak, I., & Drożdż, B. (2016). Production and properties of apple pomace pellets and their suitability for energy generation purposes. Annual Set the Environment Protection, 18, 89–111.

    Google Scholar 

  • Wojdyło, A., Oszmiański, J., & Laskowski, P. (2008). Polyphenolic compounds and antioxidant activity of new and old apple varieties. Journal of Agricultural and Food Chemistry, 56(15), 6520–6530.

    PubMed  Google Scholar 

  • Wolfe, K. L., & Liu, R. H. (2003). Apple peels as a value-added food ingredient. Journal of Agricultural and Food Chemistry, 51, 1676–1683.

    CAS  PubMed  Google Scholar 

  • Woźniak, Ł., Szakiel, A., Pączkowski, C., Marszałek, K., Skąpska, S., Kowalska, H., & Jędrzejczak, R. (2018). Extraction of triterpenic acids and phytosterols from apple pomace with supercritical carbon dioxide: Impact of process parameters, modelling of kinetics, and scaling-up study. Molecules, 23(11), 2790.

    PubMed Central  Google Scholar 

  • Xu, Y., Fan, M., Ran, J., Zhang, T., Sun, H., Dong, M., Zhang, Z., & Zheng, H. (2016). Variation in phenolic compounds and antioxidant activity in apple seeds of seven cultivars. Saudi Journal of Biological Sciences, 23, 379–388.

    CAS  PubMed  Google Scholar 

  • Yadav, S., Malik, A., Pathera, A., Islam, R. U., & Sharma, D. (2016). Development of dietary fibre enriched chicken sausages by incorporating corn bran, dried apple pomace and dried tomato pomace. Food Science & Nutrition, 46, 16–29.

    Google Scholar 

  • Younis, K., & Ahmad, S. (2015). Waste utilization of apple pomace as a source of functional ingredient in buffalo meat sausage. Cogent Food & Agriculture, 1, 1119397.

    Google Scholar 

  • Younis, K., & Ahmad, S. (2018). Quality evaluation of buffalo meat patties incorporated with apple pomace powder. Buffalo Bulletin, 37, 389–401.

    Google Scholar 

  • Zhong-Tao, S., Lin-Mao, T., Cheng, L., & Jin-Hua, D. (2009). Bioconversion of apple pomace into a multienzyme bio-feed by two mixed strains of Aspergillus niger in solid state fermentation. Electronic Journal of Biotechnology, 12, 1–13.

    Google Scholar 

  • Zlatanovic, S., Kaluševic, A., Micic, D., Lalicic-Petronijevic, J., Tomic, N., Ostojic, S., & Gorjanovic, S. (2019). Functionality and storability of cookies fortified at the industrial scale with up to 75% of apple pomace flour produced by dehydration. Food, 8, 561.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Ghinea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghinea, C., Leahu, A. (2022). Valorisation of Apple (Malus domestica) Wastes. In: Ramadan, M.F., Farag, M.A. (eds) Mediterranean Fruits Bio-wastes. Springer, Cham. https://doi.org/10.1007/978-3-030-84436-3_13

Download citation

Publish with us

Policies and ethics