Skip to main content

Best Practice Guidelines for Early-Onset Scoliosis

  • Chapter
  • First Online:
The Growing Spine

Abstract

Early-onset scoliosis (EOS) comprises a diverse spectrum of pathologies for which no single treatment modality is sufficient to address the wide variety of curve types. A thorough understanding of the available literature can guide surgeons in providing the best available treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Upasani VV, Parvaresh KC, Pawelek JB, Miller PE, Thompson GH, Skaggs DL, et al. Age at initiation and deformity magnitude influence complication rates of surgical treatment with traditional growing rods in early-onset scoliosis. Spine Deform. 2016;4(5):344–50.

    Article  PubMed  Google Scholar 

  2. Sankar WN, Skaggs DL, Yazici M, Johnston CE 2nd, Shah SA, Javidan P, et al. Lengthening of dual growing rods and the law of diminishing returns. Spine (Phila Pa 1976). 2011;36(10):806–9.

    Article  Google Scholar 

  3. Helenius IJ, Sponseller PD, McClung A, Pawelek JB, Yazici M, Emans JB, et al. Surgical and health-related quality-of-life outcomes of growing rod “graduates” with severe versus moderate early-onset scoliosis. Spine (Phila Pa 1976). 2019;44(10):698–706.

    Article  Google Scholar 

  4. Redding GJ. Early onset scoliosis: a pulmonary perspective. Spine Deform. 2014;2(6):425–9.

    Article  PubMed  Google Scholar 

  5. Dunnill MS. The problem of lung growth. Thorax. 1982;37(8):561–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Canavese F, Dimeglio A. Normal and abnormal spine and thoracic cage development. World J Orthop. 2013;4(4):167–74.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dimeglio A, Canavese F. The growing spine: how spinal deformities influence normal spine and thoracic cage growth. Eur Spine J. 2012;21(1):64–70.

    Article  PubMed  Google Scholar 

  8. McMaster MJ, Macnicol MF. The management of progressive infantile idiopathic scoliosis. J Bone Joint Surg Br. 1979;61(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  9. Hopper WC Jr, Lovell WW. Progressive infantile idiopathic scoliosis. Clin Orthop Relat Res. 1977;126:26–32.

    Google Scholar 

  10. Dobbs MB, Weinstein SL. Infantile and juvenile scoliosis. Orthop Clin North Am. 1999;30(3):331–41. vii

    Article  CAS  PubMed  Google Scholar 

  11. Emans JB, Kaelin A, Bancel P, Hall JE, Miller ME. The Boston bracing system for idiopathic scoliosis. Follow-up results in 295 patients. Spine (Phila Pa 1976). 1986;11(8):792–801.

    Article  CAS  Google Scholar 

  12. Masso PD, Meeropol E, Lennon E. Juvenile-onset scoliosis followed up to adulthood: orthopaedic and functional outcomes. J Pediatr Orthop. 2002;22(3):279–84.

    Article  PubMed  Google Scholar 

  13. Jarvis J, Garbedian S, Swamy G. Juvenile idiopathic scoliosis: the effectiveness of part-time bracing. Spine (Phila Pa 1976). 2008;33(10):1074–8.

    Article  Google Scholar 

  14. Robinson CM, McMaster MJ. Juvenile idiopathic scoliosis. Curve patterns and prognosis in one hundred and nine patients. J Bone Joint Surg Am. 1996;78(8):1140–8.

    Article  CAS  PubMed  Google Scholar 

  15. Mehta MH. Growth as a corrective force in the early treatment of progressive infantile scoliosis. J Bone Joint Surg Br. 2005;87(9):1237–47.

    Article  CAS  PubMed  Google Scholar 

  16. Thometz J, Liu X, Rizza R, English I, Tarima S. Effect of an elongation bending derotation brace on the infantile or juvenile scoliosis. Scoliosis Spinal Disord. 2018;13:13.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Thometz J, Liu XC. Serial CAD/CAM bracing: an alternative to serial casting for early onset scoliosis. J Pediatr Orthop. 2019;39(3):e185–e9.

    Article  PubMed  Google Scholar 

  18. Sanders JO, D'Astous J, Fitzgerald M, Khoury JG, Kishan S, Sturm PF. Derotational casting for progressive infantile scoliosis. J Pediatr Orthop. 2009;29(6):581–7.

    Article  PubMed  Google Scholar 

  19. Gomez JA, Grzywna A, Miller PE, Karlin LI, Garg S, Sanders JO, et al. Initial cast correction as a predictor of treatment outcome success for infantile idiopathic scoliosis. J Pediatr Orthop. 2017;37(8):e625–e30.

    Article  PubMed  Google Scholar 

  20. Fedorak GT, D'Astous JL, Nielson AN, MacWilliams BA, Heflin JA. Minimum 5-year follow-up of Mehta casting to treat idiopathic early-onset scoliosis. J Bone Joint Surg Am. 2019;101(17):1530–8.

    Article  PubMed  Google Scholar 

  21. Iorio J, Orlando G, Diefenbach C, Gaughan JP, Samdani AF, Pahys JM, et al. Serial casting for infantile idiopathic scoliosis: radiographic outcomes and factors associated with response to treatment. J Pediatr Orthop. 2017;37(5):311–6.

    Article  PubMed  Google Scholar 

  22. Welborn MC, D’Astous J, Bratton S, Heflin J. Infantile idiopathic scoliosis: factors affecting EDF casting success. Spine Deform. 2018;6(5):614–20.

    Article  PubMed  Google Scholar 

  23. Fletcher ND, McClung A, Rathjen KE, Denning JR, Browne R, Johnston CE 3rd. Serial casting as a delay tactic in the treatment of moderate-to-severe early-onset scoliosis. J Pediatr Orthop. 2012;32(7):664–71.

    Article  PubMed  Google Scholar 

  24. Baulesh DM, Huh J, Judkins T, Garg S, Miller NH, Erickson MA. The role of serial casting in early-onset scoliosis (EOS). J Pediatr Orthop. 2012;32(7):658–63.

    Article  PubMed  Google Scholar 

  25. Harrington PR. Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am. 1962;44-a:591–610.

    Article  CAS  PubMed  Google Scholar 

  26. Akbarnia BA, Breakwell LM, Marks DS, McCarthy RE, Thompson AG, Canale SK, et al. Dual growing rod technique followed for three to eleven years until final fusion: the effect of frequency of lengthening. Spine (Phila Pa 1976). 2008;33(9):984–90.

    Article  Google Scholar 

  27. Bess S, Akbarnia BA, Thompson GH, Sponseller PD, Shah SA, El Sebaie H, et al. Complications of growing-rod treatment for early-onset scoliosis: analysis of one hundred and forty patients. J Bone Joint Surg Am. 2010;92(15):2533–43.

    Article  PubMed  Google Scholar 

  28. Akbarnia BA, Marks DS, Boachie-Adjei O, Thompson AG, Asher MA. Dual growing rod technique for the treatment of progressive early-onset scoliosis: a multicenter study. Spine (Phila Pa 1976). 2005;30(17 Suppl):S46–57.

    Article  Google Scholar 

  29. Campbell RM Jr, Hell-Vocke AK. Growth of the thoracic spine in congenital scoliosis after expansion thoracoplasty. J Bone Joint Surg Am. 2003;85(3):409–20.

    Article  PubMed  Google Scholar 

  30. Emans JB, Caubet JF, Ordonez CL, Lee EY, Ciarlo M. The treatment of spine and chest wall deformities with fused ribs by expansion thoracostomy and insertion of vertical expandable prosthetic titanium rib: growth of thoracic spine and improvement of lung volumes. Spine (Phila Pa 1976). 2005;30(17 Suppl):S58–68.

    Article  Google Scholar 

  31. Campbell RM Jr, Smith MD, Mayes TC, Mangos JA, Willey-Courand DB, Kose N, et al. The effect of opening wedge thoracostomy on thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am. 2004;86(8):1659–74.

    Article  PubMed  Google Scholar 

  32. Campbell RM Jr, Smith MD, Mayes TC, Mangos JA, Willey-Courand DB, Kose N, et al. The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am. 2003;85(3):399–408.

    Article  PubMed  Google Scholar 

  33. Campbell RM Jr, Adcox BM, Smith MD, Simmons JW 3rd, Cofer BR, Inscore SC, et al. The effect of mid-thoracic VEPTR opening wedge thoracostomy on cervical tilt associated with congenital thoracic scoliosis in patients with thoracic insufficiency syndrome. Spine (Phila Pa 1976). 2007;32(20):2171–7.

    Article  Google Scholar 

  34. El-Hawary R, Morash K, Kadhim M, Vitale M, Smith J, Samdani A, et al. VEPTR treatment of early onset scoliosis in children without rib abnormalities: long-term results of a prospective, multicenter study. J Pediatr Orthop. 2019; https://doi.org/10.1097/BPO.0000000000001454. Online ahead of print

  35. Murphy RF, Moisan A, Kelly DM, Warner WC Jr, Jones TL, Sawyer JR. Use of vertical expandable prosthetic titanium rib (VEPTR) in the treatment of congenital scoliosis without fused ribs. J Pediatr Orthop. 2016;36(4):329–35.

    Article  PubMed  Google Scholar 

  36. El-Hawary R, Kadhim M, Vitale M, Smith J, Samdani A, Flynn JM. VEPTR implantation to treat children with early-onset scoliosis without rib abnormalities: early results from a prospective Multicenter study. J Pediatr Orthop. 2017;37(8):e599–605.

    Article  PubMed  Google Scholar 

  37. Gantner AS, Braunschweig L, Tsaknakis K, Lorenz HM, Hell AK. Spinal deformity changes in children with long-term vertical expandable prosthetic titanium rib treatment. Spine J. 2018;18(4):567–74.

    Article  PubMed  Google Scholar 

  38. Bachabi M, McClung A, Pawelek JB, El Hawary R, Thompson GH, Smith JT, et al. Idiopathic early-onset scoliosis: growing rods versus vertically expandable prosthetic titanium ribs at 5-year follow-up. J Pediatr Orthop. 2020;40(3):142–8.

    Article  PubMed  Google Scholar 

  39. Samdani AF, Ranade A, Dolch HJ, Williams R, St Hilaire T, Cahill P, et al. Bilateral use of the vertical expandable prosthetic titanium rib attached to the pelvis: a novel treatment for scoliosis in the growing spine. J Neurosurg Spine. 2009;10(4):287–92.

    Article  PubMed  Google Scholar 

  40. Smith JT. Bilateral rib-to-pelvis technique for managing early-onset scoliosis. Clin Orthop Relat Res. 2011;469(5):1349–55.

    Article  PubMed  Google Scholar 

  41. Ramirez N, Flynn JM, Smith JT, Vitale M, Sturm PF, D'Amato C, et al. Use of the S-hook for pelvic fixation in rib-based treatment of early-onset scoliosis: a Multicenter study. Spine (Phila Pa 1976). 2015;40(11):816–22.

    Article  Google Scholar 

  42. Abol Oyoun N, Stuecker R. Bilateral rib-to-pelvis Eiffel tower VEPTR construct for children with neuromuscular scoliosis: a preliminary report. Spine J. 2014;14(7):1183–91.

    Article  PubMed  Google Scholar 

  43. Akbarnia BA, Cheung K, Noordeen H, Elsebaie H, Yazici M, Dannawi Z, et al. Next generation of growth-sparing techniques: preliminary clinical results of a magnetically controlled growing rod in 14 patients with early-onset scoliosis. Spine (Phila Pa 1976). 2013;38(8):665–70.

    Article  Google Scholar 

  44. Ridderbusch K, Rupprecht M, Kunkel P, Hagemann C, Stucker R. Preliminary results of magnetically controlled growing rods for early onset scoliosis. J Pediatr Orthop. 2017;37(8):e575–e80.

    Article  PubMed  Google Scholar 

  45. Subramanian T, Ahmad A, Mardare DM, Kieser DC, Mayers D, Nnadi C. A six-year observational study of 31 children with early-onset scoliosis treated using magnetically controlled growing rods with a minimum follow-up of two years. Bone Joint J. 2018;100-b(9):1187–200.

    Article  CAS  PubMed  Google Scholar 

  46. Akbarnia BA, Pawelek JB, Cheung KM, Demirkiran G, Elsebaie H, Emans JB, et al. Traditional growing rods versus magnetically controlled growing rods for the surgical treatment of early-onset scoliosis: a case-matched 2-year study. Spine Deform. 2014;2(6):493–7.

    Article  PubMed  Google Scholar 

  47. Choi E, Yaszay B, Mundis G, Hosseini P, Pawelek J, Alanay A, et al. Implant complications after magnetically controlled growing rods for early onset scoliosis: a Multicenter retrospective review. J Pediatr Orthop. 2017;37(8):e588–e92.

    Article  PubMed  Google Scholar 

  48. Kwan KYH, Alanay A, Yazici M, Demirkiran G, Helenius I, Nnadi C, et al. Unplanned reoperations in magnetically controlled growing rod surgery for early onset scoliosis with a minimum of two-year follow-up. Spine (Phila Pa 1976). 2017;42(24):E1410–e4.

    Article  Google Scholar 

  49. Polly DW Jr, Ackerman SJ, Schneider K, Pawelek JB, Akbarnia BA. Cost analysis of magnetically controlled growing rods compared with traditional growing rods for early-onset scoliosis in the US: an integrated health care delivery system perspective. Clinicoecon Outcomes Res. 2016;8:457–65.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wong CKH, Cheung JPY, Cheung PWH, Lam CLK, Cheung KMC. Traditional growing rod versus magnetically controlled growing rod for treatment of early onset scoliosis: cost analysis from implantation till skeletal maturity. J Orthop Surg (Hong Kong). 2017;25(2):2309499017705022.

    Article  Google Scholar 

  51. Oetgen ME, McNulty EM, Matthews AL. Cost-effectiveness of magnetically controlled growing rods: who really benefits? Spine Deform. 2019;7(3):501–4.

    Article  PubMed  Google Scholar 

  52. Rushton PRP, Smith SL, Kandemir G, Forbes L, Fender D, Bowey AJ, et al. Spinal lengthening with magnetically controlled growing rods: data from the largest series of explanted devices. Spine (Phila Pa 1976). 2020;45(3):170–6.

    Article  Google Scholar 

  53. Rushton PRP, Smith SL, Forbes L, Bowey AJ, Gibson MJ, Joyce TJ. Force testing of explanted magnetically controlled growing rods. Spine (Phila Pa 1976). 2019;44(4):233–9.

    Article  Google Scholar 

  54. Alexander N, Hosseini P, Skaggs DL, Akbarnia BA, Johnston CE, Shah SA, et al. Differential lengthening of MCGR does not improve coronal decompensation. Spine Deform. 2018;805(6)

    Google Scholar 

  55. Luque ER, Cardoso A. Treatment of scoliosis without arthrodesis or external support. Preliminary Report Orthop Trans. 1977;1:37–8.

    Google Scholar 

  56. Pratt RK, Webb JK, Burwell RG, Cummings SL. Luque trolley and convex epiphysiodesis in the management of infantile and juvenile idiopathic scoliosis. Spine (Phila Pa 1976). 1999;24(15):1538–47.

    Article  CAS  Google Scholar 

  57. Mardjetko SM, Hammerberg KW, Lubicky JP, Fister JS. The Luque trolley revisited. Review of nine cases requiring revision. Spine (Phila Pa 1976). 1992;17(5):582–9.

    Article  CAS  Google Scholar 

  58. Ouellet J. Surgical technique: modern Luque trolley, a self-growing rod technique. Clin Orthop Relat Res. 2011;469(5):1356–67.

    Article  PubMed  PubMed Central  Google Scholar 

  59. McCarthy RE, Luhmann S, Lenke L, McCullough FL. The Shilla growth guidance technique for early-onset spinal deformities at 2-year follow-up: a preliminary report. J Pediatr Orthop. 2014;34(1):1–7.

    Article  PubMed  Google Scholar 

  60. McCarthy RE, McCullough FL. Shilla growth guidance for early-onset scoliosis: results after a minimum of five years of follow-up. J Bone Joint Surg Am. 2015;97(19):1578–84.

    Article  PubMed  Google Scholar 

  61. Luhmann SJ, McCarthy RE. A comparison of SHILLA GROWTH GUIDANCE SYSTEM and growing rods in the treatment of spinal deformity in children less than 10 years of age. J Pediatr Orthop. 2017;37(8):e567–e74.

    Article  PubMed  Google Scholar 

  62. Luhmann SJ, Smith JC, McClung A, McCullough FL, McCarthy RE, Thompson GH. Radiographic outcomes of Shilla growth guidance system and traditional growing rods through definitive treatment. Spine Deform. 2017;5(4):277–82.

    Article  PubMed  Google Scholar 

  63. Wijdicks SPJ, Tromp IN, Yazici M, Kempen DHR, Castelein RM, Kruyt MC. A comparison of growth among growth-friendly systems for scoliosis: a systematic review. Spine J. 2019;19(5):789–99.

    Article  PubMed  Google Scholar 

  64. Luhmann SJ, McAughey EM, Ackerman SJ, Bumpass DB, McCarthy RE. Cost analysis of a growth guidance system compared with traditional and magnetically controlled growing rods for early-onset scoliosis: a US-based integrated health care delivery system perspective. Clinicoecon Outcomes Res. 2018;10:179–87.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lukina E, Laka A, Kollerov M, Sampiev M, Mason P, Wagstaff P, et al. Metal concentrations in the blood and tissues after implantation of titanium growth guidance sliding instrumentation. Spine J. 2016;16(3):380–8.

    Article  PubMed  Google Scholar 

  66. O'Leary PT, Sturm PF, Hammerberg KW, Lubicky JP, Mardjetko SM. Convex hemiepiphysiodesis: the limits of vertebral stapling. Spine (Phila Pa 1976). 2011;36(19):1579–83.

    Article  Google Scholar 

  67. Theologis AA, Cahill P, Auriemma M, Betz R, Diab M. Vertebral body stapling in children younger than 10 years with idiopathic scoliosis with curve magnitude of 30° to 39°. Spine (Phila Pa 1976). 2013;38(25):E1583–8.

    Article  Google Scholar 

  68. Lalande V, Villemure I, Vonthron M, Parent S, Aubin C. Cyclically controlled vertebral body tethering for scoliosis: an in vivo verification in a pig model of the pressure exerted on vertebral end plates. Spine Deform. 2020;8(1):39–44.

    Article  PubMed  Google Scholar 

  69. Samdani AF, Ames RJ, Kimball JS, Pahys JM, Grewal H, Pelletier GJ, et al. Anterior vertebral body tethering for immature adolescent idiopathic scoliosis: one-year results on the first 32 patients. Eur Spine J. 2015;24(7):1533–9.

    Article  PubMed  Google Scholar 

  70. Samdani AF, Ames RJ, Kimball JS, Pahys JM, Grewal H, Pelletier GJ, et al. Anterior vertebral body tethering for idiopathic scoliosis: two-year results. Spine (Phila Pa 1976). 2014;39(20):1688–93.

    Article  Google Scholar 

  71. Newton PO, Kluck DG, Saito W, Yaszay B, Bartley CE, Bastrom TP. Anterior spinal growth tethering for skeletally immature patients with scoliosis: a retrospective look two to four years postoperatively. J Bone Joint Surg Am. 2018;100(19):1691–7.

    Article  PubMed  Google Scholar 

  72. Wong HK, Ruiz JNM, Newton PO, Gabriel Liu KP. Non-fusion surgical correction of thoracic idiopathic scoliosis using a novel, braided vertebral body tethering device: minimum follow-up of 4 years. JB JS Open Access. 2019;4(4):e0026.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lemans J, Kodigudla M, Kelkar A, Kruyt M, Goel V, Agarwal A. Spring distraction system for early onset scoliosis provides continuous distraction without a potential increase in rod fractures, compared to traditional growing rods. Spine Deform. 2018;6(6):819–20.

    Article  Google Scholar 

  74. Miladi L, Gaume M, Khouri N, Johnson M, Topouchian V, Glorion C. Minimally invasive surgery for neuromuscular scoliosis: results and complications in a series of one hundred patients. Spine (Phila Pa 1976). 2018;43(16):E968–e75.

    Article  Google Scholar 

  75. Winter RB, Moe JH. The results of spinal arthrodesis for congenital spinal deformity in patients younger than five years old. J Bone Joint Surg Am. 1982;64(3):419–32.

    Article  CAS  PubMed  Google Scholar 

  76. Karol LA, Johnston C, Mladenov K, Schochet P, Walters P, Browne RH. Pulmonary function following early thoracic fusion in non-neuromuscular scoliosis. J Bone Joint Surg Am. 2008;90(6):1272–81.

    Article  PubMed  Google Scholar 

  77. Hefti FL, McMaster MJ. The effect of the adolescent growth spurt on early posterior spinal fusion in infantile and juvenile idiopathic scoliosis. J Bone Joint Surg Br. 1983;65(3):247–54.

    Article  CAS  PubMed  Google Scholar 

  78. Karol LA. Early definitive spinal fusion in young children: what we have learned. Clin Orthop Relat Res. 2011;469(5):1323–9.

    Article  PubMed  Google Scholar 

  79. Chang DG, Kim JH, Ha KY, Lee JS, Jang JS, Suk SI. Posterior hemivertebra resection and short segment fusion with pedicle screw fixation for congenital scoliosis in children younger than 10 years: greater than 7-year follow-up. Spine (Phila Pa 1976). 2015;40(8):E484–91.

    Article  Google Scholar 

  80. Yaszay B, O'Brien M, Shufflebarger HL, Betz RR, Lonner B, Shah SA, et al. Efficacy of hemivertebra resection for congenital scoliosis: a multicenter retrospective comparison of three surgical techniques. Spine (Phila Pa 1976). 2011;36(24):2052–60.

    Article  Google Scholar 

  81. Skaggs DL, Choi PD, Rice C, Emans J, Song KM, Smith JT, et al. Efficacy of intraoperative neurologic monitoring in surgery involving a vertical expandable prosthetic titanium rib for early-onset spinal deformity. J Bone Joint Surg Am. 2009;91(7):1657–63.

    Article  PubMed  Google Scholar 

  82. LaGreca J, Flynn T, Cahill PJ, Samdani A, Vitale MG, El-Hawary R, et al. Patients without intraoperative neuromonitoring (IONM) alerts during VEPTR implantation did not sustain neurological injury during subsequent routine expansions: a retrospective multicenter cohort study. J Pediatr Orthop. 2017;37(8):e619–e24.

    Article  PubMed  Google Scholar 

  83. Sankar WN, Skaggs DL, Emans JB, Marks DS, Dormans JP, Thompson GH, et al. Neurologic risk in growing rod spine surgery in early onset scoliosis: is neuromonitoring necessary for all cases? Spine (Phila Pa 1976). 2009;34(18):1952–5.

    Article  Google Scholar 

  84. Chen Z, Li S, Qiu Y, Zhu Z, Chen X, Xu L, et al. Evolution of the postoperative sagittal spinal profile in early-onset scoliosis: is there a difference between rib-based and spine-based growth-friendly instrumentation? J Neurosurg Pediatr. 2017;20(6):561–6.

    Article  PubMed  Google Scholar 

  85. Larson AN, Baky FJ, St Hilaire T, Pawelek J, Skaggs DL, Emans JB, et al. Spine deformity with fused ribs treated with proximal rib- versus spine-based growing constructs. Spine Deform. 2019;7(1):152–7.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Reinker K, Simmons JW, Patil V, Stinson Z. Can VEPTR((R)) control progression of early-onset kyphoscoliosis? A cohort study of VEPTR((R)) patients with severe kyphoscoliosis. Clin Orthop Relat Res. 2011;469(5):1342–8.

    Article  PubMed  Google Scholar 

  87. El-Hawary R, Sturm P, Cahill P, Samdani A, Vitale M, Gabos P, et al. What is the risk of developing proximal junctional kyphosis during growth friendly treatments for early-onset scoliosis? J Pediatr Orthop. 2017;37(2):86–91.

    Article  PubMed  Google Scholar 

  88. Watanabe K, Uno K, Suzuki T, Kawakami N, Tsuji T, Yanagida H, et al. Risk factors for proximal junctional kyphosis associated with dual-rod growing-rod surgery for early-onset scoliosis. Clin Spine Surg. 2016;29(8):E428–33.

    Article  PubMed  Google Scholar 

  89. Gomez JA, Kubat O, Tovar Castro MA, Hanstein R, Flynn T, Lafage V, et al. The effect of spinopelvic parameters on the development of proximal junctional kyphosis in early onset: mean 4.5-year follow-up. J Pediatr Orthop. 2020 Jul;40(6):261–6.

    Article  PubMed  Google Scholar 

  90. Pan A, Hai Y, Yang J, Zhang Y, Zhang Y. Upper instrumented vertebrae distal to T2 leads to a higher incidence of proximal junctional kyphosis during growing-rod treatment for early onset scoliosis. Clin Spine Surg. 2018;31(7):E337–e41.

    Article  PubMed  Google Scholar 

  91. Joukhadar N, Kubat O, Heflin J, Yasin MS, McClung A, Flynn T, et al. Superior extension of upper instrumented vertebrae in distraction-based surgery: a surrogate for clinically significant proximal junctional kyphosis. Spine Deform. 2019;7(2):371–5.

    Article  PubMed  Google Scholar 

  92. Bekmez S, Kocyigit A, Olgun ZD, Ayvaz M, Demirkiran HG, Karaagaoglu E, et al. Pull-out of upper thoracic pedicle screws can cause spinal canal encroachment in growing rod treatment. J Pediatr Orthop. 2018;38(7):e399–403.

    Article  PubMed  Google Scholar 

  93. Harris L, Andras L, Mundis G, Sponseller PD, Emans JB, Skaggs DL. Proximal anchor constructs in early onset scoliosis patients treated with growth friendly implants. Pediatrics. 2018;141(1):541.

    Google Scholar 

  94. Hosseini P, Akbarnia BA, Nguyen S, Pawelek J, Emans J, Sturm PF, et al. Construct levels to anchored levels ratio and rod diameter are associated with implant-related complications in traditional growing rods. Spine Deform. 2018;6(3):320–6.

    Article  PubMed  Google Scholar 

  95. Yang JS, Sponseller PD, Thompson GH, Akbarnia BA, Emans JB, Yazici M, et al. Growing rod fractures: risk factors and opportunities for prevention. Spine (Phila Pa 1976). 2011;36(20):1639–44.

    Article  Google Scholar 

  96. Hosseini P, Pawelek JB, Nguyen S, Thompson GH, Shah SA, Flynn JM, et al. Rod fracture and lengthening intervals in traditional growing rods: is there a relationship? Eur Spine J. 2017;26(6):1690–5.

    Article  PubMed  Google Scholar 

  97. Hill G, Nagaraja S, Bridges A, Vosoughi AS, Goel VK, Dreher ML. Mechanical performance of traditional distraction-based dual growing rod constructs. Spine J. 2019;19(4):744–54.

    Article  PubMed  Google Scholar 

  98. Foltz MH, Freeman AL, Loughran G, Bechtold JE, Barocas VH, Ellingson AM, et al. Mechanical performance of posterior spinal instrumentation and growing rod implants: experimental and computational study. Spine (Phila Pa 1976). 2019;44(18):1270–8.

    Article  Google Scholar 

  99. David M, Gardner A, Jennison T, Spilsbury J, Marks D. The impact of revision of one or more rods on refracture rate and implant survival following rod fracture in instrumentation without fusion constructs in the management of early-onset scoliosis. J Pediatr Orthop B. 2014;23(3):288–90.

    Article  PubMed  Google Scholar 

  100. Yang JS, McElroy MJ, Akbarnia BA, Salari P, Oliveira D, Thompson GH, et al. Growing rods for spinal deformity: characterizing consensus and variation in current use. J Pediatr Orthop. 2010;30(3):264–70.

    Article  PubMed  Google Scholar 

  101. Striano BM, Refakis C, Garg S, El-Hawary R, Pahys JM, Vitale M, et al. How often do you lengthen? A physician survey on lengthening practice for prosthetic rib devices. Spine Deform. 2018;6(4):473–7.

    Article  PubMed  Google Scholar 

  102. Ahmad A, Subramanian T, Panteliadis P, Wilson-Macdonald J, Rothenfluh DA, Nnadi C. Quantifying the ‘law of diminishing returns’ in magnetically controlled growing rods. Bone Joint J. 2017;99-b(12):1658–64.

    Article  CAS  PubMed  Google Scholar 

  103. Cheung JP, Bow C, Samartzis D, Kwan K, Cheung KM. Frequent small distractions with a magnetically controlled growing rod for early-onset scoliosis and avoidance of the law of diminishing returns. J Orthop Surg (Hong Kong). 2016;24(3):332–7.

    Article  Google Scholar 

  104. Cheung JPY, Yiu KKL, Samartzis D, Kwan K, Tan BB, Cheung KMC. Rod lengthening with the magnetically controlled growing rod: factors influencing rod slippage and reduced gains during distractions. Spine (Phila Pa 1976). 2018;43(7):E399–e405.

    Article  Google Scholar 

  105. Croft LD, Pottinger JM, Chiang HY, Ziebold CS, Weinstein SL, Herwaldt LA. Risk factors for surgical site infections after pediatric spine operations. Spine (Phila Pa 1976). 2015;40(2):E112–9.

    Article  Google Scholar 

  106. Caselli TB, Lomazi EA, Montenegro MAS, Bellomo-Brandao MA. Assessment of nutritional status of children and adolescents wth spastic qadriplegic cerebral palsy. Arq Gastroenterol. 2017;54(3):201–5.

    Article  PubMed  Google Scholar 

  107. Caselli TB, Lomazi EA, Montenegro MAS, Bellomo-Brandao MA. Comparative study on gastrostomy and orally nutrition of children and adolescents with tetraparesis cerebral palsy. Arq Gastroenterol. 2017;54(4):292–6.

    Article  PubMed  Google Scholar 

  108. Sponseller PD, LaPorte DM, Hungerford MW, Eck K, Bridwell KH, Lenke LG. Deep wound infections after neuromuscular scoliosis surgery: a multicenter study of risk factors and treatment outcomes. Spine (Phila Pa 1976). 2000;25(19):2461–6.

    Article  CAS  Google Scholar 

  109. Glotzbecker MP, Riedel MD, Vitale MG, Matsumoto H, Roye DP, Erickson M, et al. What’s the evidence? Systematic literature review of risk factors and preventive strategies for surgical site infection following pediatric spine surgery. J Pediatr Orthop. 2013;33(5):479–87.

    Article  PubMed  Google Scholar 

  110. Glotzbecker MP, St Hilaire TA, Pawelek JB, Thompson GH, Vitale MG. Best practice guidelines for surgical site infection prevention with surgical treatment of early onset scoliosis. J Pediatr Orthop. 2019;39(8):e602–e7.

    Article  PubMed  Google Scholar 

  111. Luhmann SJ, Furdock R. Preoperative variables associated with respiratory complications after Pediatric neuromuscular spine deformity surgery. Spine Deform. 2019;7(1):107–11.

    Article  PubMed  Google Scholar 

  112. Verhoef M, Lurvink M, Barf HA, Post MW, van Asbeck FW, Gooskens RH, et al. High prevalence of incontinence among young adults with spina bifida: description, prediction and problem perception. Spinal Cord. 2005;43(6):331–40.

    Article  CAS  PubMed  Google Scholar 

  113. Hatlen T, Song K, Shurtleff D, Duguay S. Contributory factors to postoperative spinal fusion complications for children with myelomeningocele. Spine (Phila Pa 1976). 2010;35(13):1294–9.

    Article  Google Scholar 

  114. Kabirian N, Akbarnia BA, Pawelek JB, Alam M, Mundis GM Jr, Acacio R, et al. Deep surgical site infection following 2344 growing-rod procedures for early-onset scoliosis: risk factors and clinical consequences. J Bone Joint Surg Am. 2014;96(15):e128.

    Article  PubMed  Google Scholar 

  115. Striano BM, Refakis CA, Anari JB, Campbell RM, Flynn JM. Site-specific surgical site infection rates for rib-based distraction. J Pediatr Orthop. 2019;39(9):e698–702.

    Article  PubMed  Google Scholar 

  116. Garg S, Cyr M, St Hilaire T, Flynn T, Carry P, Glotzbecker M, et al. Variability of surgical site infection with VEPTR at eight Centers: a retrospective cohort analysis. Spine Deform. 2016;4(1):59–64.

    Article  PubMed  Google Scholar 

  117. Crews JD, Mina M, Johnson E, Guillen J, Simmons J, Joshi A. Risk factors for surgical site infections following vertical expandable prosthetic titanium rib (VEPTR) surgery in children. Spine Deform. 2018;6(6):791–6.

    Article  PubMed  Google Scholar 

  118. Haller JM, Heflin JA, Hulet DA, Ding Q, Presson AP, Smith JT. Intrawound vancomycin powder associated with reduced surgical site infection in rib-based distraction surgery. J Pediatr Orthop. 2019;39(9):e703–e7.

    Article  PubMed  Google Scholar 

  119. Thompson GH, Poe-Kochert C, Hardesty CK, Son-Hing J, Mistovich RJ. Does vancomycin powder decrease surgical site infections in growing spine surgery?: a preliminary study. J Bone Joint Surg Am. 2018;100(6):466–71.

    Article  PubMed  Google Scholar 

  120. DeFrancesco CJ, Flynn JM, Smith JT, Luhmann SJ, Sawyer JR, Glotzbecker M, et al. Clinically apparent adverse reactions to intra-wound vancomycin powder in early onset scoliosis are rare. J Child Orthop. 2017;11(6):414–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Glotzbecker MP, Garg S, Akbarnia BA, Vitale M, Hillaire TS, Joshi A. Surgeon practices regarding infection prevention for growth friendly spinal procedures. J Child Orthop. 2014;8(3):245–50.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Smith JT, Smith MS. Can infection associated with rib distraction techniques be managed without implant removal? Spine (Phila Pa 1976). 2011;36(25):2176–9.

    Article  Google Scholar 

  123. Lott C, Qiu C, McNeely LW, Galagedera N, Campbell RM, Flynn JM, et al. Can we save the implant: rib-based implant removal rates and risk factors following irrigation and debridement (I&D) surgery? J Pediatr Orthop. 2020;40(5):e346–51.

    Article  PubMed  Google Scholar 

  124. Charles YP, Dimeglio A, Marcoul M, Bourgin JF, Marcoul A, Bozonnat MC. Volumetric thoracic growth in children with moderate and severe scoliosis compared to subjects without spinal deformity. Stud Health Technol Inform. 2008;140:22–8.

    CAS  PubMed  Google Scholar 

  125. Charles YP, Dimeglio A, Marcoul M, Bourgin JF, Marcoul A, Bozonnat MC. Influence of idiopathic scoliosis on three-dimensional thoracic growth. Spine (Phila Pa 1976). 2008;33(11):1209–18.

    Article  Google Scholar 

  126. Kocyigit IA, Olgun ZD, Demirkiran HG, Ayvaz M, Yazici M. Graduation protocol after growing-rod treatment: removal of implants without new instrumentation is not a realistic approach. J Bone Joint Surg Am. 2017;99(18):1554–64.

    Article  PubMed  Google Scholar 

  127. Poe-Kochert C, Shannon C, Pawelek JB, Thompson GH, Hardesty CK, Marks DS, et al. Final fusion after growing-rod treatment for early onset scoliosis: is it really final? J Bone Joint Surg Am. 2016;98(22):1913–7.

    Article  PubMed  Google Scholar 

  128. Flynn JM, Tomlinson LA, Pawelek J, Thompson GH, McCarthy R, Akbarnia BA. Growing-rod graduates: lessons learned from ninety-nine patients who completed lengthening. J Bone Joint Surg Am. 2013;95(19):1745–50.

    Article  PubMed  Google Scholar 

  129. Jain A, Sponseller PD, Flynn JM, Shah SA, Thompson GH, Emans JB, et al. Avoidance of “final” surgical fusion after growing-rod treatment for early-onset scoliosis. J Bone Joint Surg Am. 2016;98(13):1073–8.

    Article  PubMed  Google Scholar 

  130. Cahill PJ, Marvil S, Cuddihy L, Schutt C, Idema J, Clements DH, et al. Autofusion in the immature spine treated with growing rods. Spine (Phila Pa 1976). 2010;35(22):E1199–203.

    Article  Google Scholar 

  131. Sawyer JR, de Mendonca RG, Flynn TS, Samdani AF, El-Hawary R, Spurway AJ, et al. Complications and radiographic outcomes of posterior spinal fusion and observation in patients who have undergone distraction-based treatment for early onset scoliosis. Spine Deform. 2016;4(6):407–12.

    Article  PubMed  Google Scholar 

  132. Pizones J, Martin-Buitrago MP, Sanchez Marquez JM, Fernandez-Baillo N, Baldan-Martin M, Sanchez Perez-Grueso FJ. Decision making of graduation in patients with early-onset scoliosis at the end of distraction-based programs: risks and benefits of definitive fusion. Spine Deform. 2018;6(3):308–13.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew E. Oetgen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaw, K.A., Murphy, J.S., Fletcher, N.D., Oetgen, M.E. (2022). Best Practice Guidelines for Early-Onset Scoliosis. In: Akbarnia, B.A., Thompson, G.H., Yazici, M., El-Hawary, R. (eds) The Growing Spine. Springer, Cham. https://doi.org/10.1007/978-3-030-84393-9_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84393-9_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84392-2

  • Online ISBN: 978-3-030-84393-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics