Skip to main content

Plastics Biodegradation and Biofragmentation

  • Living reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

Plastics are an important component of modern life. They are adaptable, lightweight, and inexpensive. Polyethylene (PE), polystyrene (PS), polypropylene (PP), and other synthetic polymers have become indispensable in practically every aspect of our lives. One of the greatest environmental issues confronting governments and countries today is the generation of plastic trash and subsequent uncontrolled plastic contamination. Plastic degradation is complex, and throughout this process, substantial amounts of carbon dioxide and other hazardous substances are released. Bioplastics are often used interchangeably with biodegradation. Some bioplastics are biodegradable, but not all. The term “bio-based” refers to a polymer made in whole or in part from renewable organic materials of biological origin and organic waste, while the term “biodegradable” refers to the ability of a material to degrade into natural chemicals such as biomass, water, and carbon dioxide by the action of microorganisms. Accordingly, bioplastics are categorized into bio-based and biodegradable plastic. Biodegradable plastics are environmentally friendly, can be made from renewable feedstocks, and lower greenhouse gas emissions. Carbon dioxide emissions from bioplastic degradation are relatively low, emphasizing the need for biodegradable plastic manufacture on a daily basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ASTM:

American society for testing and materials

Bio-PBS:

Bio-based polybutylene succinate

Bio-PE:

Bio-polyethylene

Bio-PET:

Bio-polyethylene terephthalate

Bio-PP:

Bio-based polyamides

Bio-PU:

Bio-polyurethane

Bio-PVC:

Bio-polyvinyl chloride

ISO:

International organization for standardization

LDPE:

Low-density polyethylene

PBAT:

Polybutylene adipate terephthalate

PBS:

Polybutylene succinate

PCL:

Polycaprolactone

PE:

Polyethylene

PHAs:

Polyhydroxyalkanoates

PHB:

Polyhydroxybutyrate

PLA:

Polylactic acid

PP:

Polypropylene

PS:

Polystyrene

PVA:

Polyvinyl alcohol

UV:

Ultraviolet

References

  1. Tokiwa Y CB, Ugwu CU, Aiba S (2009) Biodegradability of plastics. International Journal of Molecular Sciences 10:3722-3742

    Article  CAS  Google Scholar 

  2. Mahmoodi Z, Abhari AR, Lalehloo RS, Bakr ZH, and Ali GAM (2022) Thermodynamic Studies on the Adsorption of Organophosphate Pesticides (Diazinon) onto ZnO/Polyethersulfone Nanocomposites. ChemistrySelect 7(2):e202103619

    Article  CAS  Google Scholar 

  3. Thalji MR, Ibrahim AA, and Ali GAM (2021) Cutting-edge development in dendritic polymeric materials for biomedical and energy applications. European Polymer Journal 160:110770

    Article  CAS  Google Scholar 

  4. Agarwal S, Sadegh H, Monajjemi Majid, Makhlouf ASH, Ali GAM, Memar AOH, Shahryari-ghoshekandi R, Tyagi I, and Gupta VK (2016) Efficient removal of toxic bromothymol blue and methylene blue from wastewater by polyvinyl alcohol. Journal of Molecular Liquids 218:191-197

    Article  CAS  Google Scholar 

  5. Haroun AAA, Rabie AGM, Ali GAM, and Abdelrahim MYM (2019) Improving the mechanical and thermal properties of chlorinated poly (vinyl chloride) by incorporating modified CaCO3 nanoparticles as a filler. Turkish Journal of Chemistry 43(3):750-759

    Article  CAS  Google Scholar 

  6. AlMa’adeed MA-A, and Igor Krupa (2016) Polyolefin compounds and materials. Springer Series on Polymer and Composite Materials; Springer: Cham, Switzerland:271-284

    Google Scholar 

  7. Akindoyo JO, Md DH Beg, Suriati Ghazali, M. R. Islam, Nitthiyah Jeyaratnam, and A. R. Yuvaraj (2016) Polyurethane types, synthesis and applications–a review. Research Advances 6(115):114453-114482

    Google Scholar 

  8. Ibrahim NI, Farah Syazwani Shahar, Mohamed Thariq Hameed Sultan, Ain Umaira Md Shah, Syafiqah Nur Azrie Safri, and Muhamad Hasfanizam Mat Yazik (2021) Overview of Bioplastic Introduction and Its Applications in Product Packaging Coatings 11(11):1423

    Google Scholar 

  9. Booma M SS, Giacin JR (1994) Degradable Plastics. Journal of Elastomers and Plastics 26(2):104-142

    Article  CAS  Google Scholar 

  10. Anastas PT, and Mary M. Kirchhoff (2002) Origins, current status, and future challenges of green chemistry. Accounts of chemical research 35(9):686-694

    Google Scholar 

  11. Gallo F, Cristina Fossi, Roland Weber, David Santillo, Joao Sousa, Imogen Ingram, Angel Nadal, and Dolores Romano. (2018) Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures. Environmental sciences Europe 30(1):1-14

    Article  CAS  Google Scholar 

  12. Di Bartolo A, Infurna, G., Dintcheva, N. T. (2021) A Review of Bioplastics and Their Adoption in the Circular Economy. Polymers 13(8):1229

    Google Scholar 

  13. Smith M, David C. Love, Chelsea M. Rochman, and Roni A. Neff. (2018) Microplastics in seafood and the implications for human health. Current environmental health 5(3):375-386

    Google Scholar 

  14. Dehaut A, Anne-Laure Cassone, Laura Frère, Ludovic Hermabessiere, Charlotte Himber, Emmanuel Rinnert, Gilles Rivière (2016) Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environmental Pollution 215:223-233

    Article  CAS  Google Scholar 

  15. Sankauskaitė A, Laimutė STYGIENĖ, Marijona Danutė TUMĖNIENĖ, Sigitas Krauledas, Lolita JOVAIŠIENĖ, and Rima PUODŽIŪNIENĖ (2014) Investigation of cotton component destruction in cotton/polyester blended textile waste material. Materials Science 20(2):189-192

    Article  Google Scholar 

  16. Ahmed T, Muhammad Shahid, Farrukh Azeem, Ijaz Rasul, Asad Ali Shah, Muhammad Noman, Amir Hameed, Natasha Manzoor, Irfan Manzoor, and Sher Muhammad (2018) Biodegradation of plastics: current scenario and future prospects for environmental safety. Environmental Science and Pollution Research 25(8):7287-7298

    Article  CAS  Google Scholar 

  17. Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angewandte Chemie International Edition 54(11):3210-3215

    Article  CAS  Google Scholar 

  18. Calabrò PS, and Mario Grosso (2018) Bioplastics and waste management. Waste Management 78:800-801

    Article  Google Scholar 

  19. Karamanlioglu M, Richard Preziosi, and Geoffrey D. Robson (2017) Abiotic and biotic environmental degradation of the bioplastic polymer poly (lactic acid): a review. Polymer Degradation and stability 137:122-130

    Google Scholar 

  20. Ochi S (2006) Development of high strength biodegradable composites using Manila hemp fiber and starch-based biodegradable resin. Composites part A: Applied science and manufacturing 37(11):1879-1883

    Article  CAS  Google Scholar 

  21. Yang J, Yern Chee Ching, and Cheng Hock Chuah (2019) Applications of lignocellulosic fibers and lignin in bioplastics: A review. Polymers 11(5):751

    Article  CAS  Google Scholar 

  22. Yong CK, Yern Chee Ching, Cheng Hock Chuah, and Nai-Shang Liou (2015) Effect of fiber orientation on mechanical properties of kenaf-reinforced polymer composite. BioResources 10(2):2597-2608

    Article  CAS  Google Scholar 

  23. Muhammad A, A. Roslan, S. N. A. Sanusi, M. Q. Shahimi, and N. Z. Nazari, Mechanical properties of bioplastic form cellulose nanocrystal (CNC) mangosteen peel using glycerol as plasticizer, in In Journal of Physics: Conference Series. 2019, IOP Publishing. p. 012099.

    Google Scholar 

  24. Jangong OS, P. L. Gareso, I. Mutmainna, and D. Tahir, Fabrication and characterization starch/chitosan reinforced polypropylene as biodegradable, in In Journal of Physics: Conference Series. 2019, IOP Publishing. p. 082022.

    Google Scholar 

  25. Rujnić-Sokele M, and Ana Pilipović (2017) Challenges and opportunities of biodegradable plastics: A mini review. Waste Management & Research 35(2):132-140

    Article  Google Scholar 

  26. Razza F, and Francesco Degli Innocenti (2012) Bioplastics from renewable resources: the benefits of biodegradability. Asia-Pacific Journal of Chemical Engineering 7:S301-S309

    Article  CAS  Google Scholar 

  27. Folino A, Aimilia Karageorgiou, Paolo S. Calabrò, and Dimitrios Komilis (2020) Biodegradation of wasted bioplastics in natural and industrial environments: A review. Sustainability 12(15):6030

    Google Scholar 

  28. Emadian SM, Turgut T. Onay, and Burak Demirel (2017) Biodegradation of bioplastics in natural environments. Waste management 59:10

    Google Scholar 

  29. Kyrikou I, and Demetres Briassoulis (2007) Biodegradation of agricultural plastic films: a critical review. Journal of Polymers and the Environment 15(2):15

    Article  CAS  Google Scholar 

  30. Webb HK, Jaimys Arnott, Russell J. Crawford, and Elena P. Ivanova (2013) Plastic degradation and its environmental implications with special reference to poly (ethylene terephthalate). Polymers 5(1):18

    Google Scholar 

  31. Khattab AM, Mahmoud E. Esmael, Ayman A. Farrag, and Mohamed IA Ibrahim (2021) Structural assessment of the bioplastic (poly-3-hydroxybutyrate) produced by Bacillus flexus Azu-A2 through cheese whey valorization. International Journal of Biological Macromolecules 190:13

    Google Scholar 

  32. Wilkes R-A, and Ludmilla Aristilde (2017) Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. Journal of applied microbiology 123(3):582-593

    Article  CAS  Google Scholar 

  33. Raziyafathima M PPK, Rimal Isaac R S (2016) Microbial Degradation of Plastic Waste: A Review. Journal of Pharmaceutical, Chemical and Biological Sciences 4(2):231-242

    CAS  Google Scholar 

  34. Accinelli C, Hamed K. Abbas, Nathan S. Little, Jeremy K. Kotowicz, and W. Thomas Shier (2018) Biological control of aflatoxin production in corn using non-aflatoxigenic Aspergillus flavus administered as a bioplastic-based seed coating. Crop Protection 107:5

    Google Scholar 

  35. Mergaert J, and Jean Swings (1996) Biodiversity of microorganisms that degrade bacterial and synthetic polyesters. Journal of industrial microbiology 17(5):7

    Google Scholar 

  36. Suyama T, Yutaka Tokiwa, Pornpimol Ouichanpagdee, Takahiro Kanagawa, and Yoichi Kamagata (1998) Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Applied and environmental microbiology 64(12):4

    Article  Google Scholar 

  37. Zhang Y, Chao Liu, Meiyan Wu, Zhenqiu Li, and Bin Li. “.” 12, no. 1 (2022): 1. (2022) Impact of the Incorporation of Nano-Sized Cellulose Formate on the End Quality of Polylactic Acid Composite Film. Nanomaterials 12(1):14

    Google Scholar 

  38. Pranamuda H, Yutaka Tokiwa, and Hideo Tanaka (1997) Polylactide degradation by an Amycolatopsis sp. Applied and environmental microbiology 63(4):4

    Article  Google Scholar 

  39. El-Sayed AHM, Wafaa M. Mahmoud, Edward M. Davis, and Robert W. Coughlin (1996) Biodegradation of polyurethane coatings by hydrocarbon-degrading bacteria. International Biodeterioration & Biodegradation 37(1-2):10

    Google Scholar 

  40. Gadhave RV, Shrray Srivastava, Prakash A. Mahanwar, and Pradeep T. Gadekar (2019) Recycling and disposal methods for polyurethane wastes: A review Open Journal of Polymer Chemistry 9(2):13

    Google Scholar 

  41. Venkatesh S, Shahid Mahboob, Marimuthu Govindarajan, Khalid A. Al-Ghanim, Zubair Ahmed, Norah Al-Mulhm, R. Gayathri, and S. Vijayalakshmi (2021) Microbial degradation of plastics: sustainable approach to tackling environmental threats facing big cities of the future. J King Saud Univ Sci 33

    Google Scholar 

  42. Jain K, H. Bhunia, and M. Sudhakara Reddy (2021) Degradation of polypropylene-poly-L-lactide blends by Bacillus isolates: a microcosm and field evaluation. Bioremediation Journal:1-15

    Google Scholar 

  43. Shah AA, Fariha Hasan, Abdul Hameed, and Safia Ahmed (2008) Biological degradation of plastics: a comprehensive review. Biotechnology advances 26(3):246-265

    Article  CAS  Google Scholar 

  44. Kyaw BM, Ravi Champakalakshmi, Meena Kishore Sakharkar, Chu Sing Lim, and Kishore R. Sakharkar (2012) Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian journal of microbiology 52(3):411-419

    Google Scholar 

  45. Zheng Y, Ernest K. Yanful, and Amarjeet S. Bassi (2005) A review of plastic waste biodegradation. Critical reviews in biotechnology 25(4):243-250

    Google Scholar 

  46. Mohee R, G. D. Unmar, A. Mudhoo, and P. Khadoo (2008) Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions. Waste Management 28(9):1624-1629

    Google Scholar 

  47. Tokiwa Y, and Tomoo Suzuki (1978) Hydrolysis of polyesters by Rhizopus delemar lipase. Agricultural and Biological Chemistry 42(5):1071-1072

    CAS  Google Scholar 

  48. Iwamoto A, and Yutaka Tokiwa (1994) Enzymatic degradation of plastics containing polycaprolactone. Polymer Degradation and Stability 45(2):205-213

    Article  CAS  Google Scholar 

  49. Tsuji H, and Shinya Miyauchi (2001) Poly (L-lactide): VI Effects of crystallinity on enzymatic hydrolysis of poly (L-lactide) without free amorphous region Polymer degradation and stability 71(3):415-424

    CAS  Google Scholar 

  50. Tokiwa Y, and Tomoo Suzuki (1981) Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase. Journal of Applied Polymer Science 26(2):441-448

    Article  CAS  Google Scholar 

  51. Yousif E, and Raghad Haddad (2013) Photodegradation and photostabilization of polymers, especially polystyrene. SpringerPlus 2 1:1-32

    Article  CAS  Google Scholar 

  52. James LP, Philip R. Mayeux, and Jack A. Hinson (2003) Acetaminophen-induced hepatotoxicity. Drug metabolism and disposition 31(12):1499-1506

    Google Scholar 

  53. Jeon HJ, and Mal Nam Kim (2014) Degradation of linear low density polyethylene (LLDPE) exposed to UV-irradiation. European polymer journal 52:146-153

    Article  CAS  Google Scholar 

  54. Hadar Y, and A. Sivan (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Applied microbiology and biotechnology 65(1):97

    Google Scholar 

  55. Kawai F, Masaji Watanabe, Masaru Shibata, Shigeo Yokoyama, Yasuhiro Sudate, and Shizue Hayashi (2004) Comparative study on biodegradability of polyethylene wax by bacteria and fungi. Polymer degradation and stability 86(1):105-114

    Article  CAS  Google Scholar 

  56. Gaurav Kale TK, Rafael Auras,Maria Rubino,Susan E. Selke,Sher Paul Singh (2007) Compostability of Bioplastic Packaging Materials: An Overview. Macromolecular Bioscience 7(3):255-277

    Google Scholar 

  57. Ho K-LG, Anthony L. Pometto, and Paul N. Hinz (1999) Effects of temperature and relative humidity on polylactic acid plastic degradation. Journal of environmental polymer degradation 7(2):83-92

    Google Scholar 

  58. Auras R, Bruce Harte, and Susan Selke (2004) An overview of polylactides as packaging materials. Macromolecular bioscience 4(9):835-864

    Article  CAS  Google Scholar 

  59. Yagci N, Artan N, Cokgör EU, Randall CW, and Orhon D (2003) Metabolic model for acetate uptake by a mixed culture of phosphate- and glycogen-accumulating organisms under anaerobic conditions. Biotechnol Bioeng 84(3):359-73

    Article  CAS  Google Scholar 

  60. Bhatia SK, Yoon JJ, Kim HJ, Hong JW, Gi Hong Y, Song HS, Moon YM, Jeon JM, Kim YG, and Yang YH (2018) Engineering of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding. Bioresour Technol 257:92-101

    Article  CAS  Google Scholar 

  61. Annemette Kjeldsen MP, Charlotte Lilley, Ewa Guzniczak (2019) A Review of Standards for Biodegradable Plastics. Industerial biotechnology innovation center:1-33

    Google Scholar 

  62. Pereira L, Pijush Kanti Mondal, and Madalena Alves, Aromatic amines sources, environmental impact and remediation. In Pollutants in buildings, water and living organisms. 2015: Springer, Cham. 297-346.

    Google Scholar 

  63. Jakubowicz I, Nazdaneh Yarahmadi, and Veronica Arthurson (2011) Kinetics of abiotic and biotic degradability of low-density polyethylene containing prodegradant additives and its effect on the growth of microbial communities. Polymer degradation and stability 96(5):919-928

    Article  CAS  Google Scholar 

  64. Rai PK, Vanish Kumar, Christian Sonne, Sang Soo Lee, Richard JC Brown, and Ki-Hyun Kim (2021) Progress, prospects, and challenges in standardization of sampling and analysis of micro-and nano-plastics in the environment. Journal of Cleaner Production 325(129321)

    Google Scholar 

  65. Kijchavengkul T, and Rafael Auras (2008) Compostability of polymers. Polymer International 57(6):793-804

    Article  CAS  Google Scholar 

  66. Harrison JP, Carl Boardman, Kenneth O’Callaghan, Anne-Marie Delort, and Jim Song (2018) Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review. Royal Society open science 5(5):171792

    Article  CAS  Google Scholar 

  67. Bläsing M, and Wulf Amelung (2018) Plastics in soil: Analytical methods and possible sources. Science of the total environment 612:422-435

    Article  CAS  Google Scholar 

  68. Vogt NB, and Emil Arne Kleppe (2009) Oxo-biodegradable polyolefins show continued and increased thermal oxidative degradation after exposure to light. Polymer Degradation and Stability 94(4):659-663

    Article  CAS  Google Scholar 

  69. Song JH, R. J. Murphy, R. Narayan, and G. B. H. Davies (2009) Biodegradable and compostable alternatives to conventional plastics. Philosophical transactions of the royal society B: Biological sciences 364(1526):2127-2139

    Google Scholar 

  70. Jiménez-Rosado M, E. Bouroudian, V. Perez-Puyana, A. Guerrero, and A. Romero (2020) Evaluation of different strengthening methods in the mechanical and functional properties of soy protein-based bioplastics. Journal of Cleaner Production 262(121517)

    Google Scholar 

  71. Gewert B, Merle M. Plassmann, and Matthew MacLeod (2015) Pathways for degradation of plastic polymers floating in the marine environment. Environmental science: processes & impacts 17(9):1513-1521

    Google Scholar 

  72. Andrady AL, Persistence of plastic litter in the oceans. In Marine anthropogenic litter. 2015: Springer, Cham. 57-72.

    Google Scholar 

  73. Laycock B, Melissa Nikolić, John M. Colwell, Emilie Gauthier, Peter Halley, Steven Bottle, and Graeme George (2017) Lifetime prediction of biodegradable polymers. Progress in Polymer Science 71:144-189

    Google Scholar 

  74. Gu J-D (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. International biodeterioration & biodegradation 52(2):69-91

    Article  CAS  Google Scholar 

  75. Sivan A (2011) New perspectives in plastic biodegradation. Current opinion in biotechnology 22(3):422-426

    Article  CAS  Google Scholar 

  76. Iram D, Rafia Riaz, and Rana K. Iqbal (2019) Usage of potential micro-organisms for degradation of plastics. Open Journal of Environmental Biology 4(1):007-015

    Google Scholar 

  77. Castro-Aguirre E, R. Auras, S. Selke, M. Rubino, and T. Marsh (2018) Enhancing the biodegradation rate of poly (lactic acid) films and PLA bio-nanocomposites in simulated composting through bioaugmentation. Polymer Degradation and Stability 154:46-54

    Google Scholar 

  78. Satti SM, Aamer Ali Shah, Rafael Auras, and Terence L. Marsh (2017) Isolation and characterization of bacteria capable of degrading poly (lactic acid) at ambient temperature. Polymer Degradation and Stability 144:392-400

    Google Scholar 

  79. Macdougall L, Heidi Culver, Chien-Chi Lin, Christopher Bowman, and Kristi Anseth, Degradable and Resorbable Polymers. In Biomaterials Science. 2020: Academic Press. 34.

    Google Scholar 

  80. Husárová L, Silvie Pekařová, Petr Stloukal, Pavel Kucharzcyk, Vincent Verney, Sophie Commereuc, Audrey Ramone, and Marek Koutny (2014) Identification of important abiotic and biotic factors in the biodegradation of poly (l-lactic acid). International journal of biological macromolecules 71:155-162

    Article  CAS  Google Scholar 

  81. Yates MR, and Claire Y. Barlow (2013) Life cycle assessments of biodegradable, commercial biopolymers—A critical review. Resources, Conservation and Recycling 78:54-66

    Google Scholar 

  82. Pellis A, Mario Malinconico, Alice Guarneri, and Lucia Gardossi (2020) Renewable polymers and plastics: Performance beyond the green. New Biotechnology 60:146-158

    Article  CAS  Google Scholar 

  83. Korol J, Aleksander Hejna, Dorota Burchart-Korol, Błażej Chmielnicki, and Klaudiusz Wypiór (2019) Water footprint assessment of selected polymers, polymer blends, composites, and biocomposites for industrial application. Polymers 11(11):1791

    Article  CAS  Google Scholar 

  84. Ghosh SK, Sujoy Pal, and Sumanta Ray (2013) Study of microbes having potentiality for biodegradation of plastics. Environmental Science and Pollution Research 20(7):4339-4355

    Article  CAS  Google Scholar 

  85. Samper MD, David Bertomeu, Marina Patricia Arrieta, José Miguel Ferri, and Juan López-Martínez (2018) Interference of biodegradable plastics in the polypropylene recycling process. Materials 11(10):1886

    Article  CAS  Google Scholar 

  86. A. Banerjee KCGM (2014) Enzymatic degradation of polymers: a brief review. Materials Science and Technology 30(5):567-573

    Google Scholar 

  87. Reis HSAaRL, Understanding the enzymatic degradation of biodegradable polymers and strategies to control their degradation rate, in Biodegradable Systems in Tissue Engineering and Regenerative Medicine. 2005. p. 177- 201.

    Google Scholar 

  88. Alhanish A and Ali GAM, Recent Developments in Wastewater Treatment Using Polymer/Clay Nanocomposites, in Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications, AE Shalan, AS Hamdy Makhlouf, S Lanceros-Méndez, Editors. 2022, Springer International Publishing: Cham. p. 419-451.

    Google Scholar 

  89. Yasin S, Bakr ZH, Ali GAM, and Saeed I, Recycling Nanofibers from Polyethylene Terephthalate Waste Using Electrospinning Technique, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 805-821.

    Google Scholar 

  90. Alhanish A and Ali GAM, Recycling the Plastic Wastes to Carbon Nanotubes, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 701-727.

    Google Scholar 

  91. Makhlouf ASH and Ali GAM, Waste Recycling Technologies for Nanomaterials Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. 2021, Springer: Springer.

    Google Scholar 

  92. Ali GAM and Makhlouf ASH, Fundamentals of Waste Recycling for Nanomaterial Manufacturing, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 3-24.

    Google Scholar 

  93. Davis G, and J. H. Song (2006) Biodegradable packaging based on raw materials from crops and their impact on waste management. Industrial crops and products 23(2):147-161

    Google Scholar 

  94. Moshood TD, Gusman Nawanir, Fatimah Mahmud, Fazeeda Mohamad, Mohd Hanafiah Ahmad, and Airin AbdulGhani (2022) Biodegradable plastic applications towards sustainability: A recent innovations in the green product. Cleaner Engineering and Technology:100404

    Google Scholar 

  95. Raj T, K. Chandrasekhar, A. Naresh Kumar, and Sang-Hyoun Kim (2022) Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: A sustainable approach. Renewable and Sustainable Energy Reviews 158:112130

    Google Scholar 

  96. Kiruthika AV, PHBV based blends and composites. In Biodegradable Polymers, Blends and Composites 2022: Woodhead Publishing. 283-308.

    Google Scholar 

  97. Confente I, Daniele Scarpi, and Ivan Russo (2020) Marketing a new generation of bio-plastics products for a circular economy: The role of green self-identity, self-congruity, and perceived value. Journal of Business Research 112:431-439

    Article  Google Scholar 

  98. Joshi G, Prasun Goswami, Pankaj Verma, Gopika Prakash, Priya Simon, Nambali Valsalan Vinithkumar, and Gopal Dharani (2022) Unraveling the plastic degradation potentials of the plastisphere-associated marine bacterial consortium as a key player for the low-density polyethylene degradation. Journal of Hazardous Materials 425:128005

    Article  CAS  Google Scholar 

  99. Jiang J, Ke Shi, Xiangnan Zhang, Kai Yu, Hong Zhang, Jing He, Yun Ju, and Jilin Liu (2022) From plastic waste to wealth using chemical recycling: A review. Journal of Environmental Chemical Engineering 10(1):106867

    Article  CAS  Google Scholar 

  100. Dehon O, Recycled plastics in structural engineering, in Ecole polytechnique de Louvain 2020, Université catholique de Louvain. p. 1-167.

    Google Scholar 

  101. Maritz M, Sustainability through design: a triple bottom line (TBL) approach to disposable food and beverage plastic packaging. 2020, Cape Peninsula University of Technology.

    Google Scholar 

  102. Plesu Popescu A, Yen Keong Cheah, Petar Sabev Varbanov, Jiří Jaromír Klemeš, Mohammad Reda Kabli, and Khurram Shahzad (2022) Exergy Footprint Assessment of Cotton Textile Recycling to Polyethylene. Energies 15(1):205

    Article  CAS  Google Scholar 

  103. Kakadellis S, Po-Heng Lee, and Zoe MM Harris (2022) Two Birds with One Stone: Bioplastics and Food Waste Anaerobic Co-Digestion. Environments 9(1):9

    Google Scholar 

  104. Lamolinara B, Amaury Pérez-Martínez, Estela Guardado-Yordi, Christian Guillén Fiallos, Karel Diéguez-Santana, and Gerardo J. Ruiz-Mercado (2022) Anaerobic digestate management, environmental impacts, and techno-economic challenges. Waste Management 140(14-30)

    Google Scholar 

  105. Dang B-T, Xuan-Thanh Bui, Duyen PH Tran, Huu Hao Ngo, Long D. Nghiem, Phuong-Thao Nguyen, Hai H. Nguyen, Chitsan Lin, Kun Yi Andrew Lin, and Sunita Varjani (2022) Current application of algae derivatives for bioplastic production: A review. Bioresource Technology:126698

    Google Scholar 

  106. Pradeep M, Rahul Francis Binoy, S. Yaswanth, Thankachan T. Pullan, and Mathew Joseph (2022) Investigations on chitin and coconut fiber reinforcements on mechanical and moisture absorption properties of corn starch bioplastics. Materials Today: Proceedings

    Google Scholar 

  107. Stark S, Lisa Biber-Freudenberger, Thomas Dietz, Neus Escobar, Jan Janosch Förster, James Henderson, Natalie Laibach, and Jan Börner (2022) Sustainability implications of transformation pathways for the bioeconomy. Sustainable Production and Consumption 29:215-227

    Article  Google Scholar 

  108. Awasthi MK, Raveendran Sindhu, Ranjna Sirohi, Vinod Kumar, Vivek Ahluwalia, Parameswaran Binod, Ankita Juneja (2022) Agricultural waste biorefinery development towards circular bioeconomy. Renewable and Sustainable Energy Reviews 158:112122

    Article  CAS  Google Scholar 

  109. Wellenreuther C, and André Wolf Nils Zander (2022) Cost competitiveness of sustainable bioplastic feedstocks–A monte-carlo-analysis for polylactic acid. Cleaner Engineering and Technology:100411

    Google Scholar 

  110. Mittal M, Divya Mittal, and Neeraj K. Aggarwal (2022) Plastic accumulation during COVID-19: call for another pandemic; bioplastic a step towards this challenge? Environmental Science and Pollution Research:1-15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagwan Galal El Menofy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

El Menofy, N.G., Khattab, A.M. (2022). Plastics Biodegradation and Biofragmentation. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-83783-9_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83783-9_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83783-9

  • Online ISBN: 978-3-030-83783-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics