Skip to main content

Biocompatibility of Nanomaterials Reinforced Polymer-Based Nanocomposites

  • Living reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

Nowadays, biodegradable materials are considered the suitable solution for most global problems. Therefore, many types of research were made to study their properties to develop the applied methods, and introducing the concept of biodegradable polymer nanocomposites leads to the improvement of several applications like wound dressing, drug delivery, bone tissue engineering, etc. The biodegradation process generally breaks an extensive material into simpler and less complex substances, and the prefix bio refers to the reliance on vital ways. The breakdown of the material may occur through microbial enzymes, as it is one crucial biological method that analyzes polymeric materials in the environment owing to the dependence of microbes on them as a source of their nutrition. Decomposition may occur by enzymes located in the body due to their ability to catalyze the breakdown of materials. The presence of additives such as nanomaterials with the polymer affects the rate of its decomposition and the non-biotic factors present, affecting the biodegradation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscope

ASTM:

American Society for Testing and Materials

BTE:

Bone tissue engineering

CNT:

Carbon nanotubes

CS:

Chitosan

CS-GO:

Graphene oxide-bio-chitosan

DMA:

Dynamic modulus analysis

DSC:

Differential scanning calorimeter

ECM:

Extracellular matrix

EDAX:

Energy dispersive analysis by X-rays

FTIR:

Fourier transform infrared spectroscopy

HA:

Hydroxyapatite

H2O2:

Hydrogen peroxide

HOCl:

Hypochlorous acid

HPLC:

High-performance liquid chromatography

JCPDS:

Joint Committee on Powder Diffraction Standards

LDH:

Lactate dehydrogenase

LDPE:

Low-density polyethylene

MS:

Mass spectrometry

MWCNT:

Multi-walled carbon nanotube

nHA:

Nanohydroxyapatite

NMR:

Nuclear magnetic resonance spectroscopy

OMMT:

Organophilic montmorillonite

PCL:

Polycaprolactone

PDLLA:

Poly(D, L-lactic acid)

PEEK:

Poly(ether-ether-ketone)

PEO:

Polyethylene oxide

PGA:

Glycolic acid

PHB:

Poly(hydroxybutyrate)

P3HB:

Poly(3-hydroxybutyrate)

PHBV:

Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)

PHV:

Polyhydroxy valerate

PLA:

Polylactides

PLG:

Poly(lactide-coglycolide)

PLGA:

Poly(lactic-co-glycolic acid)

PLLA:

Poly-L-lactic acid

PLS:

Photoluminescence spectroscopy

PNCs:

Polymer nanocomposites

PS-CNTs:

Polystyrene-carbon nanotubes

ROS:

Reactive oxygen species

SAXS:

Small-angle X-ray scattering

SEC:

Size exclusion chromatography

SEM:

Scanning electron microscope

SiO2:

Silicon dioxide

TCP:

Tricalcium phosphate

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

TMA:

Thermomechanical analysis

WAXD:

Wide-angle X-ray diffraction

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

References

  1. Park JB and Lakes RS, Introduction to biomaterials, in Biomaterials. 1992, Springer. p. 1–6.

    Google Scholar 

  2. Park JB and Lakes RS (2007) Polymeric implant materials. Biomaterials:173-205

    Google Scholar 

  3. Naidu NA, Wadher K, and Umekar M (2021) An Overview on Biomaterials: Pharmaceutical and Biomedical Applications. Journal of Drug Delivery and Therapeutics 11(1-s):154–161

    Google Scholar 

  4. Banoriya D, Purohit R, and Dwivedi R (2017) Advanced application of polymer based biomaterials. Materials today: proceedings 4(2):3534-3541

    Google Scholar 

  5. Singh P, Kim Y-J, Zhang D, and Yang D-C (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends in biotechnology 34(7):588-599

    Article  CAS  Google Scholar 

  6. Gupta SK and Mao Y (2021) A review on molten salt synthesis of metal oxide nanomaterials: Status, opportunity, and challenge. Progress in Materials Science 117:100734

    Article  CAS  Google Scholar 

  7. Bouafia A, Laouini SE, Tedjani ML, Ali GAM, and Barhoum A (2021) Green biosynthesis and physicochemical characterization of Fe3O4 nanoparticles using Punica granatum L. fruit peel extract for optoelectronic applications. Textile Research Journal:00405175211006671-00405175211006671

    Google Scholar 

  8. Koons GL, Diba M, and Mikos AG (2020) Materials design for bone-tissue engineering. Nature Reviews Materials 5(8):584-603

    Article  CAS  Google Scholar 

  9. Shankar S and Rhim JW (2016) Polymer nanocomposites for food packaging applications. Functional and physical properties of polymer nanocomposites 29

    Google Scholar 

  10. Krishnamoorti R and Vaia RA, Polymer nanocomposites. 2007, Wiley Online Library.

    Google Scholar 

  11. Akpan E, Shen X, Wetzel B, and Friedrich K, Design and synthesis of polymer nanocomposites, in Polymer Composites with Functionalized Nanoparticles. 2019, Elsevier. p. 47–83.

    Google Scholar 

  12. Parauha YR, Sahu V, and Dhoble S (2021) Prospective of combustion method for preparation of nanomaterials: A challenge. Materials Science and Engineering: B 267:115054

    Article  CAS  Google Scholar 

  13. Khan WS, Hamadneh NN, and Khan WA (2016) Polymer nanocomposites–synthesis techniques, classification and properties. Science and applications of Tailored Nanostructures:50

    Google Scholar 

  14. Zhou J, Lin Z, Ren H, Duan X, Shakir I, Huang Y, and Duan X (2021) Layered Intercalation Materials. Advanced Materials:2004557

    Google Scholar 

  15. Azmana, M, Mahmood, S, Hilles, A R, Rahman, A, Arifin, M A B, & Ahmed, S (2021) A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. International journal of biological macromolecules 185: 832-848.

    Article  CAS  Google Scholar 

  16. Yashas SR, Shahmoradi B, Kitirote W, and Shivaraju HP (2021) Potentiality of polymer nanocomposites for sustainable environmental applications: A review of recent advances. Polymer:124184

    Google Scholar 

  17. Ali GAM, Fouad, Osama A. , Makhlouf, Salah A. (2016) Electrical properties of cobalt oxide/silica nanocomposites obtained by sol-gel technique. American Journal of Engineering and Applied Sciences 9(1):12-16

    Article  Google Scholar 

  18. Fouad OA, Ali GAM, El-Erian MAI, and Makhlouf SA (2012) Humidity sensing properties of cobalt oxide/silica nanocomposites prepared via sol-gel and related routes. Nano 7(5)

    Google Scholar 

  19. Mandal L, Verma B, and Patel PK (2020) Review on polymer nanocomposite for ballistic & aerospace applications. Materials Today: Proceedings 26:3161-3166

    Google Scholar 

  20. Haroun AAA, Rabie AGM, Ali GAM, and Abdelrahim MYM (2019) Improving the mechanical and thermal properties of chlorinated poly (vinyl chloride) by incorporating modified CaCO3 nanoparticles as a filler. Turkish Journal of Chemistry 43(3):750-759

    Article  Google Scholar 

  21. Amin M (2013) Methods for preparation of nano-composites for outdoor insulation applications. Rev. Adv. Mater. Sci 34:173-184

    CAS  Google Scholar 

  22. Riazi H, Taghizadeh G, and Soroush M (2021) MXene-Based Nanocomposite Sensors. Acs Omega 6(17):11103-11112

    Article  CAS  Google Scholar 

  23. Alateyah A, Dhakal H, and Zhang Z (2013) Processing, properties, and applications of polymer nanocomposites based on layer silicates: a review. Advances in polymer technology 32(4)

    Google Scholar 

  24. de Oliveira AD and Beatrice CAG (2018) Polymer nanocomposites with different types of nanofiller. Nanocomposites-Recent Evolutions:103-104

    Google Scholar 

  25. Yildirim ED, Yin X, Nair K, and Sun W (2008) Fabrication, characterization, and biocompatibility of single‐walled carbon nanotube‐reinforced alginate composite scaffolds manufactured using freeform fabrication technique. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 87(2):406-414

    Google Scholar 

  26. Rozenberg B and Tenne R (2008) Polymer-assisted fabrication of nanoparticles and nanocomposites. Progress in polymer science 33(1):40-112

    Article  CAS  Google Scholar 

  27. Anandhan S and Bandyopadhyay S (2011) Polymer nanocomposites: from synthesis to applications. Nanocomposites and polymers with analytical methods 1:1-28

    Google Scholar 

  28. Thalji MR, Ibrahim AA, and Ali GAM (2021) Cutting-edge development in dendritic polymeric materials for biomedical and energy applications. European Polymer Journal 160:110770

    Article  CAS  Google Scholar 

  29. Bokobza L (2018) Spectroscopic techniques for the characterization of polymer nanocomposites: a review. Polymers 10(1):7

    Article  Google Scholar 

  30. Nangai EK and Saravanan S (2021) Synthesis, fabrication and testing of polymer nanocomposites: A review. Materials Today: Proceedings

    Google Scholar 

  31. Balagangadharan K, Dhivya S, and Selvamurugan N (2017) Chitosan based nanofibers in bone tissue engineering. International journal of biological macromolecules 104:1372-1382

    Article  CAS  Google Scholar 

  32. Tchmutin I, Ryvkina N, Saha N, and Saha P (2004) Study on biodegradability of protein filled polymer composites using dielectric measurements. Polymer degradation and stability 86(3):411-417

    Article  CAS  Google Scholar 

  33. Tokiwa Y and Calabia BP (2007) Biodegradability and biodegradation of polyesters. Journal of Polymers and the Environment 15(4):259-267

    Article  CAS  Google Scholar 

  34. Okamoto M (2004) Biodegradable polymer/layered silicate nanocomposites: a review. Journal of Industrial and Engineering Chemistry 10(7):1156-1181

    CAS  Google Scholar 

  35. Göpferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17(2):103-114

    Article  Google Scholar 

  36. Evans GG and Furlong J, Environmental biotechnology: theory and application. 2011: John Wiley & Sons.

    Google Scholar 

  37. Reis RL and San Román J, Biodegradable systems in tissue engineering and regenerative medicine. 2004: CRC press.

    Google Scholar 

  38. Lim H, Huang N, and Loo C (2012) Facile preparation of graphene-based chitosan films: Enhanced thermal, mechanical and antibacterial properties. Journal of Non-Crystalline Solids 358(3):525-530

    Article  CAS  Google Scholar 

  39. Azevedo HS and Reis RL (2005) Understanding the enzymatic degradation of biodegradable polymers and strategies to control their degradation rate.

    Google Scholar 

  40. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, and Nava-Saucedo J-E (2008) Polymer biodegradation: Mechanisms and estimation techniques–A review. Chemosphere 73(4):429-442

    Article  CAS  Google Scholar 

  41. Pathak VM (2017) Review on the current status of polymer degradation: a microbial approach. Bioresources and Bioprocessing 4(1):1-31

    Article  Google Scholar 

  42. Cappitelli F, Principi P, and Sorlini C (2006) Biodeterioration of modern materials in contemporary collections: can biotechnology help? Trends in biotechnology 24(8):350-354

    Article  CAS  Google Scholar 

  43. Shimao M (2001) Biodegradation of plastics. Current opinion in biotechnology 12(3):242-247

    Article  CAS  Google Scholar 

  44. Von Burkersroda F, Schedl L, and Göpferich A (2002) Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23(21):4221-4231

    Article  Google Scholar 

  45. Hakkarainen M, Karlsson S, and Albertsson A-C (2000) Rapid (bio) degradation of polylactide by mixed culture of compost microorganisms—low molecular weight products and matrix changes. Polymer 41(7):2331-2338

    Article  CAS  Google Scholar 

  46. Chanprateep S, Shimizu H, and Shioya S (2006) Characterization and enzymatic degradation of microbial copolyester P (3HB-co-3HV) s produced by metabolic reaction model-based system. Polymer degradation and stability 91(12):2941-2950

    Article  CAS  Google Scholar 

  47. Krzan A, Hemjinda S, Miertus S, Corti A, and Chiellini E (2006) Standardization and certification in the area of environmentally degradable plastics. Polymer degradation and stability 91(12):2819-2833

    Article  CAS  Google Scholar 

  48. Nagai Y, Nakamura D, Miyake T, Ueno H, Matsumoto N, Kaji A, and Ohishi F (2005) Photodegradation mechanisms in poly (2, 6-butylenenaphthalate-co-tetramethyleneglycol)(PBN–PTMG). I: influence of the PTMG content. Polymer degradation and stability 88(2):251-255

    Article  CAS  Google Scholar 

  49. Pagga U (1997) Testing biodegradability with standardized methods. Chemosphere 35(12):2953-2972

    Article  CAS  Google Scholar 

  50. Lefaux S, Manceau A, Benguigui L, Campistron I, Laguerre A, Laulier M, Leignel V, and Tremblin G (2004) Continuous automated measurement of carbon dioxide produced by microorganisms in aerobic conditions: application to proteic film biodegradation. Comptes Rendus Chimie 7(2):97-101

    Article  CAS  Google Scholar 

  51. Costa S, Azevedo HS, and Reis RL (2005) Enzyme immobilization in biodegradable polymers for biomedical applications.

    Google Scholar 

  52. Labow RS, Tang Y, McCloskey CB, and Santerre JP (2002) The effect of oxidation on the enzyme-catalyzed hydrolytic biodegradation of poly (urethane) s. Journal of Biomaterials Science, Polymer Edition 13(6):651-665

    Article  CAS  Google Scholar 

  53. Chawla JS and Amiji MM (2002) Biodegradable poly (ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. International journal of pharmaceutics 249(1–2):127-138

    Article  CAS  Google Scholar 

  54. Rivera-Briso AL and Serrano-Aroca Á (2018) Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement strategies for advanced applications. Polymers 10(7):732

    Article  Google Scholar 

  55. Wang S, Song C, Chen G, Guo T, Liu J, Zhang B, and Takeuchi S (2005) Characteristics and biodegradation properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite. Polymer Degradation and Stability 87(1):69-76

    Article  CAS  Google Scholar 

  56. Farah S, Anderson DG, and Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Advanced drug delivery reviews 107:367-392

    Article  CAS  Google Scholar 

  57. Haider TP, Völker C, Kramm J, Landfester K, and Wurm FR (2019) Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angewandte Chemie International Edition 58(1):50-62

    Article  CAS  Google Scholar 

  58. Li SM, Garreau H, and Vert M (1990) Structure-property relationships in the case of the degradation of massive aliphatic poly-(α-hydroxy acids) in aqueous media. Journal of Materials Science: Materials in Medicine 1(3):123-130

    CAS  Google Scholar 

  59. Tokiwa Y, Konno M, and Nishida H (1999) Isolation of silk degrading microorganisms and its poly (L-lactide) degradability. Chemistry letters 28(4):355-356

    Article  Google Scholar 

  60. Lee S-R, Park H-M, Lim H, Kang T, Li X, Cho W-J, and Ha C-S (2002) Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polymer 43(8):2495-2500

    Article  CAS  Google Scholar 

  61. Fukushima K, Abbate C, Tabuani D, Gennari M, and Camino G (2009) Biodegradation of poly (lactic acid) and its nanocomposites. Polymer Degradation and Stability 94(10):1646-1655

    Article  CAS  Google Scholar 

  62. Bari SS, Chatterjee A, and Mishra S (2016) Biodegradable polymer nanocomposites: An overview. Polymer Reviews 56(2):287-328

    Article  CAS  Google Scholar 

  63. Wu K-J, Wu C-S, and Chang J-S (2007) Biodegradability and mechanical properties of polycaprolactone composites encapsulating phosphate-solubilizing bacterium Bacillus sp. PG01. Process Biochemistry 42(4):669-675

    Article  Google Scholar 

  64. Fan J, Grande CD, and Rodrigues DF (2017) Biodegradation of graphene oxide-polymer nanocomposite films in wastewater. Environmental Science: Nano 4(9):1808-1816

    CAS  Google Scholar 

  65. Hakkarainen M, Degradable aliphatic polyesters. 2002, Springer Berlin.

    Google Scholar 

  66. Hakkarainen M, Albertsson A-C, and Karlsson S (1996) Solid-phase extraction and subsequent gas chromatography-mass spectrometry analysis for identification of complex mixtures of degradation products in starch-based polymers. Journal of Chromatography A 741(2):251-263

    Article  CAS  Google Scholar 

  67. Rahimi M, Noruzi EB, Sheykhsaran E, Ebadi B, Kariminezhad Z, Molaparast M, Mehrabani MG, Mehramouz B, Yousefi M, and Ahmadi R (2020) Carbohydrate polymer-based silver nanocomposites: Recent progress in the antimicrobial wound dressings. Carbohydrate polymers 231:115696

    Article  CAS  Google Scholar 

  68. Kumari S, Singh RP, Chavan NN, and Annamalai PK (2016) Chitosan-based bionanocomposites for biomedical application. Bioinspired, Biomimetic and Nanobiomaterials 7(4):219-227

    Article  Google Scholar 

  69. Williams DF (2014) There is no such thing as a biocompatible material. Biomaterials 35(38):10009-10014

    Article  CAS  Google Scholar 

  70. Murugan R and Ramakrishna S (2005) Development of nanocomposites for bone grafting. Composites Science and technology 65(15–16):2385-2406

    Article  CAS  Google Scholar 

  71. Pina S, Oliveira JM, and Reis RL (2015) Natural‐based nanocomposites for bone tissue engineering and regenerative medicine: A review. Advanced Materials 27(7):1143-1169

    Article  CAS  Google Scholar 

  72. Nazeer MA, Yilgör E, and Yilgör I (2017) Intercalated chitosan/hydroxyapatite nanocomposites: Promising materials for bone tissue engineering applications. Carbohydrate polymers 175:38-46

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fouad, F.A., Youssef, D.G., Refay, F.A., Heakal, F.ET. (2022). Biocompatibility of Nanomaterials Reinforced Polymer-Based Nanocomposites. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-83783-9_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83783-9_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83783-9

  • Online ISBN: 978-3-030-83783-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics