Skip to main content

Cellulomics of Live Yeast by Advanced and Correlative Microscopy

  • Chapter
  • First Online:
Laboratory Protocols in Fungal Biology

Part of the book series: Fungal Biology ((FUNGBIO))

  • 806 Accesses

Abstract

Correlative microscopy with atomic force quantitative imaging and laser scanning confocal (AFM-QI-LSCM) of live cells has refined our understanding of yeast biology. Correlative AFM-QI-LSCM generates high content data by simultaneously measuring the ultrastructural surface topography and nanomechanical properties with nanometer and picoNewton resolution (via AFM-QI) while tracking internal biochemical changes through fluorescent labelled markers in live yeast. This chapter outlines sample preparation and imaging protocols for AFM-QI and correlative AFM-QI-LSCM, and imaging of fixed and live Candida albicans and Saccharomyces cerevisiae. We describe sample immobilisation tools, including polydimethylsiloxane (PDMS stamps) and Cell-Tak, that are crucial for yeast cells to withstand the lateral AFM tip forces during live cell scanning. Finally, we describe methods for real-time AFM-QI-LSCM monitoring of cell surface remodelling, viscoelasticity, adhesion and intracellular signals in actively dividing C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elter P, Weihe T, Lange R, Gimsa J, Beck U (2011) The influence of topographic microstructures on the initial adhesion of L929 fibroblasts studied by single-cell force spectroscopy. Eur Biophys J 40(3):317–327

    Article  Google Scholar 

  2. Docheva D, Padula D, Schieker M, Clausen-Schaumann H (2010) Effect of collagen I and fibronectin on the adhesion, elasticity and cytoskeletal organization of prostate cancer cells. Biochem Biophys Res Commun 402(2):361–366

    Article  CAS  Google Scholar 

  3. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  Google Scholar 

  4. Kirmse R, Otto H, Ludwig T (2011) Interdependency of cell adhesion, force generation and extracellular proteolysis in matrix remodeling. J Cell Sci 124(11):1857–1866

    Article  CAS  Google Scholar 

  5. Gadegaard N (2006) Atomic force microscopy in biology: technology and techniques. Biotech Histochem 81(2–3):87–97

    Article  CAS  Google Scholar 

  6. Braga PC, Ricci D (2004) Atomic force microscopy: biomedical methods and applications. Springer Science & Business Media

    Google Scholar 

  7. Smolyakov G, Formosa-Dague C, Severac C, Duval RE, Dague E (2016) High speed indentation measures by FV, QI and QNM introduce a new understanding of bionanomechanical experiments. Micron 85:8–14

    Article  CAS  Google Scholar 

  8. Hertz H (1992) On the contact of rigid elastic solids and hardness. Wiley

    Google Scholar 

  9. Horton MA, Pelling AE, Haupt BJ (2006) Intergrated confocal and scanning probe microscopy for biomedical research. The Scientific World Journal 6:1609–1618

    Google Scholar 

  10. Kassies R et al (2005) Combined AFM and confocal fluorescence microscope for applications in bio-nanotechnology. J Microsc 217(1):109–116

    Article  CAS  Google Scholar 

  11. Bhat SV, Sultana T, Körnig A, McGrath S, Shahina Z, Dahms TES (2018) Correlative atomic force microscopy quantitative imaging-laser scanning confocal microscopy quantifies the impact of stressors on live cells in real-time. Sci Rep 8(1):8305

    Article  Google Scholar 

  12. Marques WL, Vijayendran Raghavendran AKG, Stambuk BU (2016) Sucrose and Saccharomyces cerevisiae: a relationship most sweet. FEMS Yeast Res 16(1):fov107

    Article  Google Scholar 

  13. Biplab TESD, Paul C, Ma H, Snook LA (2008) High-resolution imaging and force spectroscopy of fungal hyphal cells by atomic force microscopy. Micron 39(4):349–361

    Article  Google Scholar 

  14. Klis K, Groot FM, Hellingwerf PD (2001) Molecular organization of the cell wall of Candida albicans. Med Mycol 39(1):1–8

    Article  CAS  Google Scholar 

  15. Shahina Z, Amira E-G, Jessica MM, Malcolm W, Taranum S, Tanya DES (2018) Cinnamomum zeylanicum bark essential oil induces cell wall remodelling and spindle defects in Candida albicans. Fungal Biol Biotechnol 5:3

    Article  Google Scholar 

  16. Daniel R, Richard AC, John EEJ (1986) Adherence of Candida species to host tissues and plastic surfaces. Rev Infect Dis 8(1):73–85

    Article  Google Scholar 

  17. Miyake Y, Tsunoda T, Minagi S, Akagawa Y, Tsuru H, Suginaka H (1990) Antifungal drugs affect adherence of Candida albicans to acrylic surfaces by changing the zeta-potential of fungal cells. FEMS Microbiol Lett 69(3):211–214

    Article  CAS  Google Scholar 

  18. Costa-Orlandi CB et al (2017) Fungal biofilms and polymicrobial diseases. J Fungi 3:22

    Article  Google Scholar 

  19. Samaranayake LP, MacFarlane TW (1982) Factors affecting the in-vitro adherence of the fungal oral pathogen candida albicans to epithelial cells on human origin. Arch Oral Biol 27(10):869–873

    Article  CAS  Google Scholar 

  20. Formosa C, Pillet F, Schiavone M, Duval RE, Ressier L, Dague E (2015) Generation of living cell arrays for atomic force microscopy studies. Nat Protoc 10(1):199

    Article  Google Scholar 

  21. Meyer RL, Zhou X, Tang L, Arpanaei A, Kingshott P, Besenbacher F (2010) Immobilisation of living bacteria for AFM imaging under physiological conditions. Ultramicroscopy 110(11):1349–1357

    Article  Google Scholar 

  22. Bhat SV, Booth SC, Vantomme EA, Afroj S, Yost CK, Dahms TE (2015) Oxidative stress and metabolic perturbations in Escherichia coli exposed to sublethal levels of 2, 4-dichlorophenoxyacetic acid. Chemosphere 135:453–461

    Article  CAS  Google Scholar 

  23. Dague E, Jauvert E, Laplatine L, Viallet B, Thibault C, Ressier L (2011) Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments. Nanotechnology 22(39):395102

    Article  CAS  Google Scholar 

  24. Elbourne A, Chapman J, Gelmi A, Cozzolino D, Crawford RJ, Truong VK (2019) Bacterial-nanostructure interactions: the role of cell elasticity and adhesion forces. J Colloid Interface Sci 546:192–210

    Article  CAS  Google Scholar 

  25. Colville K, Topmkins N, Rutenberg AD, Jericho MH (2010) Effects of poly(l-lysine) substrates on attached Escherichia coli bacteria. Am Chem Soc 26(4):2639–2644

    CAS  Google Scholar 

  26. Chopinet L, Formosa C, Rols MP, Duval RE, Dague E (2013) Imaging living cells surface and quantifying its properties at high resolution using AFM in QI™ mode. Micron 48:26–33

    Article  CAS  Google Scholar 

  27. Castelain M, Pignon F, Piau J-M, Magnin A, Mercier-Bonin M, Schmitz P (2007) Removal forces and adhesion properties of Saccharomyces cerevisiae on glass substrates probed by optical tweezer. J Chem Phys 127(13):10B602

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya E. S. Dahms .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahina, Z. et al. (2022). Cellulomics of Live Yeast by Advanced and Correlative Microscopy. In: Gupta, V.K., Tuohy, M. (eds) Laboratory Protocols in Fungal Biology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-83749-5_9

Download citation

Publish with us

Policies and ethics