Skip to main content

Bronchopulmonary Dysplasia

  • Chapter
  • First Online:
Perinatology

Abstract

Bronchopulmonary dysplasia (BPD) is still a prevalent disease in Neonatal Intensive Care Units (NICU) and associated with short- and long-term impairments in lung function. Low gestational age, mechanical ventilation, and supplemental oxygen are the main risk factors. Continuous positive airway pressure since birth, noninvasive ventilation, and surfactant have improved outcomes in the population of extreme and very low birth weight. Antenatal corticosteroids are best evidence to decrease the rates of BPD. Early caffeine administration is now standard of care. Approximately 30% of BPD babies will develop pulmonary hypertension and will need special care and medications. Postnatal steroids have a role in selected cases. New promising therapies, like Sildenafil, nitric oxide, and mesenchymal stem cells may become important in the future. Long-term follow-up show increased rehospitalizations and compromised lung function in more severe cases until late childhood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respiratory therapy of hyaline membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967;276:357–86.

    Google Scholar 

  2. Abman SH, Bancalari E, Jobe A. The evolution of bronchopulmonary dysplasia after 50 years. Am J Respir Crit Care Med. 2017;195:421–4.

    Google Scholar 

  3. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163:1723–9.

    CAS  Google Scholar 

  4. Shennan AT, Dunn MS, Ohlsson A, Lennox K, Hoskins EM. Abnormal pulmonary outcomes in premature infants: prediction from oxygen requirement in the neonatal period. Pediatrics. 1988;82:527–32.

    CAS  Google Scholar 

  5. Horbar JD, Carpenter JH, Badger GJ, et al. Mortality and neonatal morbidity among infants 501 to 1500 grams from 2000 to 2009. Pediatrics. 2012;129:1019–26.

    Google Scholar 

  6. Stoll BJ, Hansen NI, Bell EF, et al. Neonatal outcomes of extremely preterm infants from the NICHD neonatal research network. Pediatrics. 2010;126:443–56.

    Google Scholar 

  7. Lapcharoensap W, et al. Hospital variation and risk factors for bronchopulmonary dysplasia in a population-based cohort. JAMA Pediatr. 2015;169:e143676.

    Google Scholar 

  8. Adams M, et al. Variability of very low birth weight infant outcome and practice in Swiss and US neonatal units. Pediatrics. 2018;141:e20173436.

    Google Scholar 

  9. Bhunwal S, Mukhopadhyay K, Bhattacharya S, Dey P, Dhaliwal LK. Bronchopulmonary dysplasia in preterm neonates in a level III neonatal unit in India. Indian Pediatr. 2018;55:211–5.

    Google Scholar 

  10. Bose C, et al. Fetal growth restriction and chronic lung disease among infants born before the 28th week of gestation. Pediatrics. 2009;124:e450–8.

    Google Scholar 

  11. Isayama T, et al. Revisiting the definition of bronchopulmonary dysplasia: effect of changing panoply of respiratory support for preterm neonates. JAMA Pediatr. 2017;171:271–9.

    Google Scholar 

  12. Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, Hale EC, Newman NS, Schibler K, Carlo WA, Kennedy KA, Poindexter BB, Finer NN, Ehrenkranz RA, Duara S, Sánchez PJ, O'Shea TM, Goldberg RN, Van Meurs KP, Faix RG, Phelps DL, Frantz ID 3rd, Watterberg KL, Saha S, Das A, Higgins RD, Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010;126(3):443–56.

    Google Scholar 

  13. Van Marter LJ, Allred EN, Leviton A, et al. Antenatal gluco-corticoid treatment does not reduce chronic lung disease among surviving preterm infants. J Pediatr. 2001;138:198–204.

    Google Scholar 

  14. Jobe AH. Effects of chorioamnionitis on the fetal lung. Clin Perinatol. 2012;39:441–57. [PubMed: 22954262].

    Google Scholar 

  15. Redline RW, Faye-Petersen O, Heller D, et al. Amniotic infection syndrome: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol. 2003;6:435–48.

    Google Scholar 

  16. Parker RA, Lindstrom DP, Cotton RB. Evidence from twin study implies possible genetic susceptibility to bronchopulmonary dysplasia. Semin Perinatol. 1996;20:206–9. [PubMed: 8870123].

    CAS  Google Scholar 

  17. Dreyfuss D, Saumon G. Ventilator-induced lung injury: les- sons from experimental studies. Am J Respir Crit Care Med. 1998;157:294–323.

    CAS  Google Scholar 

  18. Mokres LM, Parai K, Hilgenforff A. Prolonged mechanical ventilation with air induces apoptosis and causes failure of alveolar septation and angiogenesis in lungs of newborn mice. Am J Phys. 2010;298:L23–35.

    CAS  Google Scholar 

  19. Schmolzer GM, et al. Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis. BMJ. 2013;347:f5980. [PubMed: 24136633].

    Google Scholar 

  20. Lemyre B, Davis PG, De Paoli AG, Kirpalani H. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database Syst Rev. 2017;2:CD003212. [PubMed: 28146296].

    Google Scholar 

  21. Lemyre B, Laughon M, Bose C, Davis PG. Early nasal intermittent positive pressure ventilation (NIPPV) versus early nasal continuous positive airway pressure (NCPAP) for preterm infants. Cochrane Database Syst Rev. 2016;12:CD005384. [PubMed: 27976361].

    Google Scholar 

  22. Wilkinson D, Andersen C, O’Donnell CP, De Paoli AG, Manley BJ. High flow nasal cannula for respiratory support in preterm infants. Cochrane Database Syst Rev. 2016;2:CD006405. [PubMed: 26899543].

    Google Scholar 

  23. Bonikos DS, Benson KG, Northway WHJ. Oxygen toxicity in the newborn. The effect of chronic continuous100 percent oxy- gen exposure on the lung of newborn mice. Am J Pathol. 1976;85:623–50.

    CAS  Google Scholar 

  24. Delacourt C, d’Ortho MP, Macquin-Mavier I, et al. Oxidant–antioxidant balance in alveolar macrophages from newborn rats. Eur Respir J. 1996;9:2517–24.

    CAS  Google Scholar 

  25. Saugstad OD. Chronic lung disease: the role of oxidative stress. Biol Neonate. 1998;74:21–8.

    CAS  Google Scholar 

  26. Darlow AB, Morley C. Oxygen saturation targeting and bronchopulmonary dysplasia. Clin Perinatol. 2015;42:807–23.

    Google Scholar 

  27. Thebaud B, Goss KN, Laughon M, Whitsett JA, et al. Bronchopulmonary dysplasia. Nat Rev Primers. 2020;5(1):781–53.

    Google Scholar 

  28. Kribs A, et al. Nonintubated surfactant application vs conventional therapy in extremely preterm infants: a randomized clinical trial. JAMA Pediatr. 2015;169:723–30. [PubMed: 26053341].

    Google Scholar 

  29. Dargaville PA, et al. Minimally-invasive surfactant therapy in preterm infants on continuous positive airway pressure. Arch Dis Child Fetal Neonatal Ed. 2013;98:F122–6. [PubMed: 22684154].

    Google Scholar 

  30. Aldana-Aguirre JC, Pinto M, Featherstone RM, Kumar M. Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2017;102:F17–23. ). [PubMed: 27852668].

    Google Scholar 

  31. Dargaville PA, et al. The OPTIMIST-A trial: evaluation of minimally-invasive surfactant therapy in preterm infants 25–28 weeks gestation. BMC Pediatr. 2014;14:213. [PubMed: 25164872].

    Google Scholar 

  32. Ohlsson A, Walia R, Shah SS. Ibuprofen for the prevention of patent ductus arteriosus in preterm and/or low birth weight infants. Cochrane Database Syst Rev. 2013;4:CD003481.

    Google Scholar 

  33. Cooke L, Steer P, Woodgate P. Indomethacin for asymptomatic patent ductus arteriosus in preterm infants. Cochrane Database Syst Rev. 2003;1:CD003745.

    Google Scholar 

  34. Laughon MM, et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am J Respir Crit Care Med. 2011;183:1715–22. [PubMed: 21471086].

    Google Scholar 

  35. Clouse BJ, Jadcherla SR, Slaughter JL. Systematic review of inhaled bronchodilator and corticosteroid therapies in infants with bronchopulmonary dysplasia: implications and future directions. PLoS One. 2016;11(2):e0148188. https://doi.org/10.1371/journal.pone.0148188. eCollection (2016).

    Article  CAS  Google Scholar 

  36. Sara K. Berkelhamer MD, Karen K. Mestan, Robin Steinhorn. An update on the diagnosis and management of bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension. Semin Perinatol.

    Google Scholar 

  37. Smith VC, Zupancic JAF, McCormick MC, et al. Rehospitalization in the first year of life among infants with bronchopulmonary dysplasia. J Pediatr. 2004;144:799–803.

    Google Scholar 

  38. Fawke J, Lum S, Kirkby J, et al. Lung function and respiratory symptoms at 11 years in children born extremely preterm. Am J Respir Crit Care Med. 2010;182:237–45.

    Google Scholar 

  39. Vollsæter M, Roksund OD, Eide GE, et al. Lung function after preterm birth: development from mid-childhood to adult- hood. Thorax. 2013;68:767–76.

    Google Scholar 

  40. Committee on Fetus and Newborn. Postnatal corticosteroids to treat or prevent chronic lung disease in preterm infants. Pediatrics. 2002;109:330–8. [PubMed: 11826218].

    Google Scholar 

  41. Doyle LW, Halliday HL, Ehrenkranz RA, Davis PG, Sinclair JC. An update on the impact of postnatal systemic corticosteroids on mortality and cerebral palsy in preterm infants: effect modification by risk of bronchopulmonary dysplasia. J Pediatr. 2014;165:1258–60. [PubMed: 25217197].

    CAS  Google Scholar 

  42. Doyle LW, et al. Outcome at 2 years of age of infants from the DART study: a multicenter, international, randomized, controlled trial of low-dose dexamethasone. Pediatrics. 2007;119:716–21. [PubMed: 17403842].

    Google Scholar 

  43. Doyle LW, et al. Low-dose dexamethasone facilitates extubation among chronically ventilator- dependent infants: a multicenter, international, randomized, controlled trial. Pediatrics. 2006;117:75–83. [PubMed: 16396863].

    Google Scholar 

  44. Baud O, et al. Effect of early low-dose hydrocortisone on survival without bronchopulmonary dysplasia in extremely preterm infants (PREMILOC): a double-blind, placebo-controlled, multicentre, randomised trial. Lancet. 2016;387:1827–36. [PubMed: 26916176].

    CAS  Google Scholar 

  45. Bland RD, Albertine KH, Carlton DP, MacRitchie AJ. Inhaled nitric oxide effects on lung structure and function in chronically ventilated preterm lambs. Am J Respir Crit Care Med. 2005;172:899–906. [PubMed: 15976381].

    Google Scholar 

  46. Cotton RB, et al. Inhaled nitric oxide attenuates hyperoxic lung injury in lambs. Pediatr Res. 2006;59:142–6. [PubMed: 16327001].

    CAS  Google Scholar 

  47. Hasan SU, Potenziano J, Konduri GG, Perez JA, Van Meurs KP, Walker MW, Yoder BA. For the newborns treated with nitric oxide (NEWNO) trial group. Effect of inhaled nitric oxide on survival without bronchopulmonary dysplasia in preterm infants. JAMA Pediatr. 2017;71:1081–9.

    Google Scholar 

  48. Schmidt B, et al. Caffeine therapy for apnea of prematurity. N Engl J Med. 2006;354:2112–21. [PubMed: 16707748].

    CAS  Google Scholar 

  49. Schmidt B, et al. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med. 2007;357:1893–902. [PubMed: 17989382] References 173 and 174 report results of the CAP trial in 2,000 infants and its long-term follow-up study, which convincingly demonstrated the pathway between shortened exposure to assisted ventilation, reduced rates of BPD, and improved neurodevelopmental outcomes.

    CAS  Google Scholar 

  50. Kua KP, Lee SW. Systematic Review and Meta-analysis of clinical outcomes of early caffeine therapy in preterm neonates. Br J Clin Pharmacol. 2017;83(1):180–91.

    CAS  Google Scholar 

  51. Chang YS, et al. Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose- escalation clinical trial. J Pediatr. 2014;164:966–972.e6. [PubMed: 24508444] This is the first phase I trial showing the feasibility and no short-term toxicity of a single intratracheal administration of allogeneic cord-blood-derived mesenchymal stromal cells in extreme preterm infants at risk of developing BPD.

    Google Scholar 

  52. Powell SB, Silvestri JM. Safety of intratracheal administration of human umbilical cord blood derived mesenchymal stromal cells in extremely low birth weight preterm infants. J Pediatr. 2019;210:209–213.e2. [PubMed: 30992220].

    Google Scholar 

  53. Alvarez-Fuente M, et al. Off-label mesenchymal stromal cell treatment in two infants with severe bronchopulmonary dysplasia: clinical course and biomarkers profile. Cytotherapy. 2018;20:1337–44. [PubMed: 30327248].

    Google Scholar 

  54. Lim R, et al. First-in-human administration of allogeneic amnion cells in premature infants with bronchopulmonary dysplasia: a safety study. Stem Cell Transl Med. 2018;7:628–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Maria de Andrade Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Andrade Lopes, J.M., de Souza Lopes, D.N. (2022). Bronchopulmonary Dysplasia. In: Moreira de Sá, R.A., Fonseca, E.B.d. (eds) Perinatology. Springer, Cham. https://doi.org/10.1007/978-3-030-83434-0_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83434-0_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83433-3

  • Online ISBN: 978-3-030-83434-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics