Skip to main content

RNA In Situ Hybridization: Applications in Anatomic Pathology

  • Chapter
  • First Online:
Handbook of Practical Immunohistochemistry

Abstract

This chapter focuses on RNA in situ hybridization (RNA ISH) technology and applications of RNA ISH in anatomic pathology. Over the last several years, novel RNA ISH methods that utilize signal amplification, such as RNAscope, have dramatically improved the performance of the approach and led to the development of RNA ISH assays for a variety of applications across anatomic pathology, with a focus on infectious disease detection and tumor characterization. One of the most important applications is the detection of high-risk types of HPV in head and neck squamous cell carcinomas, an application with both high diagnostic sensitivity and specificity when compared to other detection techniques, such as DNA ISH and p16 immunohistochemistry (IHC). Identification of both high-risk and low-risk types of HPV in cervical biopsy specimens to improve diagnostic accuracy for low-grade squamous intraepithelial lesions (LGSILs) is another application with demonstrated clinical utility. Other compelling infectious disease applications include detection of cytomegalovirus (CMV) and Epstein-Barr virus (EBV), with assays for important pathogens like SARS-CoV-2 and Mycobacterium tuberculosis showing great promise. Applications of RNAscope in tumor characterization have become increasingly important, including detection of albumin expression in hepatocellular carcinoma and intrahepatic cholangiocarcinoma, and detection of KIM-1 expression in renal cell carcinoma. Furthermore, RNAscope has been shown to detect immunoglobulin kappa and lambda light chains in the assessment of clonality in lymphoid proliferations with similar diagnostic sensitivity and specificity to flow cytometry. Finally, several recent reports indicate that RNAscope can be used to detect gene fusions and amplifications, such as those involving the ALK and MDM2 genes, potentially providing an alternative approach to fluorescent in situ hybridization (FISH) and other technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. John HA, Birnstiel ML, Jones KW. RNA-DNA hybrids at the cytological level. Nature. 1969;223(5206):582–7.

    Article  CAS  PubMed  Google Scholar 

  2. Angerer LM, Angerer RC. Detection of poly A+ RNA in sea urchin eggs and embryos by quantitative in situ hybridization. Nucleic Acids Res. 1981;9(12):2819–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Segal GH, Shick HE, Tubbs RR, Fishleder AJ, Stoler MH. In situ hybridization analysis of lymphoproliferative disorders. Assessment of clonality by immunoglobulin light-chain messenger RNA expression. Diagn Mol Pathol. 1994;3(3):170–7.

    Article  CAS  PubMed  Google Scholar 

  4. Larsson LI, Hougaard DM. Detection of gastrin and its messenger RNA in Zollinger-Ellison tumors by non-radioactive in situ hybridization and immunocytochemistry. Histochemistry. 1992;97(2):105–10.

    Article  CAS  PubMed  Google Scholar 

  5. Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012;14(1):22–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baker AM, Van Noorden S, Rodriguez-Justo M, Cohen P, Wright NA, Lampert IA. Distribution of the c-MYC gene product in colorectal neoplasia. Histopathology. 2016;69(2):222–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Randen-Brady R, Carpen T, Jouhi L, Syrjanen S, Haglund C, Tarkkanen J, et al. In situ hybridization for high-risk HPV E6/E7 mRNA is a superior method for detecting transcriptionally active HPV in oropharyngeal cancer. Hum Pathol. 2019;90:97–105.

    Article  CAS  PubMed  Google Scholar 

  8. Mirghani H, Casiraghi O, Amen F, He M, Ma XJ, Saulnier P, et al. Diagnosis of HPV-driven head and neck cancer with a single test in routine clinical practice. Mod Pathol. 2015;28(12):1518–27.

    Article  CAS  PubMed  Google Scholar 

  9. Rahimi S, Akaev I, Brennan PA, Virgo A, Marani C, Gomez RS, et al. A proposal for classification of oropharyngeal squamous cell carcinoma: morphology and status of HPV by immunohistochemistry and molecular biology. J Oral Pathol Med. 2020;49(2):110–6.

    Article  CAS  PubMed  Google Scholar 

  10. Craig SG, Anderson LA, Schache AG, Moran M, Graham L, Currie K, et al. Recommendations for determining HPV status in patients with oropharyngeal cancers under TNM8 guidelines: a two-tier approach. Br J Cancer. 2019;120(8):827–33.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Darragh TM, Colgan TJ, Cox JT, Heller DS, Henry MR, Luff RD, et al. The Lower Anogenital Squamous Terminology Standardization project for HPV-associated lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. Arch Pathol Lab Med. 2012;136(10):1266–97.

    Article  PubMed  Google Scholar 

  12. Mills AM, Coppock JD, Willis BC, Stoler MH. HPV E6/E7 mRNA in situ hybridization in the diagnosis of cervical low-grade squamous intraepithelial lesions (LSIL). Am J Surg Pathol. 2018;42(2):192–200.

    Article  PubMed  Google Scholar 

  13. Coppock JD, Willis BC, Stoler MH, Mills AM. HPV RNA in situ hybridization can inform cervical cytology-histology correlation. Cancer Cytopathol. 2018;126(8):533–40.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang B, Shi J, Liu H, Monroe R, Lin F. Utility of HPV E6 and E7 mRNA in situ hybridization in diagnosing cervical low-grade squamous intraepithelial lesion (LSIL) [USCAP abstract 1160]. Mod Pathol. 2019;32(S2):135.

    Google Scholar 

  15. Zelonis M, Shi J, Liu H, Monroe R. Detection of cervical squamous dysplasia on cell blocks prepared from Pap test samples – a combined study based on morphology, HPV detection by RNA in situ hybridization, and immunohistochemical stains for p16 and Ki-67 (USCAP abstract 455) Lab Invest. 2020;100:447.

    Google Scholar 

  16. Shahid M, Mubeen A, Tse J, Kakar S, Bateman AC, Borger D, et al. Branched chain in situ hybridization for albumin as a marker of hepatocellular differentiation: evaluation of manual and automated in situ hybridization platforms. Am J Surg Pathol. 2015;39(1):25–34.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ferrone CR, Ting DT, Shahid M, Konstantinidis IT, Sabbatino F, Goyal L, et al. The ability to diagnose intrahepatic cholangiocarcinoma definitively using novel branched DNA-enhanced albumin RNA in situ hybridization technology. Ann Surg Oncol. 2016;23(1):290–6.

    Article  PubMed  Google Scholar 

  18. Avadhani V, Siddiqui MT, Lawson D, Cohen C. Albumin RNA in situ hybridization in hepatocellular carcinomas and other neoplastic and non-neoplastic tissue: can this be a clinically useful marker? [USCAP abstract 632]. Mod Pathol. 2017;30(S2):159A.

    Google Scholar 

  19. Avadhani V, Siddiqui MT, Lawson D, Cohen C, Krasinskas A. Is albumin RNA in situ hybridization (RISH) a reliable marker for intrahepatic cholangiocarcinomas? [USCAP abstract 1657]. Mod Pathol. 2017;30(S2):413A.

    Article  Google Scholar 

  20. Lehrke HBJ, Mounajjed T, Said S, Yasir S, Chandan VS, Shah S, Smyrk T, Zhang L, Graham R. Albumin in-situ hybridization may be positive in adenocarcinomas and other tumors from diverse sites [USCAP abstract 1680]. Mod Pathol. 2017;30(S2):419A.

    Google Scholar 

  21. Lin F, Shi J, Wang HL, Ma XJ, Monroe R, Luo Y, et al. Detection of albumin expression by RNA in situ hybridization is a sensitive and specific method for identification of hepatocellular carcinomas and intrahepatic cholangiocarcinomas. Am J Clin Pathol. 2018;150(1):58–64.

    Article  CAS  PubMed  Google Scholar 

  22. Askan G, Deshpande V, Klimstra DS, Adsay V, Sigel C, Shia J, et al. Expression of markers of hepatocellular differentiation in pancreatic acinar cell neoplasms: a potential diagnostic pitfall. Am J Clin Pathol. 2016;146(2):163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lok T, Chen L, Lin F, Wang HL. Immunohistochemical distinction between intrahepatic cholangiocarcinoma and pancreatic ductal adenocarcinoma. Hum Pathol. 2014;45(2):394–400.

    Article  CAS  PubMed  Google Scholar 

  24. Liu H, Shi J, Lin F. The potential diagnostic utility of TROP-2 in thyroid neoplasms. Appl Immunohistochem Mol Morphol. 2017;25(8):525–33.

    Article  CAS  PubMed  Google Scholar 

  25. Lin F, Zhang PL, Yang XJ, Shi J, Blasick T, Han WK, et al. Human kidney injury molecule-1 (hKIM-1): a useful immunohistochemical marker for diagnosing renal cell carcinoma and ovarian clear cell carcinoma. Am J Surg Pathol. 2007;31(3):371–81.

    Article  PubMed  Google Scholar 

  26. Sarami I, Shi J, Lin B, Liu H, Monroe R, Lin F. Evaluation of human kidney injury molecule-1 (hKIM-1) expression in tumors from various organs by mRNA in situ hybridization. Am J Clin Pathol. 2021;156(2):288–99. https://doi.org/10.1093/ajcp/aqaa236.

  27. Liu H, Shi J, He MX, Luo L, Lin F. RNA in situ hybridization is a more sensitive method than immunohistochemistry in detection of GCDFP15 expression in breast carcinomas [CAP poster 161]. Arch Pathol Lab Med. 2016;250(9):e108.

    Google Scholar 

  28. Shi J, Liu H, Ma XJ, Chen Z, He MX, Luo Y, et al. Ribonucleic acid in situ hybridization is a more sensitive method than immunohistochemistry in detection of thyroid transcription factor 1 and napsin A expression in lung adenocarcinomas. Arch Pathol Lab Med. 2016;140(4):332–40.

    Article  CAS  PubMed  Google Scholar 

  29. Bahrami A, Weiss SW, Montgomery E, Horvai AE, Jin L, Inwards CY, et al. RT-PCR analysis for FGF23 using paraffin sections in the diagnosis of phosphaturic mesenchymal tumors with and without known tumor induced osteomalacia. Am J Surg Pathol. 2009;33(9):1348–54.

    Article  PubMed  Google Scholar 

  30. Carter JM, Caron BL, Dogan A, Folpe AL. A novel chromogenic in situ hybridization assay for FGF23 mRNA in phosphaturic mesenchymal tumors. Am J Surg Pathol. 2015;39(1):75–83.

    Article  PubMed  Google Scholar 

  31. Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319(5866):1096–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jaeger T, Ring J, Andres C. Histological, immunohistological, and clinical features of Merkel cell carcinoma in correlation to Merkel cell polyomavirus status. J Skin Cancer. 2012;2012:983421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sihto H, Kukko H, Koljonen V, Sankila R, Bohling T, Joensuu H. Clinical factors associated with Merkel cell polyomavirus infection in Merkel cell carcinoma. J Natl Cancer Inst. 2009;101(13):938–45.

    Article  CAS  PubMed  Google Scholar 

  34. Moshiri AS, Doumani R, Yelistratova L, Blom A, Lachance K, Shinohara MM, et al. Polyomavirus-negative Merkel cell carcinoma: a more aggressive subtype based on analysis of 282 cases using multimodal tumor virus detection. J Invest Dermatol. 2017;137(4):819–27.

    Article  CAS  PubMed  Google Scholar 

  35. Wang L, Harms PW, Palanisamy N, Carskadon S, Cao X, Siddiqui J, et al. Age and gender associations of virus positivity in Merkel cell carcinoma characterized using a novel RNA in situ hybridization assay. Clin Cancer Res. 2017;23(18):5622–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nakajima N, Yoshizawa A, Kondo K, Rokutan-Kurata M, Hirata M, Furuhata A, et al. Evaluating the effectiveness of RNA in-situ hybridization for detecting lung adenocarcinoma with anaplastic lymphoma kinase rearrangement. Histopathology. 2017;71(1):143–9.

    Article  PubMed  Google Scholar 

  37. Lin F, Shi J, Chen ZE, Yin H, Monroe R, Liu H. Detection of anaplastic lymphoma kinase (ALK) gene rearrangement by RNA in situ hybridization in lung adenocarcinomas [USCAP abstract 1852]. Mod Pathol. 2019;32(S2).

    Google Scholar 

  38. Kulkarni AS, Wojcik JB, Chougule A, Arora K, Chittampalli Y, Kurzawa P, et al. MDM2 RNA in situ hybridization for the diagnosis of atypical lipomatous tumor: a study evaluating DNA, RNA, and protein expression. Am J Surg Pathol. 2019;43(4):446–54.

    Article  PubMed  Google Scholar 

  39. Guo L, Wang Z, Anderson CM, Doolittle E, Kernag S, Cotta CV, et al. Ultrasensitive automated RNA in situ hybridization for kappa and lambda light chain mRNA detects B-cell clonality in tissue biopsies with performance comparable or superior to flow cytometry. Mod Pathol. 2018;31(3):385–94.

    Article  CAS  PubMed  Google Scholar 

  40. Tubbs RR, Wang H, Wang Z, Minca EC, Portier BP, Gruver AM, et al. Ultrasensitive RNA in situ hybridization for detection of restricted clonal expression of low-abundance immunoglobulin light chain mRNA in B-cell lymphoproliferative disorders. Am J Clin Pathol. 2013;140(5):736–46.

    Article  PubMed  Google Scholar 

  41. Minca EC, Wang H, Wang Z, Lanigan C, Billings SD, Luo Y, et al. Detection of immunoglobulin light-chain restriction in cutaneous B-cell lymphomas by ultrasensitive bright-field mRNA in situ hybridization. J Cutan Pathol. 2015;42(2):82–9.

    Article  PubMed  Google Scholar 

  42. Wang Z, Cook JR. IRTA1 and MNDA expression in marginal zone lymphoma: utility in differential diagnosis and implications for classification. Am J Clin Pathol. 2019;151(3):337–43.

    Article  CAS  PubMed  Google Scholar 

  43. Lin F, Shi J, Lin B, Monroe R. Detection of BK polyomavirus in allograft renal biopsies: comparison of diagnostic sensitivity and specificity of RNA in situ hybridization vs. immunohistochemistry [CAP poster 149]. Arch Pathol Lab Med. 2018;142(9):e98.

    Article  Google Scholar 

  44. Roe CJ, Siddiqui MT, Lawson D, Cohen C. RNA in situ hybridization for Epstein-Barr virus and cytomegalovirus: comparison with in situ hybridization and immunohistochemistry. Appl Immunohistochem Mol Morphol. 2019;27(2):155–9.

    Article  CAS  PubMed  Google Scholar 

  45. Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017;358(6369):1443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, F., Kim, J., Monroe, R. (2022). RNA In Situ Hybridization: Applications in Anatomic Pathology. In: Lin, F., Prichard, J.W., Liu, H., Wilkerson, M.L. (eds) Handbook of Practical Immunohistochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-83328-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83328-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83327-5

  • Online ISBN: 978-3-030-83328-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics