Skip to main content

Abstract

The genus Enterococcus is composed by Gram-positive cocci widely distributed in nature, presenting either as harmless commensals or as multifaceted opportunistic pathogens recognized among the leading causes of difficult-to-treat nosocomial infections. Over the last decades, they have emerged as medically important multiple antibiotic-resistant pathogens, especially in the context of healthcare-associated infections, contributing significantly to patient morbidity and mortality, as well as increasing healthcare costs. Several characteristics of the enterococci allow them to persist almost everywhere and acquire resistance to multiple antimicrobial drugs, thus presenting a considerable challenge for infection control. The introduction of molecular typing techniques, including PFGE, MLST, MLVA, and other PCR-based methodologies, and, more recently, MALDI-TOF MS and WGS, has substantially improved the ability to discriminate enterococcal isolates and has provided critical epidemiology insights. Exogenous acquisition of enterococcal strains by direct and indirect contact among patients has been demonstrated, breaking the traditional conception that enterococcal infections were endogenous in nature. Occurrence and dissemination of successful clonal complexes of antimicrobial-resistant Enterococcus faecium and Enterococcus faecalis have extensively been documented, particularly among VRE isolates. In addition to epidemiological investigations of human infections, robust molecular typing techniques are now used to trace the dissemination of enterococci in different environments and hosts, and the evolution of multidrug-resistant strains, greatly expanding our understanding of enterococcal epidemiology, population structure, antimicrobial resistance, and virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Facklam RR, Carvalho MGS, Teixeira LM (2002) History, taxonomy, biochemical characteristics, and antibiotic susceptibility testing of enterococci. In: Gilmore MS, Clewell DB, Courvalin P et al (eds) The enterococci: pathogenesis, molecular biology, and antibiotic resistance. ASM, Washington, DC

    Google Scholar 

  2. Arias CA, Murray BE (2012) The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 10:266–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lebreton F, Willems RJL, Gilmore MS (2014) Enterococcus diversity, origins in nature, and gut colonization. In: Gilmore MS, Clewell DB, Ike Y et al (eds) Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, Boston

    Google Scholar 

  4. Teixeira LM, Carvalho MG, Facklam RR et al (2019) Enterococcus. In: Carroll KC, Pfaller MA, Landry ML et al (eds) Manual of clinical microbiology, 12th edn. ASM, Washington, DC

    Google Scholar 

  5. Švec P, Devriese LA (2009) Genus I. Enterococcus. In: De Vos P, Garrity GM, Jones D et al (eds) Bergey’s manual of systematic bacteriology, vol 3: the firmicutes, 2nd edn. Springer, New York

    Google Scholar 

  6. Schleifer KH, Kilpper-Balz R (1984) Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Bacteriol 34:31–34

    Article  Google Scholar 

  7. Naser SM, Thompson FL, Hoste B et al (2005) Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151:2141–2150

    Article  CAS  PubMed  Google Scholar 

  8. Naser S, Thompson FL, Hoste B et al (2005) Phylogeny and identification of enterococci by atpA gene sequence analysis. J Clin Microbiol 43:2224–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li X, Xing J, Li B et al (2012) Use of tuf as a target for sequence-based identification of Gram-positive cocci of the genus Enterococcus, Streptococcus, coagulase-negative Staphylococcus, and Lactococcus. Ann Clin Microbiol Antimicrob 11:31–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kadri Z, Spitaels F, Cnockaert M et al (2015) Enterococcus bulliens sp. nov., a novel lactic acid bacterium isolated from camel milk. Antonie Van Leeuwenhoek 108:1257–1265

    Google Scholar 

  11. Le Page S, Cimmino T, Togo A et al (2016) Noncontiguous finished genome sequence and description of Enterococcus massiliensis sp. nov. New Microbes New Infect 12:90–95

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sun Y, Li X, Wang G et al (2016) Genome sequence of Enterococcus pernyi, a pathogenic bacterium for the Chinese oak silkworm, Antheraea pernyi. Genome Announc 4:e01764–e01715

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fang H, Ohlsson AK, Ullberg M et al (2012) Evaluation of species-specific PCR, Bruker MS, VITEK MS and the VITEK 2 system for the identification of clinical Enterococcus isolates. Eur J Clin Microbiol Infect Dis 31:3073–3977

    Article  CAS  PubMed  Google Scholar 

  14. Rychert J, Burnham CA, Bythrow M et al (2013) Multicenter evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Gram-positive aerobic bacteria. J Clin Microbiol 51:2225–2231

    Article  PubMed  PubMed Central  Google Scholar 

  15. Christ APG, Ramos SR, Cayô R et al (2017) Characterization of Enterococcus species isolated from marine recreational waters by MALDI-TOF MS and Rapid ID API® 20 Strep system. Mar Pollut Bull 118:376–381

    Article  CAS  PubMed  Google Scholar 

  16. Ashizawa K, Murata S, Terada T et al (2017) Applications of copolymer for rapid identification of bacteria in blood culture broths using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Microbiol Methods 139:54–60

    Article  CAS  PubMed  Google Scholar 

  17. Li W, Sun E, Wang Y et al (2019) Rapid identification and antimicrobial susceptibility testing for urinary tract pathogens by direct analysis of urine samples using a MALDI-TOF MS-based combined protocol. Front Microbiol 10:1182

    Article  PubMed  PubMed Central  Google Scholar 

  18. Libertucci J, Bassis CM, Cassone M et al (2019) Bacteria detected in both urine and open wounds in nursing home residents: a pilot study. mSphere 4(4):pii: e00463-19

    Article  Google Scholar 

  19. Pinault L, Chabrière E, Raoult D et al (2019) Direct identification of pathogens in urine by use of a specific matrix-assisted laser desorption ionization-time of flight spectrum database. J Clin Microbiol 57(4):pii: e01678-18

    Article  Google Scholar 

  20. Agudelo Higuita NI, Huycke MM (2014) Enterococcal disease, epidemiology, and implications for treatment. In: Gilmore MS, Clewell DB, Ike Y et al (eds) Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, Boston

    Google Scholar 

  21. Gilmore MS, Lebreton F, van Schaik W (2013) Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr Opin Microbiol 16:10–16

    Article  PubMed  PubMed Central  Google Scholar 

  22. Leavis HL, Bonten MJ, Willems RJ (2006) Identification of high-risk enterococcal clonal complexes: global dispersion and antibiotic resistance. Curr Opin Microbiol 9:454–460

    Article  CAS  PubMed  Google Scholar 

  23. Top J, Willems R, Blok H et al (2007) Ecological replacement of Enterococcus faecalis by multiresistant clonal complex 17 Enterococcus faecium. Clin Microbiol Infect 13:316–319

    Article  CAS  PubMed  Google Scholar 

  24. Willems RJ, Bonten MJ (2007) Glycopeptide-resistant enterococci: deciphering virulence, resistance and epidemicity. Curr Opin Infect Dis 20:384–390

    Article  CAS  PubMed  Google Scholar 

  25. Lee T, Pang S, Abraham S et al (2019) Antimicrobial-resistant CC17 Enterococcus faecium: the past, the present and the future. J Glob Antimicrob Resist 16:36–47

    Article  PubMed  Google Scholar 

  26. Weiner LM, Webb AK, Limbago B et al (2016) Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol 37:1288–1301

    Article  PubMed  PubMed Central  Google Scholar 

  27. European Centre for Disease Prevention and Control (2017) Antimicrobial resistance surveillance in Europe 2016. Annual report of the European antimicrobial resistance surveillance network (EARS-net). ECDC, Stockholm

    Google Scholar 

  28. Weber SG, Huang SS, Oriola S et al (2007) Legislative mandates for use of active surveillance cultures to screen for methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci: position statement from the joint SHEA and APIC task force. Infect Control Hosp Epidemiol 28:249–260

    Article  PubMed  Google Scholar 

  29. Usacheva EA, Ginocchio CC, Morgan M et al (2010) Prospective, multicenter evaluation of the BD GeneOhm VanR assay for direct, rapid detection of vancomycin-resistant Enterococcus species in perianal and rectal specimens. Am J Clin Pathol 134:219–226

    Article  PubMed  Google Scholar 

  30. Werner G, Serr A, Schutt S et al (2011) Comparison of direct cultivation on a selective solid medium, polymerase chain reaction from an enrichment broth, and the BD GeneOhm VanR assay for identification of vancomycin-resistant enterococci in screening specimens. Diagn Microbiol Infect Dis 70:512–521

    Article  CAS  PubMed  Google Scholar 

  31. Holzknect BJ, Hansen DS, Nielsen L et al (2017) Screening for vancomycin-resistant enterococci with Xpert vanA/vanB; diagnostic accuracy and impact on infection control decision making. New Microbes New Infect 16:54–59

    Article  Google Scholar 

  32. Depardieu F, Perichon B, Courvalin P (2004) Detection of the van alphabet and identification of enterococci and staphylococci at the species level by multiplex PCR. J Clin Microbiol 42:5857–5860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Werner G, Coque TM, Hammerum AM et al (2008) Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill 13:1–11

    Article  Google Scholar 

  34. Faron ML, Ledeboer NA, Buchan BW (2016) Resistance mechanisms, epidemiology, and approaches to screening for vancomycin-resistant Enterococcus in the health care setting. J Clin Microbiol 54:2436–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arias CA, Contreras GA, Murray BE (2010) Management of multidrug-resistant enterococcal infections. Clin Microbiol Infect 16:555–562

    Article  CAS  PubMed  Google Scholar 

  36. Domig KJ, Mayer HK, Kneifel W (2003) Methods used for the isolation, enumeration, characterization and identification of Enterococcus spp. 2. Pheno- and genotypic criteria. Int J Food Microbiol 88:165–188

    Article  PubMed  Google Scholar 

  37. Freitas AR, Novais C, Ruiz-Garbajosa P et al (2009) Clonal expansion within clonal complex 2 and spread of vancomycin-resistant plasmids among different genetic lineages of Enterococcus faecalis from Portugal. J Antimicrob Chemother 63:1104–1111

    Article  CAS  PubMed  Google Scholar 

  38. Willems RJ, Top J, van Santen M (2005) Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg Infect Dis 11:821–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McBride SM, Fischetti VA, Leblanc DJ et al (2007) Genetic diversity among Enterococcus faecalis. PLoS One 2:e582

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dai D, Wang H, Xu X (2018) The emergence of multi-resistant Enterococcus faecalis clonal complex, CC4, causing nosocomial infections. J Med Microbiol 67:1069–1077

    Article  CAS  PubMed  Google Scholar 

  41. Kuo AJ, Shu JC, Liu TP et al (2018) Vancomycin-resistant Enterococcus faecium at a university hospital in Taiwan, 2002–2015: fluctuation of genetic populations and emergence of a new structure type of the Tn1546-like element. J Microbiol Immunol Infect 51:821–828

    Article  CAS  PubMed  Google Scholar 

  42. Murray BE, Singh KV, Heath JD et al (1990) Comparison of genomic DNAs of different enterococcal isolates using restriction endonucleases with infrequent recognition sites. J Clin Microbiol 28:2059–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mondino SSB, Castro ACD, Mondino PJJ et al (2003) Phenotypic and genotypic characterization of clinical and intestinal enterococci isolated from inpatients and outpatients in two Brazilian hospitals. Microb Drug Resist 9:167–174

    Article  CAS  PubMed  Google Scholar 

  44. Top J, Banga NM, Hayes R et al (2008) Comparison of multiple-locus variable-number tandem repeat analysis and pulsed-field gel electrophoresis in a setting of polyclonal endemicity of vancomycin-resistant Enterococcus faecium. Clin Microbiol Infect 14:363–369

    Article  CAS  PubMed  Google Scholar 

  45. Wardal E, Markowska K, Zabicka D et al (2014) Molecular analysis of vanA outbreak of Enterococcus faecium in two Warsaw hospitals: the importance of mobile genetic elements. Biomed Res Int 2014:575367

    Article  PubMed  PubMed Central  Google Scholar 

  46. Freitas AR, Tedim AP, Francia MV et al (2016) Multilevel population genetic analysis of vanA and vanB Enterococcus faecium causing nosocomial outbreaks in 27 countries (1986–2012). J Antimicrob Chemother 71:3351–3366

    Article  CAS  PubMed  Google Scholar 

  47. Rangberg A, Larsen AL, Kacelnik O, Sæther HS, Bjørland M, Ringstad J, Jonassen CM (2019) Molecular analysis and epidemiological typing of vancomycin-resistant Enterococcus outbreak strains. Sci Rep 9:11917

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kawalec M, Gniadkowski M, Hryniewicz W (2000) Outbreak of vancomycin-resistant enterococci in a hospital in Gdansk, Poland, due to horizontal transfer of different Tn1546-like transposon variants and clonal spread of several strains. J Clin Microbiol 38:3317–3322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tenover FC, Arbeit R, Goering RV et al (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Homan WL, Tribe D, Poznanski S et al (2002) Multilocus sequence typing scheme for Enterococcus faecium. J Clin Microbiol 40:1963–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ruiz-Garbajosa P, Bonten MJM, Robinson DA et al (2006) A multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in a background of high rates of recombination. J Clin Microbiol 44:2220–2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Raven KE, Reuter S, Reynolds R et al (2016) A decade of genomic history for healthcare-associated Enterococcus faecium in the United Kingdom and Ireland. Genome Res 26:1388–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van Hal SJ, Espedido BA, Coombs GW et al (2017) Polyclonal emergence of vanA vancomycin-resistant Enterococcus faecium in Australia. J Antimicrob Chemother 72:998–1001

    PubMed  Google Scholar 

  54. Tedim AP, Ruiz-Garbajosa P, Corander J et al (2015) Population biology of intestinal Enterococcus isolates from hospitalized and nonhospitalized individuals in different age groups. Appl Environ Microbiol 81:1820–1831

    Article  PubMed  PubMed Central  Google Scholar 

  55. Freitas AR, Sousa C, Novais C et al (2017) Rapid detection of high-risk Enterococcus faecium clones by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Diagn Microbiol Infect Dis 87:299–307

    Article  CAS  PubMed  Google Scholar 

  56. Schlebusch S, Price GR, Gallagher RL et al (2017) MALDI-TOF MS meets WGS in a VRE outbreak investigation. Eur J Clin Microbiol Infect Dis 36:495–499

    Article  CAS  PubMed  Google Scholar 

  57. Savas S, Hazirolan G, Karagoz A et al (2018) From days to hours: can MALDI-TOF MS system replace both conventional and molecular typing methods with new cut off level for vancomycin resistant Enterococcus faecium. J Microbiol Methods 162:62–68

    Article  PubMed  Google Scholar 

  58. Titze-de-Almeida R, Willems RJ, Top J et al (2004) Multilocus variable-number tandem- repeat polymorphism among Brazilian Enterococcus faecalis strains. J Clin Microbiol 42:4879–4881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Top J, Schouls LM, Bonten MJ et al (2004) Multiple-locus variable-number tandem repeat analysis, a novel typing scheme to study the genetic relatedness and epidemiology of Enterococcus faecium isolates. J Clin Microbiol 42:4503–4511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. de Been M, Pinholt M, Top J et al (2015) Core genome multilocus sequence typing scheme for high-resolution typing of Enterococcus faecium. J Clin Microbiol 53:3788–3797

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lytsy B, Engstrand L, Gustafsson Å et al (2017) Time to review the gold standard for genotyping vancomycin-resistant enterococci in epidemiology: comparing whole-genome sequencing with PFGE and MLST in three suspected outbreaks in Sweden during 2013–2015. Infect Genet Evol 54:74–80

    Article  CAS  PubMed  Google Scholar 

  62. Pinholt M, Gumpert H, Bayliss S et al (2017) Genomic analysis of 495 vancomycin-resistant Enterococcus faecium reveals broad dissemination of a vanA plasmid in more than 19 clones from Copenhagen, Denmark. J Antimicrob Chemother 72:40–47

    Article  CAS  PubMed  Google Scholar 

  63. Neumann B, Prior K, Bender JK et al (2019) A core genome multilocus sequence typing (cgMLST) scheme for Enterococcus faecalis. J Clin Microbiol 57(3):pii: e01686-18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lúcia M. Teixeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teixeira, L.M., Faria, A.R., Souza, S.S.R., Merquior, V.L.C. (2022). Enterococcus . In: de Filippis, I. (eds) Molecular Typing in Bacterial Infections, Volume II. Springer, Cham. https://doi.org/10.1007/978-3-030-83217-9_7

Download citation

Publish with us

Policies and ethics