Skip to main content

Temporal Structure of Now from a Close-Up View

  • Chapter
  • First Online:
Physics of the Human Temporality

Part of the book series: Understanding Complex Systems ((UCS))

  • 619 Accesses

Abstract

In this chapter, we discuss the problems of the human now, that attracted much attention in the XX century, and a number of their comprehensive accounts proposed at the beginning of the XXI century. We combine these accounts under the term temporal experience or temporal consciousness and analyze them in detail. During this analysis, in parallel, we formulate some of the main premises making up the gist of our account of the human temporality and describe the basic elements of individual temporal dimension attributed to the mind. In particular, the following issues are discussed in detail:

  • The structure of a single unit of temporal experience.

  • How these units are combined into the stream of experiences and form the diachronic unit of temporal experience.

  • The available experimental data elucidating the details and particular time scales characterizing the experiential now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This name is know from the Principles of Psychology (1980) by William James, where he enigmatically and misleadingly refers to “E. R. Clay” as a person anonymously published a book introducing the notion of specious present. However, there is no known person such as “E. R. Clay,” which is discussed in detail, e.g., by Andersen and Grush (2009), Andersen (2014).

  2. 2.

    The basic concepts of phenomenology and their relation to the problem analyzed within the present book are discussed in more details in Sect. 3.2.

  3. 3.

    The idea that atomic experience may have a finite duration was also discussed by Broad (1925).

  4. 4.

    We already discussed this issue and related ones in Sect. 1.1.

  5. 5.

    The term diachronic is understood as an aspect involving in itself different moments of time and treating them as something with internal integrity.

  6. 6.

    The relationship between the perception of event temporal arrangement and neurophysiological processes in the brain will be discussed in Sect. 2.5.

  7. 7.

    In particular, we have met the necessity of employing this 4D-phase space for describing human actions in the car-following process based our experiments with car-driving simulator (Lubashevsky 2017, Sect. 7.6).

  8. 8.

    This averaged estimate of perception threshold can be explained turning to the temporal binding by gamma-band synchrony hypothesis (Singer 1993; Singer and Gray 1995; Gray 1999). This binding hypothesis states that neurons in anatomically distinct regions can synchronously encode different features of an external stimulus by firing together in a single gamma cycle (see for a review Engel et al. 2001; Buzsáki and Draguhn 2004; Ahmed and Cash 2013). In humans the gamma type neural oscillations are characterized by the 25–100 Hz frequency-band, which corresponds to time scales about 10–40 ms (Gold 1999; Hughes 2008, for are veiw). The relationship between gamma oscillations and cognitive phenomena was also analyzed by Joliot et al. (1994), Başar-Eroglu et al. (1996), Fries et al. (2007), Ehm et al. (2011).

  9. 9.

    The time-shrinking phenomenon in auditory time perception has been first reported by Nakajima and ten Hoopen in (1988) in Japanese.

  10. 10.

    This issue is discussed in detail in Sect. 5.6 and underlies the principle of self-consistency of human perception on different time scales.

  11. 11.

    The conscious level of this aggregation, however, may be regarded as the very basic one for the human mind. In some sense, this aggregation is implemented at the boundary between unconscious and conscious processes.

  12. 12.

    In the cited publications short-term consolidation is analyzed mainly for visual working memory or cases where visual modality plays the governing role. However, this phenomenon observed also within other modalities, in particular, for auditory working memory (e.g., Shen and Alain 2011).

  13. 13.

    Depending on specific external conditions this distribution of attention should make one neurophysiological factors dominant and depress others at the level of cognition. It may explain the existence of ceteris paribus laws—the observed regularities in human behavior in spite of many features being outside the direct control—even without reference to the cooperative interaction between the members of some community (for details see Lubashevsky 2017).

  14. 14.

    A more detailed classification of such memory states taking into account the cognition-induced top-down modulation has be proposed by Jacob et al. (2015).

  15. 15.

    Actually in analyzing consciousness (awareness) Lamme (2003) deals with the second stage of visual sensory memory—fragile visual memory (cf. Velichkovsky 2017). Fragile memory was already discussed above in the part devoted to the experiential presentness of immediate past.

  16. 16.

    A closely related notion of implicit short-term memory was elaborated in parallel by McKone (1995, 1998), McKone and Dennis (2000) and Maljkovic and Nakayama (1994, 2000), Maljkovic and Martini (2005).

  17. 17.

    A detailed discussion of non-conscious goal pursuit including the governing neurophysiological mechanisms can be found in Eitam et al. (2008), Hassin et al. (2008), Hassin, Bargh and Zimerman (2009).

  18. 18.

    We have already discussed this issue in the context of inner psychophysics, Sect. 1.3.2, and in Sect. 3.2.5 will return to it again in discussing the concept of global workspace speaking about the diachronic unit as a integral entity.

  19. 19.

    In the given context the discussion of the cognitive penetrability problem is focused actually on the cognitive impenetrability of the early stage of perception which is related to the properties of immediate future. We will return to the cognitive penetrability problem again within the context of the diachronic unit.

  20. 20.

    The concept of internal models was originally developed for the human motor behavior (e.g., Miall and Wolpert 1996; Wolpert et al. 1998). So proprioception—the sense of self-movement and body position—is the paradigmatic example where sensory anticipation is crucial.

  21. 21.

    Meta-stable phantom percepts—the perception of a sensory experience in the absence of a physical stimulus—may be also explained turning to the interaction between bottom-up compensation and top-down updating of the model with some failure in one or both mechanisms, resulting in a constant prediction-error. A reader may be referred to a review Mohan and Vanneste (2017) for theoretical models and various sensory modalities.

  22. 22.

    Other postulates and the core notions of the predictive coding paradigm such as

    • the Bayesian brain (e.g., Friston 2003, 2009; Clark 2013; Hohwy 2013),

    • the active inference process (e.g., Friston et al. 2009, 2010, 2013, 2014, 2016),

    • the principle of free-energy minimization developed by Friston (2003, 2009, 2010), Friston and Stephan (2007), Feldman and Friston (2010) for describing human perception and behavior

    will be discussed below within a relevant context.

  23. 23.

    In this sense, the predictive coding paradigm is rooted in the account of Hermann von Helmholtz (1821–1894), a German physician and physicist, who first seized on the idea of the brain as a hypothesis tester (for details see, e.g., Hohwy 2013).

  24. 24.

    Below we will use the terms action strategy and strategy of actions interchangeably.

  25. 25.

    For a discussion of action strategies as cognitive phenomenon and the underlying neurological mechanisms a reader may be referred to Overgaard and Mogensen (2014), Mogensen and Overgaard (2017, 2018) and references therein. The notions of the connected past and the connected future are elaborated in Sect. 3.1 as temporal entities related but not belonging to the experiential now.

  26. 26.

    For a detail comparison of various accounts of cognitive penetrability a reader may be referred to Raftopoulos (2019).

  27. 27.

    Speaking about a sensory image we mean sensation rather than categorization, e.g., sensory image of the red color is the redness as a sensational quality of “being red” rather than a component of color pallet.

  28. 28.

    The concept of material point is justified for classical physics; quantum physics treats physical particles as some kind of spatial clouds—wave functions—but in temporal dimensions they are not extended.

  29. 29.

    Here the phase space of a system in question is understood as space whose points represent all the possible states of this system at a given instant of time. In other words, the collection of phase variables specifies the properties that can be attributed to the given system at a single time moment. Generally, no particular properties of the system dynamics are attributed to the phase space.

  30. 30.

    In the present book, we consider human actions on physical objects which move in space as whole entities without their division into components characterized by individual dynamics. For this reason, to avoid unnecessary over-complication in particular mathematical constructions, we regard the analyzed physical objects as material points. The stated indivisibility of the space-time cloud is the case for physical objects of this type only. For complex physical objects, e.g., a fan with rotating blades, a more sophisticated structure of multicomponent space-time clouds is required.

  31. 31.

    The idea that human perception of motion is characterized by higher order time derivatives, in particular, the acceleration a of the perceived moving object and its jerk \(j=da/dt\) is not new. For example, the acceleration of car motion may be included in the list of phase variables determining the driver behavior (for a general review including of models and empirical data see, e.g., Kerner 2009, 2017; Treiber and Kesting 2013). In particular, driving simulator experiments on car-following demonstrated that the acceleration and jerk must be regarded as additional independent phase variables for modeling driver actions (Lubashevsky 2017; Lubashevsky and Morimura 2019). The jerk as a phase variable may be taken into account in describing sensorimotor control (for a review see, e.g., Todorov 2004; Liu and Todorov 2007; Biess et al. 2007, 2011; Biess 2013). The description of mental processes based on free energy also assumes that the acceleration, jerk, and other higher-order time derivatives may be included in the list of phase variables (e.g., Friston 2008; Friston et al. 2008, 2009, 2010; Buckley et al. 2017), in particular, it concerns emotion modeling (Joffily and Coricelli 2013; Friston et al. 2018).

References

  • Adams, R. A., Shipp, S., & Friston, K. J. (2013). Predictions not commands: Active inference in the motor system. Brain Structure and Function, 218(3), 611–643.

    Article  Google Scholar 

  • Aggelopoulos, N. C. (2015). Perceptual inference. Neuroscience & Biobehavioral Reviews, 55, 375–392.

    Article  Google Scholar 

  • Aghdaee, S. M., Battelli, L., & Assad, J. A. (2014). Relative timing: From behaviour to neurons. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 369(1637), 20120472 (11 pages).

    Google Scholar 

  • Ahmed, O. J., & Cash, S. S. (2013). Finding synchrony in the desynchronized EEG: The history and interpretation of gamma rhythms. Frontiers in Integrative Neuroscience, 7, Article 58 (7 pages).

    Google Scholar 

  • Aitchison, L., & Lengyel, M. (2017). With or without you: Predictive coding and Bayesian inference in the brain. Current Opinion in Neurobiology, 46, 219–227. Special Issue: Computational Neuroscience.

    Google Scholar 

  • Andersen, H. (2014). The development of the “specious present’’ and James’s views on temporal experience. In V. Arstila & D. Lloyd (Eds.), Subjective time: The philosophy, psychology, and neuroscience of temporality (pp. 25–42). Cambridge: The MIT Press.

    Google Scholar 

  • Andersen, H., & Grush, R. (2009). A brief history of time-consciousness: Historical precursors to James and Husserl. Journal of the History of Philosophy, 47(2), 277–307.

    Article  Google Scholar 

  • Arstila, V. (2018). When is cognitive penetration a plausible explanation? Consciousness and Cognition, 59, 78–86.

    Article  Google Scholar 

  • Baars, B. J., & Franklin, S. (2003). How conscious experience and working memory interact. Trends in Cognitive Sciences, 7(4), 166–172.

    Article  Google Scholar 

  • Babkoff, H., & Fostick, L. (2013). The role of tone duration in dichotic temporal order judgment. Attention, Perception, & Psychophysics, 75(4), 654–660.

    Article  Google Scholar 

  • Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63(1), 1–29.

    Article  MathSciNet  Google Scholar 

  • Bae, G. Y., & Flombaum, J. I. (2013). Two items remembered as precisely as one: How integral features can improve visual working memory. Psychological Science, 24(10), 2038–2047.

    Article  Google Scholar 

  • Bahrick, L. E. (2010). Amodal perception. In E. B. Goldstein (Ed.), Encyclopedia of perception (Vol. 1, pp. 44–46). Los Angeles: SAGE Publishers Inc.

    Google Scholar 

  • Bahrick, L. E., & Lickliter, R. (2010). Perceptual development: Intermodal perception. In E. B. Goldstein (Ed.), Encyclopedia of perception (Vol. 2, pp. 753–756). Los Angeles: SAGE Publishers Inc.

    Google Scholar 

  • Bakhurin, K. I., Goudar, V., Shobe, J. L., Claar, L. D., Buonomano, D. V., & Masmanidis, S. C. (2017). Differential encoding of time by prefrontal and striatal network dynamics. Journal of Neuroscience, 37(4), 854–870.

    Article  Google Scholar 

  • Balaban, H., Drew, T., & Luria, R. (2018). Delineating resetting and updating in visual working memory based on the object-to-representation correspondence. Neuropsychologia, 113, 85–94.

    Article  Google Scholar 

  • Bao, Y., & Pöppel, E. (2007). Two spatially separated attention systems in the visual field: Evidence from inhibition of return. Cognitive Processing, 8(1), 37–44.

    Article  Google Scholar 

  • Başar-Eroglu, C., Strüber, D., Schürmann, M., Stadler, M., & Başar, E. (1996). Gamma-band responses in the brain: A short review of psychophysiological correlates and functional significance. International Journal of Psychophysiology, 24(1), 101–112. New Advances in EEG and cognition.

    Google Scholar 

  • Bayliss, D. M., Bogdanovs, D. M., & Jarrold, C. (2015). Consolidating working memory: Distinguishing the effects of consolidation, rehearsal and attentional refreshing in a working memory span task. Journal of Memory and Language, 81, 34–50.

    Article  Google Scholar 

  • Bayne, T. (2005). Divided brains and unified phenomenology: A review essay on michael tye’s consciousness and persons. Philosophical Psychology, 18(4), 495–512.

    Article  Google Scholar 

  • Bayne, T. (2010). The unity of consciousness. Oxford, UK: Oxford University Press.

    Book  Google Scholar 

  • Bayne, T. J., & Chalmers, D. J. (2003). What is the unity of consciousness? In A. Cleeremans (Ed.), The unity of consciousness: Binding, integration, and dissociation (pp. 23–58). Oxford, UK: Oxford University Press.

    Chapter  Google Scholar 

  • Bergström, F., & Eriksson, J. (2014). Maintenance of non-consciously presented information engages the prefrontal cortex. Frontiers in Human Neuroscience, 8, Article 938 (10 pages).

    Google Scholar 

  • Bergström, F., & Eriksson, J. (2015). The conjunction of non-consciously perceived object identity and spatial position can be retained during a visual short-term memory task. Frontiers in Psychology, 6, Article 1470 (19 pages).

    Google Scholar 

  • Bermúdez, J. L. (2014). Cognitive science: An introduction to the science of the mind (2nd ed.). New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Biess, A. (2013). Shaping of arm configuration space by prescription of non-Euclidean metrics with applications to human motor control. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 87(1), 012729 (15 pages).

    Google Scholar 

  • Biess, A., Flash, T., & Liebermann, D. G. (2011). Riemannian geometric approach to human arm dynamics, movement optimization, and invariance. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 83(3), 031927 (11 pages).

    Google Scholar 

  • Biess, A., Liebermann, D. G., & Flash, T. (2007). A computational model for redundant human three-dimensional pointing movements: Integration of independent spatial and temporal motor plans simplifies movement dynamics. Journal of Neuroscience, 27(48), 13045–13064.

    Article  Google Scholar 

  • Blalock, L. D. (2013). Mask similarity impacts short-term consolidation in visual working memory. Psychonomic Bulletin & Review, 20(6), 1290–1295.

    Article  Google Scholar 

  • Block, R. A., & Grondin, S. (2014). Timing and time perception: A selective review and commentary on recent reviews. Frontiers in Psychology, 5, Article 648 (3 pages).

    Google Scholar 

  • Block, N. (1995). On a confusion about a function of consciousness. Behavioral and Brain Sciences, 18(2), 227–247.

    Article  ADS  Google Scholar 

  • Block, N. (2007). Consciousness, accessibility, and the mesh between psychology and neuroscience. Behavioral and Brain Sciences, 30(5–6), 481–499.

    Article  Google Scholar 

  • Borst, G., & Kosslyn, S. M. (2008). Visual mental imagery and visual perception: Structural equivalence revealed by scanning processes. Memory & Cognition, 36(4), 849–862.

    Article  Google Scholar 

  • Bowman, H., & Wyble, B. (2007). The simultaneous type, serial token model of temporal attention and working memory. Psychological Review, 114(1), 38–70.

    Article  Google Scholar 

  • Briscoe, R. E. (2011). Mental imagery and the varieties of amodal perception. Pacific Philosophical Quarterly, 92(2), 153–173.

    Article  Google Scholar 

  • Broad, C. D. (1923). Scientific thought. London: Routledge & Kegan Paul.

    MATH  Google Scholar 

  • Broad, C. D. (1925). The mind and its place in nature. London: Routledge & Kegan Paul.

    Google Scholar 

  • Broad, C. D. (1938). An examination of McTaggart’s philosophy (Vol. II, Part I). Cambridge: Cambridge University Press.

    Google Scholar 

  • Brook, A., & Raymont, P. (2017). The unity of consciousness. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy, summer (2017th ed.). Metaphysics Research Lab, Stanford University.

    Google Scholar 

  • Brosch, R. (2018). What we ‘see’ when we read: Visualization and vividness in reading fictional narratives. Cortex, 105, 135–143. Special Issue: The Eye’s Mind - visual imagination, neuroscience and the humanities.

    Google Scholar 

  • Brown, H., Friston, K., & Bestmann, S. (2011). Active inference, attention, and motor preparation. Frontiers in Psychology, 2, Article 218 (10 pages).

    Google Scholar 

  • Bruno, A., & Cicchini, G. M. (2016). Multiple channels of visual time perception. Current Opinion in Behavioral Sciences, 8, 131–139. Time in perception and action.

    Google Scholar 

  • Bubic, A., Von Cramon, D. Y., & Schubotz, R. (2010). Prediction, cognition and the brain. Frontiers in Human Neuroscience, 4, 25 (15 pages).

    Google Scholar 

  • Buckley, C. L., Kim, C. S., McGregor, S., & Seth, A. K. (2017). The free energy principle for action and perception: A mathematical review. Journal of Mathematical Psychology, 81, 55–79.

    Article  MathSciNet  MATH  Google Scholar 

  • Buonomano, D. V. (2000). Decoding temporal information: A model based on short-term synaptic plasticity. Journal of Neuroscience, 20(3), 1129–1141.

    Article  Google Scholar 

  • Buonomano, D. V. (2014). Neural dynamics based timing in the subsecond to seconds range. In H. Merchant & V. de Lafuente (Eds.), Neurobiology of interval timing (pp. 101–117). New York, NY: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Buonomano, D. V., Bramen, J., & Khodadadifar, M. (2009). Influence of the interstimulus interval on temporal processing and learning: Testing the state-dependent network model. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1525), 1865–1873.

    Article  Google Scholar 

  • Buonomano, D. V., & Maass, W. (2009). State-dependent computations: Spatiotemporal processing in cortical networks. Nature Reviews Neuroscience, 10, 113.

    Article  Google Scholar 

  • Buonomano, D. V., & Mauk, M. D. (1994). Neural network model of the cerebellum: Temporal discrimination and the timing of motor responses. Neural Computation, 6(1), 38–55.

    Article  Google Scholar 

  • Buonomano, D. V., & Merzenich, M. M. (1995). Temporal information transformed into a spatial code by a neural network with realistic properties. Science, 267(5200), 1028–1030.

    Article  ADS  Google Scholar 

  • Burr, D. C., & Santoro, L. (2001). Temporal integration of optic flow, measured by contrast and coherence thresholds. Vision Research, 41(15), 1891–1899.

    Article  Google Scholar 

  • Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926–1929.

    Article  ADS  Google Scholar 

  • Cao, L., Veniero, D., Thut, G., & Gross, J. (2017). Role of the cerebellum in adaptation to delayed action effects. Current Biology, 27(16), 2442–2451.e1–e3.

    Google Scholar 

  • Cecchi, A. S. (2018). Cognitive penetration of early vision in face perception. Consciousness and Cognition, 63, 254–266.

    Article  Google Scholar 

  • Chuard, P. (2011). Temporal experiences and their parts. Philosophers’ Imprint, 11(11), 1–28.

    Google Scholar 

  • Chuard, P. (2017). The snapshot conception of temporal experiences. In I. Phillips (Ed.), The Routledge handbook of philosophy of temporal experience (pp. 121–132). Abingdon, Oxon: Routledge, Taylor & Francis Group.

    Chapter  Google Scholar 

  • Cisek, P. (2009). Internal models. In M. D. Binder, N. Hirorawa, & U. Windhorst (Eds.), Encyclopedia of neuroscience (pp. 2009–2012). Berlin: Springer-Verlag GmbH.

    Chapter  Google Scholar 

  • Clark, A. (2013). Whatever next? predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(03), 181–204.

    Article  Google Scholar 

  • Colombo, B. (2012). Mental imagery. In N. M. Seel (Ed.), Encyclopedia of the sciences of learning (pp. 2187–2191). LLC, London: Springer Science+Business Media.

    Google Scholar 

  • Cooper, L. A. (1990). Manipulation of visual information. In J. I. Elkind, S. K. Card, J. Hochberg, & B. M. Huey (Eds.), Human performance models for computer-aided engineering (pp. 144–158). San Diego, CA: Academic Press Inc.

    Chapter  Google Scholar 

  • Cooper, L. A., & Shepard, R. N. (1984). Turning something over in the mind. Scientific American, 251(6), 106–114.

    Article  Google Scholar 

  • Cowan, N. (2008). Sensory memory. In J. H. E. Byrne, & H. L. V. Roediger III (Eds.), Learning and memory: A comprehensive reference (Vol. 2, pp. 23–32). Cognitive psychology of memory. Oxford: Academic Press.

    Google Scholar 

  • Cowan, N. (2017b). Working memory: The information you are now thinking of. In J. H. e. Byrne, & J. T. v. Wixted (Eds.), Learning and memory: A comprehensive reference (2nd ed., Vol. 2, pp. 147–161). Cognitive psycholoogy of memory. Amsterdam: Elsevier Ltd.

    Google Scholar 

  • Cowan, N. (1984). On short and long auditory stores. Psychological Bulletin, 96(2), 341–370.

    Article  Google Scholar 

  • Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological Bulletin, 104(2), 163–191.

    Article  Google Scholar 

  • Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114.

    Article  ADS  Google Scholar 

  • Cowan, N. (2015). Sensational memorability: Working memory for things we see, hear, feel, or somehow sense. In P. Jolicoeur, C. Lefebvre, & J. Martinez-Trujillo (Eds.), Mechanisms of sensory working memory: Attention and performance XXV (pp. 5–22). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Craston, P., Wyble, B., Chennu, S., & Bowman, H. (2009). The attentional blink reveals serial working memory encoding: Evidence from virtual and human event-related potentials. Journal of Cognitive Neuroscience, 21(3), 550–566.

    Article  Google Scholar 

  • Dainton, B. (2006). Stream of consciousness: Unity and continuity in conscious experience (6th ed.). London: Routledge, Taylor & Francis Group. Rev. ed. 2006.

    Google Scholar 

  • Dainton, B. (2008). Sensing change. Philosophical. Issues, 18(1), 362–384.

    Google Scholar 

  • Dainton, B. (2010). Time and space (2nd ed.). Durham: Acumen.

    Book  Google Scholar 

  • Dainton, B. (2017a). Temporal consciousness. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy, winter (2018th ed.). Metaphysics Research Lab, Stanford University.

    Google Scholar 

  • Dainton, B. (2017b). William Stern’s “Psychische Präsenzzeit.” In I. Phillips (Ed.), The Routledge handbook of philosophy of temporal experience (pp. 107–118). Routledge, Taylor & Francis Group: Abingdon, Oxon.

    Google Scholar 

  • D’Angiulli, A., & Reeves, A. (2002). Generating visual mental images: Latency and vividness are inversely related. Memory & Cognition, 30(8), 1179–1188.

    Article  Google Scholar 

  • D’Angiulli, A., Runge, M., Faulkner, A., Zakizadeh, J., Chan, A., & Morcos, S. (2013). Vividness of visual imagery and incidental recall of verbal cues, when phenomenological availability reflects long-term memory accessibility. Frontiers in Psychology, 4, Article 1 (18 pages).

    Google Scholar 

  • De Schrijver, S., & Barrouillet, P. (2017). Consolidation and restoration of memory traces in working memory. Psychonomic Bulletin & Review, 24(5), 1651–1657.

    Article  Google Scholar 

  • Dennett, D. C. (1991). Consciousness explained. New York, NY: Back Bay Books, Little, Brown and Company.

    Google Scholar 

  • Dharani, K. (2015). The biology of thought: A neuronal mechanism in the generation of thought–a new molecular model (pp. 53–74) Chap. 3, Memory. San Diego: Academic Press.

    Google Scholar 

  • Dutta, A., Shah, K., Silvanto, J., & Soto, D. (2014). Neural basis of non-conscious visual working memory. NeuroImage, 91, 336–343.

    Article  Google Scholar 

  • Dux, P. E., & Marois, R. (2009). The attentional blink: A review of data and theory. Attention, Perception & Psychophysics, 71(8), 1683–1700.

    Article  Google Scholar 

  • Ehm, W., Bach, M., & Kornmeier, J. (2011). Ambiguous figures and binding: EEG frequency modulations during multistable perception. Psychophysiology, 48(4), 547–558.

    Article  Google Scholar 

  • Eitam, B., Hassin, R. R., & Schul, Y. (2008). Nonconscious goal pursuit in novel environments: The case of implicit learning. Psychological Science, 19(3), 261–267.

    Article  Google Scholar 

  • Elliott, M. A., & Giersch, A. (2016). What happens in a moment. Frontiers in Psychology, 6, Article 1905 (7 pages).

    Google Scholar 

  • Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2(10), 704–716.

    Article  Google Scholar 

  • Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11(1), 19–23.

    Article  Google Scholar 

  • Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4, Article 215 (23 pages).

    Google Scholar 

  • Fink, M., Ulbrich, P., Churan, J., & Wittmann, M. (2006). Stimulus-dependent processing of temporal order. Behavioural Processes, 71(2), 344–352. Interval timing: The current status.

    Google Scholar 

  • Finke, R. (1989). Principles of mental imagery, A Bradford book. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Finke, R. A. (1980). Levels of equivalence in imagery and perception. Psychological Review, 87(2), 113–132.

    Article  Google Scholar 

  • Firestone, C., & Scholl, B. J. (2016). Cognition does not affect perception: Evaluating the evidence for “top-down’’ effects. Behavioral and Brain Sciences, 39, e229.

    Article  Google Scholar 

  • Fodor, J. A., & Pylyshyn, Z. W. (1981). How direct is visual perception?: Some reflections on Gibson’s “ecological approach’’. Cognition, 9(2), 139–196.

    Article  Google Scholar 

  • Foster, J. (1979). In Self-defence.In G. F. Macdonald (Ed.), Perception and identity: Essays presented to A. J. Ayer with his replies to them (pp. 161–185). London: The Macmillan Press Ltd.

    Google Scholar 

  • Foster, J. (1982). The case for idealism. London: Routledge & Kegan Paul.

    Google Scholar 

  • Foster, J. (1991). The immaterial self: A defence of the Cartesian dualist conception of the mind. London: Routledge.

    Google Scholar 

  • Franklin, D. W., & Wolpert, D. M. (2011). Computational mechanisms of sensorimotor control. Neuron, 72(3), 425–442.

    Article  Google Scholar 

  • Fries, P., Nikolić, D., & Singer, W. (2007). The gamma cycle. Trends in Neurosciences, 30(7), 309–316. July INMED/TINS special issue–Physiogenic and pathogenic oscillations: The beauty and the beast.

    Google Scholar 

  • Friston, K. (2003). Learning and inference in the brain. Neural Networks, 16(9), 1325–1352. Neuroinformatics.

    Google Scholar 

  • Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836.

    Article  Google Scholar 

  • Friston, K. (2008). Hierarchical models in the brain. PLOS Computational Biology, 4(11), e100021 (24 pages).

    Google Scholar 

  • Friston, K. (2009). The free-energy principle: A rough guide to the brain? Trends in Cognitive Sciences, 13(7), 293–301.

    Article  Google Scholar 

  • Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.

    Article  Google Scholar 

  • Friston, K. (2018). Does predictive coding have a future? Nature Neuroscience, 21(8), 1019–1021.

    Article  Google Scholar 

  • Friston, K. J., Daunizeau, J., & Kiebel, S. J. (2009). Reinforcement learning or active inference?. PloS ONE, 4(7), e6421.

    Google Scholar 

  • Friston, K., Schwartenbeck, P., Fitzgerald, T., Moutoussis, M., Behrens, T., & Dolan, R. J. (2013). The anatomy of choice: Active inference and agency. Frontiers in Human Neuroscience, 7(598), Article 598, 1–18.

    Google Scholar 

  • Friston, K. J., Daunizeau, J., Kilner, J., & Kiebel, S. J. (2010). Action and behavior: A free-energy formulation. Biological Cybernetics, 102(3), 227–260.

    Article  Google Scholar 

  • Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., O’Doherty, J., & Pezzulo, G. (2016). Active inference and learning. Neuroscience & Biobehavioral Reviews, 68, 862–879.

    Article  MATH  Google Scholar 

  • Friston, K. J., Joffily, M., Barrett, L. F., & Seth, A. K. (2018). Active inference and emotions. In A. S. Fox, R. C. Lapate, A. J. Shackman, & R. J. Davidson (Eds.), The nature of emotions: Fundamental questions (2nd ed., pp. 28–33). New York, NY: Oxford University Press.

    Google Scholar 

  • Friston, K., Schwartenbeck, P., FitzGerald, T., Moutoussis, M., Behrens, T., & Dolan, R. J. (2014). The anatomy of choice: Dopamine and decision-making. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1655), 20130481.

    Article  Google Scholar 

  • Friston, K. J., & Stephan, K. E. (2007). Free-energy and the brain. Synthese, 159(3), 417–458.

    Article  Google Scholar 

  • Friston, K. J., Trujillo-Barreto, N., & Daunizeau, J. (2008). Dem: A variational treatment of dynamic systems. NeuroImage, 41(3), 849–885.

    Article  Google Scholar 

  • Galdo-Alvarez, S., Bonilla, F. M., González-Villar, A. J., & de-la Peña, M. T. C. (2016). Functional equivalence of imagined vs. real performance of an inhibitory task: An EEG/ERP study. Frontiers in Human Neuroscience, 10, Article 467.

    Google Scholar 

  • Gallagher, S. (1998). The inordinance of time. Ivanston, Illinois: Northwestern University Press.

    Google Scholar 

  • Gallagher, S., & Zahavi, D. (2012). The phenomenological mind (2nd ed.). London: Routledge, Taylor & Francis Group.

    Google Scholar 

  • Ganis, G., Thompson, W. L., & Kosslyn, S. M. (2004). Brain areas underlying visual mental imagery and visual perception: An fMRI study. Cognitive Brain Research, 20(2), 226–241.

    Article  Google Scholar 

  • García-Pérez, M. A., & Alcalá-Quintana, R. (2018). Perceived temporal order and simultaneity: Beyond psychometric functions. In A. Vatakis, F. Balcı, D. M. Luca, & A. Correa (Eds.), Timing and time perception: Procedures, measures, and applications (pp. 263–294). Leiden: Brill.

    Google Scholar 

  • Glennerster, A. (2007). Marr’s vision: Twenty-five years on. Current Biology, 17(11), R397–R399.

    Article  Google Scholar 

  • Goel, A., & Buonomano, D. V. (2014). Timing as an intrinsic property of neural networks: evidence from in vivo and in vitro experiments. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 369(1637), 20120460 (12 pages).

    Google Scholar 

  • Gold, I. (1999). Does 40-Hz oscillation play a role in visual consciousness? Consciousness and Cognition, 8(2), 186–195.

    Article  Google Scholar 

  • Gori, M., Sciutti, A., Jacono, M., Sandini, G., Morrone, C., & Burr, D. C. (2013). Long integration time for accelerating and decelerating visual, tactile and visual-tactile stimuli. Multisensory Research, 26(1–2), 53–68.

    Article  Google Scholar 

  • Goudar, V., & Buonomano, D. V. (2018). Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks. eLife, 7, e31134 (28 pages).

    Google Scholar 

  • Gray, C. M. (1999). The temporal correlation hypothesis of visual feature integration. Neuron, 24(1), 31–47.

    Article  Google Scholar 

  • Grondin, S., Hasuo, E., Kuroda, T., & Nakajima, Y. (2018). Auditory time perception. In R. A. Bader (Ed.), Springer handbook of systematic musicology (pp. 423–440). Germany: Springer-Verlag GmbH. Chap. 21, S. Koelschy (Ed.), Part C: Music psychology-physiolog.

    Google Scholar 

  • Grondin, S. (2010). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, & Psychophysics, 72(3), 561–582.

    Article  Google Scholar 

  • Gross, S. (2017). Cognitive penetration and attention. Frontiers in Psychology, 8, Article 221 (12 pages).

    Google Scholar 

  • Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27(3), 377–396.

    Article  Google Scholar 

  • Grush, R. (2005). Internal models and the construction of time: Generalizing from state estimation to trajectory estimation to address temporal features of perception, including temporal illusions. Journal of Neural Engineering, 2(3), S209–S218.

    Article  ADS  Google Scholar 

  • Grush, R. (2006). How to, and how not to, bridge computational cognitive neuroscience and Husserlian phenomenology of time consciousness. Synthese, 153(3), 417–450.

    Article  MathSciNet  Google Scholar 

  • Grush, R. (2007). Time and experience. In T. Müller (Ed.), Philosophie der zeit: Neue analytische ansätze (pp. 27–44). Frankfurt a. M.: Klostermann.

    Google Scholar 

  • Grush, R. (2008). Temporal representation and dynamics. New Ideas in Psychology, 26(2), 146–157. Dynamics and Psychology.

    Google Scholar 

  • Guell, X., Gabrieli, J. D. E., & Schmahmann, J. D. (2018). Embodied cognition and the cerebellum: Perspectives from the dysmetria of thought and the universal cerebellar transform theories. Cortex, 100, 140–148. Embodiment disrupted: Tapping into movement disorders through syntax and action semantics.

    Google Scholar 

  • Gupta, D. S. (2014). Processing of sub- and supra-second intervals in the primate brain results from the calibration of neuronal oscillators via sensory, motor, and feedback processes. Frontiers in Psychology, 5, Aritcle 816 (16 pages).

    Google Scholar 

  • Hardman, K. O., Vergauwe, E., & Ricker, T. J. (2017). Categorical working memory representations are used in delayed estimation of continuous colors. Journal of Experimental Psychology. Human Perception and Performance, 43(1), 30–54.

    Google Scholar 

  • Hass, J., & Durstewitz, D. (2014). Neurocomputational models of time perception. In H. Merchant & V. de Lafuente (Eds.), Neurobiology of interval timing, Advances in experimental medicine and biology (Vol. 829, pp. 49–71). NY, New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Hassin, R. R. (2005). Nonconscious control and implicit working memory. Oxford series in social cognition and social neuroscience. In R. R. Hassin, J. S. Uleman, & J. A. Bargh (Eds.), The new unconscious (pp. 196–222). New York, NY: Oxford University Press Inc.

    Google Scholar 

  • Hassin, R. R., Aarts, H., Eitam, B., Custers, R., & Kleiman, T. (2008). Non-conscious goal pursuit and the effortful control of behavior. In E. Morsella, J. A. Bargh, & P. M. Gollwitzer (Eds.), Oxford handbook of human action (pp. 549–566). New York, NY: Oxford University Press Inc.

    Google Scholar 

  • Hassin, R. R., Bargh, J. A., Engell, A. D., & McCulloch, K. C. (2009). Implicit working memory. Consciousness and Cognition, 18(3), 665–678.

    Article  Google Scholar 

  • Hassin, R. R., Bargh, J. A., & Zimerman, S. (2009). Automatic and flexible: The case of nonconscious goal pursuit. Social Cognition, 27(1), 20–36.

    Article  Google Scholar 

  • Hestevold, H. S. (2008). Presentism: Through thick and thin. Pacific Philosophical Quarterly, 89(3), 325–347.

    Article  Google Scholar 

  • Hoerl, C. (2013). A succession of feelings, in and of itself, is not a feeling of succession. Mind, 122(486), 373–417.

    Article  Google Scholar 

  • Hohwy, J. (2013). The predictive mind. Oxford, UK: Oxford University Press.

    Book  Google Scholar 

  • Howard, M. W. (2018). Memory as perception of the past: Compressed time in mind and brain. Trends in Cognitive Sciences, 22(2), 124–136.

    Article  MathSciNet  Google Scholar 

  • Hughes, J. R. (2008). Gamma, fast, and ultrafast waves of the brain: Their relationships with epilepsy and behavior. Epilepsy & Behavior, 13(1), 25–31.

    Article  MathSciNet  Google Scholar 

  • Husserl, E. (1991). On the phenomenology of the consciousness of internal time (1893–1917) (J. B. Brough, Trans.). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Hyun, J.-S., & Luck, S. J. (2007). Visual working memory as the substrate for mental rotation. Psychonomic Bulletin & Review, 14(1), 154–158.

    Article  Google Scholar 

  • Ishikawa, T., Tomatsu, S., Izawa, J., & Kakei, S. (2016). The cerebro-cerebellum: Could it be loci of forward models?. Neuroscience Research, 104, 72–79. Body representation in the brain.

    Google Scholar 

  • Ivry, R. B., & Schlerf, J. E. (2008). Dedicated and intrinsic models of time perception. Trends in Cognitive Sciences, 12(7), 273–280.

    Article  Google Scholar 

  • Jacob, J., Jacobs, C., & Silvanto, J. (2015). Attention, working memory, and phenomenal experience of wm content: memory levels determined by different types of top-down modulation. Frontiers in Psychology, 6, Article 1603 (7 pages).

    Google Scholar 

  • Jacobs, C., & Silvanto, J. (2015). How is working memory content consciously experienced? the ‘conscious copy’ model of WM introspection. Neuroscience & Biobehavioral Reviews, 55, 510–519.

    Article  Google Scholar 

  • James, W. (1890). The principles of psychology (Vol. 1). New York: Henry Holt and Company.

    Google Scholar 

  • Ji, E., Lee, K. M., & Kim, M.-S. (2017). Independent operation of implicit working memory under cognitive load. Consciousness and Cognition, 55, 214–222.

    Article  Google Scholar 

  • Joffily, M., & Coricelli, G. (2013). Emotional valence and the free-energy principle. PLOS Computational Biology, 9(6), e1003094 (14 pages).

    Google Scholar 

  • Johnson-Laird, P. N. (1989). Mental models. A Bradford book. In M. I. Posner (Ed.), The foundations of cognitive science (pp. 469–499). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Johnson-Laird, P. N. (1998). Imagery, visualization, and thinking. In J. Hochberg (Ed.), Perception and cognition at century’s end (pp. 441–467). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Jolicœur, P., & Dell’Acqua, R. (1998). The demonstration of short-term consolidation. Cognitive Psychology, 36(2), 138–202.

    Article  Google Scholar 

  • Joliot, M., Ribary, U., & Llinás, R. (1994). Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proceedings of the National Academy of Sciences of the United States of America, 91(24), 11748–11751.

    Article  ADS  Google Scholar 

  • Kanizsa, G. (1955). Margini quasi-percettivi in campi con stimolazione omogenea. Rivista di Psicologia, 49(1), 7–30. English translation: Quasi-perceptual margins in homogenously stimulated fields. In S. Petry, & G. E. Meyer (Eds.), (1987). The perception of illusory contours (pp. 40–49). New York: Springer.

    Google Scholar 

  • Karmarkar, U. R., & Buonomano, D. V. (2007). Timing in the absence of clocks: Encoding time in neural network states. Neuron, 53(3), 427–438.

    Article  Google Scholar 

  • Kaya, E. M., & Elhilali, M. (2017). Modelling auditory attention. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1714), 20160101.

    Article  Google Scholar 

  • Keller, A. (2011). Attention and olfactory consciousness. Frontiers in Psychology, 2, Article 380 (13 pages).

    Google Scholar 

  • Kerner, B. S. (2009). Introduction to modern traffic flow theory and control: The long road to three-phase traffic theory. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Kerner, B. S. (2017). Breakdown in traffic networks: Fundamentals of transportation science. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Kosslyn, S. (1994). Image and brain: The resolution of the imagery debate. Cambridge, MA: The MIT Press.

    Book  Google Scholar 

  • Kosslyn, S. M. (1980). Image and mind. Cambridge, MA: Harvard University Press. [Revised edition is published in 1986].

    Google Scholar 

  • Kosslyn, S. M. (2005). Mental images and the brain. Cognitive Neuropsychology, 22(3–4), 333–347.

    Article  Google Scholar 

  • Kosslyn, S. M. (2007). Remembering images. In M. A. Gluck, J. R. Anderson, & S. M. Kosslyn (Eds.), Memory and mind: A Festschrift for Gordon H. Bower (Chap. 7, pp. 93–109). New York: Lawrence Erlbaum Associates, Taylor & Francis Group.

    Google Scholar 

  • Kosslyn, S. M., Thompson, W. L., & Alpert, N. M. (1997). Neural systems shared by visual imagery and visual perception: A positron emission tomography study. NeuroImage, 6(4), 320–334.

    Article  Google Scholar 

  • Kosslyn, S. M., Thompson, W. L., & Ganis, G. (2006). The case for mental imagery. New York, NY: Oxford University Press.

    Book  Google Scholar 

  • Lagroix, H. E. P., Spalek, T. M., Wyble, B., Jannati, A., & Di Lollo, V. (2012). The root cause of the attentional blink: First-target processing or disruption of input control? Attention, Perception, & Psychophysics, 74(8), 1606–1622.

    Article  Google Scholar 

  • Lamme, V. A. F. (2003). Why visual attention and awareness are different. Trends in Cognitive Sciences, 7(1), 12–18.

    Article  Google Scholar 

  • Lammers, N. A., de Haan, E. H., Pinto, Y. (2017). No evidence of narrowly defined cognitive penetrability in unambiguous vision. Frontiers in Psychology, 8, Article 852 (6 pages).

    Google Scholar 

  • Langerock, N., Vergauwe, E., Dirix, N., & Barrouillet, P. (2018). Is memory better for objects than for separate single features? the temporal hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(6), 898–917.

    Google Scholar 

  • Le Poidevin, R. (2007). The images of time: An essay on temporal representation. New York: Oxford University Press Inc.

    Book  Google Scholar 

  • Lee, G. (2014). Extensionalism, atomism, and continuity. In L. N. Oaklander (Ed.), Debates in the metaphysics of time (pp. 149–173). Bloomsbury Academic.

    Google Scholar 

  • Lee, G. (2014). Temporal experience and the temporal structure of experience. Philosophers’ Imprint, 14(3), 1–21.

    Google Scholar 

  • Lee, G. (2014). Experiences and their parts. In D. Bennett & C. Hill (Eds.), Sensory integration and the unity of consciousness (pp. 287–321). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Lee, T. S., & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America A, 20(7), 1434–1448.

    Article  ADS  Google Scholar 

  • Lemaire, B., & Portrat, S. (2018). A computational model of working memory integrating time-based decay and interference. Frontiers in Psychology, 9, Article 416 (16 pages).

    Google Scholar 

  • Lewis-Peacock, J. A., Kessler, Y., & Oberauer, K. (2018). The removal of information from working memory. Annals of the New York Academy of Sciences, 1424(1), 33–44.

    Article  ADS  Google Scholar 

  • Li, J., Qian, J., & Liang, F. (2018). Evidence for the beneficial effect of perceptual grouping on visual working memory: an empirical study on illusory contour and a meta-analytic study. Scientific Reports, 8(1), 13864 (20 pages).

    Google Scholar 

  • Liu, D., & Todorov, E. (2007). Evidence for the flexible sensorimotor strategies predicted by optimal feedback control. Journal of Neuroscience, 27(35), 9354–9368.

    Article  Google Scholar 

  • Lloyd, D. (2004). Radiant cool: A novel theory of consciousness. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Lloyd, D. (2012). Neural correlates of temporality: Default mode variability and temporal awareness. Consciousness and Cognition, 21(2), 695–703.

    Article  Google Scholar 

  • Lubashevsky, I. (2017). Physics of the human mind. AG, Cham: Springer International Publishing.

    Book  MATH  Google Scholar 

  • Lubashevsky, I., & Morimura, K. (2019). Physics of mind and car-following problem. In B. S. Kerner (Ed.), Complex dynamics of traffic management, Encyclopedia of complexity and systems science series (pp. 559–592). New York, NY: Springer Science+Business Media, LLC.

    Google Scholar 

  • Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. role of features. Memory & Cognition, 22(6), 657–672.

    Google Scholar 

  • Maljkovic, V., & Nakayama, K. (2000). Priming of popout: III. a short-term implicit memory system beneficial for rapid target selection. Visual Cognition, 7(5), 571–595.

    Google Scholar 

  • Maljkovic, V., & Martini, P. (2005). Short-term memory for scenes with affective content. Journal of Vision, 5, 215–229.

    Article  Google Scholar 

  • Mance, I., Becker, M. W., & Liu, T. (2012). Parallel consolidation of simple features into visual short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 38(2), 429–438.

    Google Scholar 

  • Marek, S., Siegel, J. S., Gordon, E. M., Raut, R. V., Gratton, C., Newbold, D. J., Ortega, M., Laumann, T. O., Adeyemo, B., Miller, D. B., Zheng, A., Lopez, K. C., Berg, J. J., Coalson, R. S., Nguyen, A. L., Dierker, D., Van, A. N., Hoyt, C. R., McDermott, K. B., Norris, S. A., Shimony, J. S., Snyder, A. Z., Nelson, S. M., Barch, D. M., Schlaggar, B. L., Raichle, M. E., Petersen, S. E., Greene, D. J., & Dosenbach, N. U. F. (2018). Spatial and temporal organization of the individual human cerebellum. Neuron, 100(4), 977–993.e1–e7.

    Google Scholar 

  • Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information, W. H. Freeman and Company, San Francisco. In 2010 the MIT press re-published the book with a foreword from Shimon Ullmann and an afterword from Tomaso Poggio under ISBN 9780262514620.

    Google Scholar 

  • Martens, S., & Wyble, B. (2010). The attentional blink: Past, present, and future of a blind spot in perceptual awareness. Neuroscience and Biobehavioral Reviews, 34(6), 947–957.

    Article  Google Scholar 

  • Mauk, M. D., & Buonomano, D. V. (2004). The neural basis of temporal processing. Annual Review of Neuroscience, 27(1), 307–340.

    Article  Google Scholar 

  • Mauk, M. D., & Donegan, N. H. (1997). A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learning & Memory, 4(1), 130–158.

    Article  Google Scholar 

  • McKone, E. (1995). Short-term implicit memory for words and nonwords. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(5), 1108–1126.

    Google Scholar 

  • McKone, E. (1998). The decay of short-term implicit memory: Unpacking lag. Memory & Cognition, 26(6), 1173–1186.

    Article  Google Scholar 

  • McKone, E., & Dennis, C. (2000). Short-term implicit memory: Visual, auditory, and cross-modality priming. Psychonomic Bulletin & Review, 7(2), 341–346.

    Article  Google Scholar 

  • Medina, J. F., & Mauk, M. D. (2000). Computer simulation of cerebellar information processing. Nature Neuroscience, 3, 1205–1211.

    Article  Google Scholar 

  • Merchant, H., Harrington, D. L., & Meck, W. H. (2013). Neural basis of the perception and estimation of time. Annual Review of Neuroscience, 36(1), 313–336.

    Article  Google Scholar 

  • Miall, R., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Networks, 9(8), 1265–1279. Four Major Hypotheses in Neuroscience.

    Google Scholar 

  • Michon, J. A. (1985). The compleat time experiencer. In J. A. Michon & J. L. Jackson (Eds.), Time, Mind, and Behavior (pp. 20–52). Berlin: Springer.

    Chapter  Google Scholar 

  • Miyauchi, R., & Nakajima, T. (2005). Bilateral assimilation of two neighboring empty time intervals. Music Perception: An Interdisciplinary Journal, 22(3), 411–424.

    Article  Google Scholar 

  • Mogensen, J., & Overgaard, M. (2017). Reorganization of the connectivity between elementary functions - a model relating conscious states to neural connections. Frontiers in Psychology, 8, Article 625 (21 pages).

    Google Scholar 

  • Mogensen, J., & Overgaard, M. (2018). Reorganization of the connectivity between elementary functions as a common mechanism of phenomenal consciousness and working memory: From functions to strategies. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 373(1755), 20170346 (11 pages).

    Google Scholar 

  • Mohan, A., & Vanneste, S. (2017). Adaptive and maladaptive neural compensatory consequences of sensory deprivation-from a phantom percept perspective. Progress in Neurobiology, 153, 1–17.

    Article  Google Scholar 

  • Moore, B. C. J., & Gockel, H. E. (2012). Properties of auditory stream formation. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1591), 919–931.

    Article  Google Scholar 

  • Morey, C. C., & Cowan, N. (2018). Can we distinguish three maintenance processes in working memory? Annals of the New York Academy of Sciences, 1424(1), 45–51.

    Article  ADS  Google Scholar 

  • Mori, K., Manabe, H., Narikiyo, K., & Onisawa, N. (2013). Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex. Frontiers in Psychology, 4, Article 743 (13 pages).

    Google Scholar 

  • Moulton, S. T., & Kosslyn, S. M. (2009). Imagining predictions: Mental imagery as mental emulation. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1521), 1273–1280.

    Article  Google Scholar 

  • Mundle, C. W. K. (1966). Augustine’s pervasive error concerning time. Philosophy, 41(156), 165–168.

    Article  Google Scholar 

  • Münsterberg, H. (1889). Beiträge zur experimentellen Psychologie: Heft 2. Mohr, Freiburg: Akademische Verlagsbuchhandlung von J. C. B.

    Google Scholar 

  • Nagaike, A., Mitsudo, T., Nakajima, Y., Ogata, K., Yamasaki, T., Goto, Y., & Tobimatsu, S. (2016). ‘Time-shrinking perception’ in the visual system: A psychophysical and high-density ERP study. Experimental Brain Research, 234(11), 3279–3290.

    Article  Google Scholar 

  • Nakajima, Y., & ten Hoopen, G. (1988). The effect of preceding time intervals on duration perception. Proceedings of the Autumn Meeting of Acoustical Society of Japan, 381–382. https://ci.nii.ac.jp/naid/10003864756/en/.

  • Nakajima, Y., ten Hoopen, G., & Van Der Wilk, R. (1991). A new illusion of time perception. Music Perception: An Interdisciplinary Journal, 8(4), 431–448.

    Article  Google Scholar 

  • Nanay, B. (2010). Perception and imagination: Amodal perception as mental imagery. Philosophical Studies, 150(2), 239–254.

    Article  Google Scholar 

  • Nanay, B. (2018). Multimodal mental imagery. Cortex, 105, 125–134. Special Issue: The Eye’s Mind - visual imagination, neuroscience and the humanities.

    Google Scholar 

  • Nanay, B. (2018a). The importance of amodal completion in everyday perception. i-Perception, 9(4), Article 2041669518788887 (16 pages).

    Google Scholar 

  • Newen, A., & Vetter, P. (2017). Why cognitive penetration of our perceptual experience is still the most plausible account. Consciousness and Cognition, 47, 26–37. Cognitive Penetration and Predictive Coding.

    Google Scholar 

  • Newen, A., Marchi, F., & Brössel, P. (2017a). Introduction—cognitive penetration and predictive coding. Pushing the debate forward with the recent achievements of cognitive science. Consciousness and Cognition, 47, 1–5. Cognitive Penetration and Predictive Coding.

    Google Scholar 

  • Newen, A., Marchi, F., & Brössel, P. (Eds.). (2017b). Cognitive Penetration and Predictive Coding, 47. Consciousness and Cognition, Special Issue, 112 pages.

    Google Scholar 

  • Nieuwenstein, M., & Wyble, B. (2014). Beyond a mask and against the bottleneck: Retroactive dual-task interference during working memory consolidation of a masked visual target. Journal of Experimental Psychology: General, 143(3), 1409–1427.

    Article  Google Scholar 

  • Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 411–421.

    Google Scholar 

  • O’Callaghan, C., Kveraga, K., Shine, J. M., Adams, R. B., & Bar, M. (2017). Predictions penetrate perception: Converging insights from brain, behaviour and disorder. Consciousness and Cognition, 47, 63–74. Cognitive Penetration and Predictive Coding.

    Google Scholar 

  • Olivers, C. N. L., & Meeter, M. (2008). A boost and bounce theory of temporal attention. Psychological Review, 115(4), 836–863.

    Article  Google Scholar 

  • Olivers, C. N. L., van der Stigchel, S., & Hulleman, J. (2007). Spreading the sparing: Against a limited-capacity account of the attentional blink. Psychological Research, 71(2), 126–139.

    Article  Google Scholar 

  • O’Reilly, J. X., Mesulam, M. M., & Nobre, A. C. (2008). The cerebellum predicts the timing of perceptual events. The Journal of Neuroscience, 28(9), 2252–2260.

    Article  Google Scholar 

  • Overgaard, M. (2018). Phenomenal consciousness and cognitive access. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 373(1755), 20170353 (6 pages).

    Google Scholar 

  • Overgaard, M., & Mogensen, J. (2014). Visual perception from the perspective of a representational, non-reductionistic, level-dependent account of perception and conscious awareness. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1641), Article 20130209 (12 pages).

    Google Scholar 

  • Palmiero, M., Piccardi, L., Giancola, M., Nori, R., D’Amico, S., & Olivetti Belardinelli, M. (2019). The format of mental imagery: From a critical review to an integrated embodied representation approach. Cognitive Processing, 20(3), 277–289.

    Article  Google Scholar 

  • Paton, J. J., & Buonomano, D. V. (2018). The neural basis of timing: Distributed mechanisms for diverse functions. Neuron, 98(4), 687–705.

    Article  Google Scholar 

  • Pearson, J., & Kosslyn, S. M. (2015). The heterogeneity of mental representation: Ending the imagery debate. Proceedings of the National Academy of Sciences, 112(33), 10089–10092.

    Article  ADS  Google Scholar 

  • Pearson, J., Clifford, C. W. G., & Tong, F. (2008). The functional impact of mental imagery on conscious perception. Current Biology, 18(13), 982–986.

    Article  Google Scholar 

  • Pearson, J., Naselaris, T., Holmes, E. A., & Kosslyn, S. M. (2015). Mental imagery: Functional mechanisms and clinical applications. Trends in Cognitive Sciences, 19(10), 590–602.

    Article  Google Scholar 

  • Pearson, J., & Westbrook, F. (2015). Phantom perception: Voluntary and involuntary nonretinal vision. Trends in Cognitive Sciences, 19(5), 278–284.

    Article  Google Scholar 

  • Peters, M. (1989). The relationship between variability of intertap intervals and interval duration. Psychological Research, 51(1), 38–42.

    Article  Google Scholar 

  • Peterson, D. J., & Berryhill, M. E. (2013). The gestalt principle of similarity benefits visual working memory. Psychonomic Bulletin & Review, 20(6), 1282–1289.

    Article  Google Scholar 

  • Phillips, I. (2010). Perceiving temporal properties. European Journal of Philosophy, 18(2), 176–202.

    Article  Google Scholar 

  • Phillips, I. (2014). The temporal structure of experience. In V. Arstila & D. Lloyd (Eds.), Subjective time: The philosophy, psychology, and neuroscience of temporality (pp. 139–158). Cambridge: The MIT Press.

    Google Scholar 

  • Phillips, I. (2014). Experience of and in time. Philosophy Compass, 9(2), 131–144.

    Article  Google Scholar 

  • Pilz, K. S., Zimmermann, C., Scholz, J., & Herzog, M. H. (2013). Long-lasting visual integration of form, motion, and color as revealed by visual masking. Journal of Vision, 13(10), 12 (11 pages).

    Google Scholar 

  • Pincham, H. L., Bowman, H., & Szucs, D. (2016). The experiential blink: Mapping the cost of working memory encoding onto conscious perception in the attentional blink. Cortex, 81, 35–49.

    Article  Google Scholar 

  • Pinto, Y., Sligte, I. G., Shapiro, K. L., & Lamme, V. A. F. (2013). Fragile visual short-term memory is an object-based and location-specific store. Psychonomic Bulletin & Review, 20(4), 732–739.

    Article  Google Scholar 

  • Pitt, D. (2020). Mental representation. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy, Spring 2020 ed. Metaphysics Research Lab, Stanford University.

    Google Scholar 

  • Pöppel, E. (1997). A hierarchical model of temporal perception. Trends in Cognitive Sciences, 1(2), 56–61.

    Article  Google Scholar 

  • Pöppel, E. (2009). Pre-semantically defined temporal windows for cognitive processing. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1525), 1887–1896.

    Article  Google Scholar 

  • Pöppel, E., & Bao, Y. (2014). Temporal windows as a bridge from objective to subjective time. In V. Arstila & D. Lloyd (Eds.), Subjective time the philosophy, psychology, and neuroscience of temporality (pp. 241–261). Cambridge: The MIT Press.

    Google Scholar 

  • Pressnitzer, D., & Hupé, J.-M. (2006). Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization. Current Biology, 16(13), 1351–1357.

    Article  Google Scholar 

  • Pylyshyn, Z. W. (1980). Computation and cognition: Issues in the foundations of cognitive science. Behavioral and Brain Sciences, 3(1), 111–132.

    Article  Google Scholar 

  • Raftopoulos, A. (2009). Cognition and perception: How do psychology and neural science inform philosophy?, A Bradford Book. London, England: The MIT Press.

    Google Scholar 

  • Raftopoulos, A. (2011). Late vision: Processes and epistemic status. Frontiers in Psychology, 2, Article 382 (12 pages).

    Google Scholar 

  • Raftopoulos, A. (2014). The cognitive impenetrability of the content of early vision is a necessary and sufficient condition for purely nonconceptual content. Philosophical Psychology, 27(5), 601–620.

    Article  Google Scholar 

  • Raftopoulos, A. (2015). The cognitive impenetrability of perception and theory-ladenness. Journal for General Philosophy of Science, 46(1), 87–103.

    Article  Google Scholar 

  • Raftopoulos, A. (2017). Pre-cueing, the epistemic role of early vision, and the cognitive impenetrability of early vision. Frontiers in Psychology, 8, Article 1156 (12 pages).

    Google Scholar 

  • Raftopoulos, A., & Lupyan, G. (Eds.). (2018). Pre-cueing Effects on Perception and Cognitive Penetrability, Frontiers Media, Frontiers in Psychology, Lausanne.

    Google Scholar 

  • Raftopoulos, A. (2019). Cognitive penetrability and the epistemic role of perception. Cham, Switzerland: Palgrave Macmillan.

    Book  Google Scholar 

  • Rammsayer, T. H., Borter, N., & Troche, S. J. (2015). Visual-auditory differences in duration discrimination of intervals in the subsecond and second range. Frontiers in Psychology, 6, Article 1626 (7 pages).

    Google Scholar 

  • Rammsayer, T. H., & Grondin, S. (2000). Psychophysics of human timing. In R. Miller (Ed.), Time and the brain (pp. 181–194). Amsterdam: Harwood Academic Publishers.

    Google Scholar 

  • Rammsayer, T. H., & Troche, S. J. (2014). Elucidating the internal structure of psychophysical timing performance in the sub-second and second range by utilizing confirmatory factor analysis. In H. Merchant & V. de Lafuente (Eds.), Neurobiology of interval timing (pp. 33–47). New York, NY: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87.

    Article  Google Scholar 

  • Rashbrook, O. (2013). An appearance of succession requires a succession of appearances. Philosophy and Phenomenological Research, 87(3), 584–610.

    Article  Google Scholar 

  • Rashbrook, O. (2013). The continuity of consciousness. European Journal of Philosophy, 21(4), 611–640.

    Article  Google Scholar 

  • Rashbrook, O. (2013). Diachronic and synchronic unity. Philosophical Studies, 164(2), 465–484.

    Article  Google Scholar 

  • Rashbrook-Cooper, O. (2017). Atomism, extensionalism and temporal presence. In I. Phillips (Ed.), The Routledge handbook of philosophy of temporal experience (pp. 133–145). Abingdon, Oxon: Routledge, Taylor & Francis Group.

    Chapter  Google Scholar 

  • Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an rsvp task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18(3), 849–860.

    Google Scholar 

  • Repp, B. H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin & Review, 12(6), 969–992.

    Article  Google Scholar 

  • Repp, B. H. (2006). Rate limits of sensorimotor synchronization. Advances in Cognitive Psychology, 2(2–3), 163–181.

    Article  Google Scholar 

  • Repp, B. H., & Su, Y.-H. (2013). Sensorimotor synchronization: A review of recent research (2006–2012). Psychonomic Bulletin & Review, 20(3), 403–452.

    Article  Google Scholar 

  • Rhodes, S., & Cowan, N. (2018). Attention in working memory: Attention is needed but it yearns to be free. Annals of the New York Academy of Sciences, 1424(1), 52–63.

    Article  ADS  Google Scholar 

  • Ricker, T. J., & Cowan, N. (2014). Differences between presentation methods in working memory procedures: A matter of working memory consolidation. Journal of experimental psychology. Learning, Memory, and Cognition,40(2), 417–428.

    Google Scholar 

  • Ricker, T. J. (2015). The role of short-term consolidation in memory persistence. AIMS Neuroscience, 2(4), 259–279.

    Article  Google Scholar 

  • Ricker, T. J., & Hardman, K. O. (2017). The nature of short-term consolidation in visual working memory. Journal of Experimental Psychology: General, 146(11), 1551–1573.

    Article  Google Scholar 

  • Ricker, T. J., Nieuwenstein, M. R., Bayliss, D. M., & Barrouillet, P. (2018). Working memory consolidation: Insights from studies on attention and working memory. Annals of the New York Academy of Sciences, 1424(1), 8–18.

    Article  ADS  Google Scholar 

  • Rideaux, R., Apthorp, D., & Edwards, M. (2015). Evidence for parallel consolidation of motion direction and orientation into visual short-term memory. Journal of Vision, 15(2), Article 17 (12 pages).

    Google Scholar 

  • Roediger, H. L., Zaromb, F. M., & Lin, W. (2017). A typology of memory terms. In J. H. e. i. c. Byrne, & R. v. e. Menzel (Eds.), Learning and memory: A comprehensive reference (2nd ed., Vol. 1, pp. 7–19). Learning theory and behavior. Amsterda: Elsevier Ltd.

    Google Scholar 

  • Sasaki, T., Nakajima, Y., & ten Hoopen, G. (1998). Categorical rhythm perception as a result of unilateral assimilation in time-shrinking. Music Perception: An Interdisciplinary Journal, 16(2), 201–222.

    Article  Google Scholar 

  • Scarry, E. (2001). Dreaming by the book. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Scharnowski, F., Rüter, J., Jolij, J., Hermens, F., Kammer, T., & Herzog, M. H. (2009). Long-lasting modulation of feature integration by transcranial magnetic stimulation. Journal of Vision, 9(6), 1 (10 pages).

    Google Scholar 

  • Schmahmann, J. D. (2019). The cerebellum and cognition. Neuroscience Letters, 688, 62–75. The Cerebellum in Health and Disease.

    Google Scholar 

  • Schneider, K. A., & Bavelier, D. (2003). Components of visual prior entry. Cognitive Psychology, 47(4), 333–366.

    Article  Google Scholar 

  • Schröger, E., Kotz, S., & SanMiguel, I. (Eds.). (2015). Predictive and Attentive Processing in Perception and Action, 1626. Brain Research, Special Issue, 280 pages.

    Google Scholar 

  • Sergent, C. (2018). The offline stream of conscious representations. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 373(1755), 20170349 (13 pages).

    Google Scholar 

  • Sergent, C., Wyart, V., Babo-Rebelo, M., Cohen, L., Naccache, L., & Tallon-Baudry, C. (2013). Cueing attention after the stimulus is gone can retrospectively trigger conscious perception. Current Biology, 23(2), 150–155.

    Article  Google Scholar 

  • Seth, A. K. (2014). A predictive processing theory of sensorimotor contingencies: Explaining the puzzle of perceptual presence and its absence in synesthesia. Cognitive Neuroscience, 5(2), 97–118.

    Article  Google Scholar 

  • Shapiro, K. L., Raymond, J. E., & Arnell, K. M. (1997). The attentional blink. Trends in Cognitive Sciences, 1(8), 291–296.

    Article  Google Scholar 

  • Shen, D., & Alain, C. (2011). Temporal attention facilitates short-term consolidation during a rapid serial auditory presentation task. Experimental Brain Research, 215(3–4), 285–292.

    Article  Google Scholar 

  • Shepard, R. N., & Cooper, L. A. (1982). Mental images and their transformations, A Bradford book. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Shepard, R. N. (1978). The mental image. American Psychologist, 33(2), 125–137.

    Article  Google Scholar 

  • Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701–703.

    Article  ADS  Google Scholar 

  • Shepard, S., & Metzler, D. (1988). Mental rotation: Effects of dimensionality of objects and type of task. Journal of Experimental Psychology: Human Perception and Performance, 14(1), 3–11.

    Google Scholar 

  • Sima, J. F., Schultheis, H., & Barkowsky, T. (2013). Differences between spatial and visual mental representations. Frontiers in Psychology, 4, Article 240.

    Google Scholar 

  • Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology, 55(1), 349–374.

    Article  Google Scholar 

  • Singer, W., & Gray, C. M. (1995). Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 18(1), 555–586.

    Article  Google Scholar 

  • Singh, I., & Howard, M. W. (2017). Recency order judgments in short term memory: Replication and extension of hacker (1980). bioRxiv.

    Google Scholar 

  • Singh, I., Tiganj, Z., & Howard, M. W. (2018). Is working memory stored along a logarithmic timeline? converging evidence from neuroscience, behavior and models. Neurobiology of Learning and Memory, 153, Part A, 104–110. MCCS 2018: Time and Memory.

    Google Scholar 

  • Singh, M. (2004). Modal and amodal completion generate different shapes. Psychological Science, 15(7), 454–459.

    Article  Google Scholar 

  • Sligte, I., Vandenbroucke, A., Scholte, H. S., & Lamme, V. (2010). Detailed sensory memory, sloppy working memory. Frontiers in Psychology, 1, Article 175 (10 pages).

    Google Scholar 

  • Soteriou, M. (2010). Perceiving events. Philosophical Explorations, 13(3), 223–241.

    Article  Google Scholar 

  • Soteriou, M. (2013). The mind’s construction: The ontology of mind and mental action. Oxford, UK: Oxford University Press.

    Book  Google Scholar 

  • Soto, D., Mäntylä, T., & Silvanto, J. (2011). Working memory without consciousness. Current Biology, 21(22), R912–R913.

    Article  Google Scholar 

  • Soto, D., & Silvanto, J. (2014). Reappraising the relationship between working memory and conscious awareness. Trends in Cognitive Sciences, 18(10), 520–525.

    Article  Google Scholar 

  • Spencer, R. M. C., Karmarkar, U., & Ivry, R. B. (2009). Evaluating dedicated and intrinsic models of temporal encoding by varying context. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1525), 1853–1863.

    Article  Google Scholar 

  • Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs: General and Applied, 74(11). Whole No., 498, 1–29.

    Google Scholar 

  • Sprigge, T. L. S. (1984). The vindication of absolute idealism. Edinburgh: Edinburgh University Press.

    Book  Google Scholar 

  • Stelmach, L. B., & Herdman, C. M. (1991). Directed attention and perception of temporal order. Journal of Experimental Psychology: Human Perception and Performance, 17(2), 539–550.

    Google Scholar 

  • Sternberg, S., & Knoll, R. L. (1973). The perception of temporal order: Fundamental issues and a general model. In S. Kornblum (Ed.), Attention and performance: IV (pp. 629–685). New York: Academic Press.

    Google Scholar 

  • Stevanovski, B., & Jolicœur, P. (2011). Consolidation of multifeature items in visual working memory: Central capacity requirements for visual consolidation. Attention, Perception, & Psychophysics, 73(4), 1108–1119.

    Article  Google Scholar 

  • Swanson, L. R. (2016). The predictive processing paradigm has roots in kant. Frontiers in Systems Neuroscience, 10, Article 79 (13 pages).

    Google Scholar 

  • Tanida, K., & Pöppel, E. (2006). A hierarchical model of operational anticipation windows in driving an automobile. Cognitive Processing, 7(4), 275–287.

    Article  Google Scholar 

  • ten Hoopen, G., Miyauchi, R., & Nakajima, Y. (2008). Time-based illusions and the auditory mode. In S. Grondin (Ed.), Psychology of time (pp. 139–187). Bingley: Emerald Group Publishing Ltd.

    Google Scholar 

  • ten Hoopen, G., Sasaki, T., Nakajima, Y., Remijn, G., Massier, B., Rhebergen, K. S., & Holleman, W. (2006). Time-shrinking and categorical temporal ratio perception: Evidence for a 1:1 temporal category. Music Perception: An Interdisciplinary Journal, 24(1), 1–22.

    Article  Google Scholar 

  • Therrien, A. S., & Bastian, A. J. (2019). The cerebellum as a movement sensor. Neuroscience Letters, 688, 37–40. The Cerebellum in Health and Disease.

    Google Scholar 

  • Thibault, L., van den Berg, R., Cavanagh, P., & Sergent, C. (2016). Retrospective attention gates discrete conscious access to past sensory stimuli. PLoS ONE, 11(2), e0148504 (13 pages).

    Google Scholar 

  • Thomas, N. J. T. (2014). Mental imagery. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy, Summer 2019 ed. Metaphysics Research Lab, Stanford University.

    Google Scholar 

  • Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7(9), 907–915.

    Article  Google Scholar 

  • Treiber, M., & Kesting, A. (2013). Traffic flow dynamics: Data models and simulation. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Tse, P. U. (1999). Volume completion. Cognitive Psychology, 39(1), 37–68.

    Google Scholar 

  • Tversky, B. (1993). Cognitive maps, cognitive collages, and spatial mental models. In A. U. Frank, & I. Campari (Eds.), Spatial information theory: A theoretical basis for GIS. COSIT 1993 (Vol. 716, pp. 14–24). Lecture notes in computer science. Berlin: Springer.

    Google Scholar 

  • Tye, M. (2003). Consciousness and persons: Unity and identity. Cambridge, MA: The MIT Press.

    Book  Google Scholar 

  • Ulbrich, P., Churan, J., Fink, M., & Wittmann, M. (2009). Perception of temporal order: The effects of age, sex, and cognitive factors. Aging, Neuropsychology, and Cognition, 16(2), 183–202.

    Article  Google Scholar 

  • van Rijn, H., Gu, B.-M., & Meck, W. H. (2014). Dedicated clock/timing-circuit theories of time perception and timed performance. In H. Merchant & V. de Lafuente (Eds.), Neurobiology of interval timing, Advances in experimental medicine and biology (Vol. 829, pp. 75–99). NY, New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • van Wassenhove, V. (2009). Minding time in an amodal representational space. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1525), 1815–1830.

    Article  Google Scholar 

  • Vandenbroucke, A. R. E., Sligte, I. G., & Lamme, V. A. F. (2011). Manipulations of attention dissociate fragile visual short-term memory from visual working memory. Neuropsychologia, 49(6), 1559–1568. Attention and Short-Term Memory.

    Google Scholar 

  • Vatakis, A., & Spence, C. (2007). Crossmodal binding: Evaluating the “unity assumption’’ using audiovisual speech stimuli. Perception & Psychophysics, 69(5), 744–756.

    Article  Google Scholar 

  • Velichkovsky, B. B. (2017). Consciousness and working memory: Current trends and research perspectives. Consciousness and Cognition, 55, 35–45.

    Article  Google Scholar 

  • Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 32(6), 1436–1451.

    Google Scholar 

  • Warren, R. M., & Obusek, C. J. (1972). Identification of temporal order within auditory sequences. Perception & Psychophysics, 12(1), 86–90.

    Article  Google Scholar 

  • Wearden, J. (2016). The psychology of time perception. London: Palgrave Macmillan.

    Book  Google Scholar 

  • Weiß, K., & Scharlau, I. (2011). Simultaneity and temporal order perception: Different sides of the same coin? evidence from a visual prior-entry study. Quarterly Journal of Experimental Psychology, 64(2), 394–416.

    Article  Google Scholar 

  • White, P. A. (2017). The three-second “subjective present’’: A critical review and a new proposal. Psychological Bulletin, 143(7), 735–756.

    Article  Google Scholar 

  • White, P. A. (2020). The perceived present: What is it, and what is it there for? Psychonomic Bulletin & Review, 27(4), 583–601.

    Article  Google Scholar 

  • Whitehead, A. N. (1929/1978). In D. R. Griffin, & D. W. Sherburne (Eds.), Process and reality: An essay in cosmology, corrected edn. New York: The Free Press, A Division of Macmillan Publishing Co., Inc.

    Google Scholar 

  • Wiese, W. (2017). Predictive processing and the phenomenology of time consciousness: A hierarchical extension of Rick Grush’s trajectory estimation model. In T. K. Metzinger, & W. Wiese (Eds.), Philosophy and predictive processing. MIND Group, Frankfurt am Main, chapter 26, p. (21 pages).

    Google Scholar 

  • Winlove, C. I. P., Milton, F., Ranson, J., Fulford, J., MacKisack, M., Macpherson, F., & Zeman, A. (2018). The neural correlates of visual imagery: A co-ordinate-based meta-analysis. Cortex, 105, 4–25. Special Issue: The Eye’s Mind - visual imagination, neuroscience and the humanities.

    Google Scholar 

  • Wittmann, M. (2011). Moments in time,.Frontiers in Integrative Neuroscience, 5, Article 66 (9 pages).

    Google Scholar 

  • Wittmann, M. (2015). Modulations of the experience of self and time. Consciousness and Cognition, 38, 172–181.

    Article  Google Scholar 

  • Wittmann, M. (2016). The duration of presence. In B. Mölder, V. Arstila, & P. Øhrstrøm (Eds.), Philosophy and psychology of time (pp. 101–113). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Wittmann, M., von Steinbüchel, N., & Szelag, E. (2001). Hemispheric specialisation for self-paced motor sequences. Cognitive Brain Research, 10(3), 341–344.

    Article  Google Scholar 

  • Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338–347.

    Article  Google Scholar 

  • Wyble, B., Bowman, H., & Nieuwenstein, M. (2009). The attentional blink provides episodic distinctiveness: Sparing at a cost. Journal of Experimental Psychology: Human Perception and Performance, 35(3), 787–807.

    Google Scholar 

  • Wyble, B., Potter, M. C., Bowman, H., & Nieuwenstein, M. (2011). Attentional episodes in visual perception. Journal of Experimental Psychology: General, 140(3), 488–505.

    Article  Google Scholar 

  • Xia, Y., Morimoto, Y., & Noguchi, Y. (2016). Retrospective triggering of conscious perception by an interstimulus interaction. Journal of Vision, 16(7), 3.

    Article  Google Scholar 

  • Yang, T., Strasburger, H., Pöppel, E., & Bao, Y. (2018). Attentional modulation of speed-change perception in the perifoveal and near-peripheral visual field. PLOS ONE, 13(8), e0203024 (17 pages).

    Google Scholar 

  • Yarrow, K., Martin, S. E., Di Costa, S., Solomon, J. A., & Arnold, D. H. (2016). A roving dual-presentation simultaneity-judgment task to estimate the point of subjective simultaneity. Frontiers in Psychology, 7, Article 416 (19 pages).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihor Lubashevsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lubashevsky, I., Plavinska, N. (2021). Temporal Structure of Now from a Close-Up View. In: Physics of the Human Temporality. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-82612-3_2

Download citation

Publish with us

Policies and ethics