Skip to main content

Convergence of Orthogonal Series: Majorizing Measures

  • Chapter
  • First Online:
Upper and Lower Bounds for Stochastic Processes

Abstract

We study order 2 Gaussian chaos and the tails of higher-order chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It would also be natural to consider processes where the size of the “increments” X s − X t is controlled by a distance d in a different manner, e.g., for all u > 0, P(|X s − X t|≥ ud(s, t)) ≤ ψ(u), for a given function ψ, see [143]. This question has received considerably less attention than the condition (16.1).

  2. 2.

    If one works a tad harder, one may get B rather than 2B in the next inequality.

  3. 3.

    The condition α j ≥ 1∕400 simply ensures that α j stays away from 0.

  4. 4.

    We remind the reader that in particular \(\mathsf {E} Y^j_t=0\).

  5. 5.

    Again, no skill whatsoever is required there.

  6. 6.

    And, as we look at the structure at increasingly finer scale, these are the first gaps which will appear, and the gaps inside each block are much smaller.

  7. 7.

    One may use in particular that since the elements of U k, are \(\leq 2^{-2^k}\), it should be obvious that one can achieve \(b_{k,\ell }\geq \beta _\ell b_k-2^{-2^k}\geq (1-2^{-k})\beta _\ell b_k\).

  8. 8.

    I won’t dare attempting a literal translation, but roughly this distinguishes between questions of self-evident importance and more arbitrary questions one may ask.

References

  1. Bednorz, W.: Majorizing measures on metric spaces. C. R. Math. Acad. Sci. Paris 348(1–2), 75–78 (2006)

    Google Scholar 

  2. Bednorz, W.: On Talagrand’s admissible net approach to majorizing measures and boundedness of stochastic processes. Bull. Pol. Acad. Sci. Math. 56(1), 83–91 (2008)

    Google Scholar 

  3. Bednorz, W.: Majorizing measures and ultrametric spaces. Bull. Pol. Acad. Sci. Math. 60(1), 91–100 (2012)

    Google Scholar 

  4. Bednorz, W.: The complete characterization of a.s. convergence of orthogonal series. Ann. Probab. 41(2), 1055–1071 (2013)

    Google Scholar 

  5. Eames, C., Eames, R.: Powers of Ten. https://en.wikipedia.org/wiki/PowersofTen(film)

  6. Menchov, D.: Sur les séries de fonctions orthogonales. Fund. Math. 4, 82–105 (1923)

    Google Scholar 

  7. Paszkiewicz, A.: A complete characterization of coefficients of a.e. convergent orthogonal series and majorizing measures. Invent. Math. 180(1), 50–110 (2010)

    Google Scholar 

  8. Radmacher, H.: Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen. Math. Ann. 87(1–2), 112–138 (1922)

    Google Scholar 

  9. Talagrand, M.: Sample boundedness of stochastic processes under increment conditions. Ann. Probab. 18, 1–49 (1990)

    Google Scholar 

  10. Tandori, K.: Über die divergenz der Orthogonalreihen. Publ. Math. Drecen 8, 291–307 (1961)

    Google Scholar 

  11. Tandori, K.: Úber die Konvergenz der Orthogonalreihen. Acta Sci. Math. (Szeged) 24, 131–151 (1963)

    Google Scholar 

  12. Weber, M.: Analyse infinitésimale de fonctions aléatoires. Eleventh Saint Flour Probability summer school (Saint Flour, 1981). Lecture Notes in Mathematics, vol. 976, pp. 383–465, Springer, Berlin (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talagrand, M. (2021). Convergence of Orthogonal Series: Majorizing Measures. In: Upper and Lower Bounds for Stochastic Processes. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-030-82595-9_16

Download citation

Publish with us

Policies and ethics