Skip to main content

Research on Dynamic Sign Language Recognition Based on Key Frame Weighted of DTW

  • Conference paper
  • First Online:
Multimedia Technology and Enhanced Learning (ICMTEL 2021)

Abstract

Dynamic sign language can be described by its trajectory and key hand types. Most of the commonly used sign language can be recognized by trajectory curve matching. Therefore, In this paper, a new dynamic sign language recognition method is proposed, which uses trajectory and key hand type to extract features, adopts a key frame weighted DTW (dynamic time warping) algorithm to implement hierarchical matching strategy, and gradually matches sign language gestures from two levels of trajectory and key hand type, so as to effectively improve the accuracy and efficiency of sign language recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.cdpf.org.cn/sjzx/cjrgk/201206/t20120626_387581.shtml

  2. Tarchanidis, K.N., Lygouras, J.N.: Data glove with a force sensor. IEEE Trans. Instrum. Meas. 52(3), 984–989 (2003)

    Article  Google Scholar 

  3. Han, Y.: A low-cost visual motion data glove as an input device to interpret human hand gestures. IEEE Trans. Consumer Electron. 56(2), 501–509 (2010)

    Article  Google Scholar 

  4. Hernandez-Rebollar, J.L., Kyriakopoulos, N., Lindeman, R.W.: A new instrumented approach for translating American Sign Language into sound and text. In: Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 547–552. IEEE (2004)

    Google Scholar 

  5. Kim, J.H., Thang, N.D., Kim, T.S.: 3-D hand motion tracking and gesture recognition using a data glove. In: IEEE International Symposium on Industrial Electronics, 2009. ISIE 2009, pp. 1013–1018. IEEE (2009)

    Google Scholar 

  6. Gao, W., et al.: A Chinese sign language recognition system based on SOFM/SRN/HMM. Pattern Recogn. 37(12), 2389–2402 (2004)

    Article  MATH  Google Scholar 

  7. Deng, J., Tsui, H.T.: A Two-step Approach based on PaHMM for the Recognition of ASL. ACCV (2002)

    Google Scholar 

  8. Maraqa, M., Al-Zboun, F., Dhyabat, M., Zitar, R.A.: Recognition of Arabic sign language (ArSL) using recurrent neural networks. J. Intell. Learn. Syst. Appl. 2012(4), 41–52 (2012)

    Google Scholar 

  9. Ong, E.J., Bowden, R.: A boosted classifier tree for hand shape detection. In: Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 889–894. IEEE (2004)

    Google Scholar 

  10. Liangguo, Z., et al.: A medium vocabulary Chinese sign language visual recognition system. Comput. Res. Dev. 43(3), 476–482 (2015)

    Google Scholar 

  11. Vogler, C., Metaxas, D.: Toward scalability in ASL recognition: breaking down signs into phonemes. Gesture-based Communication in Human-Computer Interaction, pp. 211–224. Springer Berlin Heidelberg (1999)

    Google Scholar 

  12. Vogler, C., Metaxas, D.: Parallel hidden Markov models for American sign language recognition. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 116–122. IEEE (1999)

    Google Scholar 

  13. Utsumi, A., et al.: Hand gesture recognition system using multiple cameras. In: Proceedings of the 13th International Conference on Pattern Recognition, vol. 1, pp. 667–671. IEEE (1996)

    Google Scholar 

  14. Argyros, A., Lourakis, M.I.A.: Binocular hand tracking and reconstruction based on 2D shape matching. In: 18th International Conference on Pattern Recognition, 2006. ICPR 2006, vol. 1, pp. 207–210. IEEE (2006)

    Google Scholar 

  15. Jang, Y.: Gesture recognition using depth-based hand tracking for contactless controller application. In: 2012 IEEE International Conference on Consumer Electronics (ICCE), pp. 297–298 (2012)

    Google Scholar 

  16. Chai, X., et al.: Sign language recognition and translation with Kinect. In: IEEE Conf. on AFGR (2013)

    Google Scholar 

  17. Marin, G., Dominio, F., Zanuttigh, P.: Hand gesture recognition with jointly calibrated leap motion and depth sensor. Multimedia Tools Appl. 75(22), 14991–15015 (2015). https://doi.org/10.1007/s11042-015-2451-6

    Article  Google Scholar 

  18. Raheja, J.L., et al.: Robust gesture recognition using Kinect: a comparison between DTW and HMM. Optik 126(11), 1098–1104 (2015)

    Article  Google Scholar 

  19. Jiang, X., Satapathy, S.C., Yang, L., Wang, S.-H., Zhang, Y.-D.: A survey on artificial intelligence in Chinese sign language recognition. Arab. J. Sci. Eng. 45(12), 9859–9894 (2020). https://doi.org/10.1007/s13369-020-04758-2

    Article  Google Scholar 

Download references

Acknowledgement

The work described in this paper was fully supported by a grant from the National Philosophy and Social Sciences Foundation of China (No.20BTQ065) and The Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 16KJB520026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhaoSong Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, S., Zhu, Z., Zhu, R. (2021). Research on Dynamic Sign Language Recognition Based on Key Frame Weighted of DTW. In: Fu, W., Xu, Y., Wang, SH., Zhang, Y. (eds) Multimedia Technology and Enhanced Learning. ICMTEL 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 388. Springer, Cham. https://doi.org/10.1007/978-3-030-82565-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82565-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82564-5

  • Online ISBN: 978-3-030-82565-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics