Skip to main content

Past, Present, and Future of Swarm Robotics

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 296))

Included in the following conference series:

Abstract

Swarm Robotics is an emerging field of adapting the phenomenon of natural swarms to robotics and a study of robots to mimic natural swarms, like ants and birds, to form a scalable, flexible, and robust system. These robots show self-organization, autonomy, cooperation, and coordination amongst themselves. Additionally, their cost and design complexity factor must be as low as possible to reach systems similar to natural swarms. Further, the communication amongst the robots can either be direct (robot-to-robot) or indirect (robot-to-environment) and without any central entity to control them. Swarm robotics has a wide range of application fields, from simple household tasks to military missions. This paper reviews the swarm robotics approaches from its history to its future based on 217 references. It highlights the prominent pioneers of swarm robotics and enlights the initial swarm robotics methods. The presence of swarm robotics is shown based on simulators, projects, and real-life applications. For the future, this paper presents visions and ideas of swarm robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aist. https://www.aist.go.jp/index_en.html

  2. Amazon warehouse robots: Mind blowing video. https://www.youtube.com/watch?v=cLVCGEmkJs0

  3. Avular how published. https://www.avular.com

  4. Biorobotics laboratory. http://biorobotics.ri.cmu.edu/robots/index.php

  5. Birds of a feather flock together to confuse potential predators. https://phys.org/news/2017-01-birds-feather-flock-potential-predators.html

  6. Brian gerkey’s website. https://brian.gerkey.org

  7. Brilliant robotics. https://hwww.k-team.com

  8. Building structures with robot swarms. https://www.oreilly.com/ideas/building-structures-with-robot-swarms

  9. Drones.nl. https://www.drones.nl/bedrijven/avular

  10. Endeavor robotics. http://endeavorrobotics.com/products

  11. Flying mini-robot cleaners win electrolux design lab 2013 contest. https://www.electroluxgroup.com/en/flying-mini-robot-cleaners-win-electrolux-design-lab-2013-contest-18007/

  12. Fullabot. http://biorobotics.ri.cmu.edu/robots/fullabot.php

  13. Georgia tech’s mobile robot laboratory. https://www.cc.gatech.edu/ai/robot-lab/

  14. Human swarming and the future of collective intelligence. https://www.singularityweblog.com/human-swarming-and-the-future-of-collective-intelligence/

  15. Inside a warehouse where thousands of robots pack groceries. https://www.youtube.com/watch?v=4DKrcpa8Z_E

  16. Introducing alibaba’s flyzoo future hotel. https://www.alizila.com/introducing-alibabas-flyzoo-future-hotel/

  17. Kobratm the powerful, heavy-payload robot. http://endeavorrobotics.com/media/docs/English

  18. Locust swarm. https://www.independent.co.uk/news/world/africa/madagascar-locust-crisis-in-pictures-9456788.html

  19. Ls3 legged squad support systems. https://www.bostondynamics.com/ls3

  20. Medical snake robot. http://biorobotics.ri.cmu.edu/robots/medSnake.php

  21. Millirobot with a talent for versatility of movement. https://www.mpg.de/11895964/millirobot-

  22. Nanorobots propel through the eye. https://is.mpg.de/news/nanorobots-propel-through-the-eye

  23. Nasa shocker: Astronaut reveals humans could have been on mars in the 1960s. https://www.foxnews.com/science/nasa-shocker-astronaut-reveals-humans-could-have-been-on-mars-in-the-1960s

  24. Nature-inspired soft millirobot makes its way through enclosed spaces. https://www.is.mpg.de/news/nature-inspired-soft-millirobot-makes-its-way-through-enclosed-spaces

  25. Open dynamics engine. http://www.ode.org

  26. Open robotics. https://www.openrobotics.org

  27. Packbot. https://robots.ieee.org/robots/packbot/

  28. The pentagon is imagining an army of autonomous robot swarms. https://www.motherjones.com/politics/2018/04/darpa-drone-swarm-robots/

  29. Robomatter incorporated. http://www.robomatter.com

  30. Robot operating system. http://www.ros.org

  31. Robot virtual worlds. http://www.robotvirtualworlds.com

  32. Robotc. http://www.robotc.net

  33. Robots dominate smart logistics in east china. https://www.youtube.com/watch?v=y3u1xjoQ0KU

  34. Saga swarm robotics for aggriculture applications. http://laral.istc.cnr.it/saga/

  35. Searching for survivors of the Mexico earthquake-with snake robots. https://www.sciencemag.org/news/2017/10/searching-survivors-mexico-earthquake-snake-robots

  36. Swarm farm robotic agriculture howpublished. https://www.youtube.com/channel/UCI1Zg1LxU8nk634IrhrxSMw

  37. A swarm of one thousand robots. https://www.youtube.com/watch?v=G1t4M2XnIhI

  38. A swarm of robots assembled to detect effects of dark energy. https://astronomynow.com/2018/10/27/using-a-swarm-of-robots-to-detect-effects-of-dark-energy/

  39. Swarm robotics: New horizons in military research. https://www.roboticsbusinessreview.com/unmanned/swarm-robotics-new-horizon-military/

  40. Trunk snake robot. http://biorobotics.ri.cmu.edu/robots/trunkSnake.php

  41. V-rep. http://www.coppeliarobotics.com

  42. Watsolutions. http://www.watsolutions.com

  43. Webots open source robot simulator. https://cyberbotics.com

  44. Why and how bees swarm. https://www.perfectbee.com/learn-about-bees/the-life-of-bees/how-and-why-bees-swarm

  45. Work space robot simulation. http://www.workspace5.com

  46. World robotics report 2016. https://ifr.org/ifr-press-releases/news/top-trends-robotics-2020

  47. Scrimmage (2018). https://www.scrimmagesim.org

  48. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Commun. Magaz. 40(8), 102–114 (2002)

    Google Scholar 

  49. Majid al Rifaie, M., Aber, A., Raisys, R.: Swarming robots and possible medical applications. In: International Society for the Electronic Arts (ISEA 2011), Istanbul, Turkey (2011)

    Google Scholar 

  50. Albani, D., IJsselmuiden, J., Haken, R., Trianni, V.: Monitoring and mapping with robot swarms for agricultural applications. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2017)

    Google Scholar 

  51. Allan, A.: estar: astronomers, agents and when robotic telescopes aren’t... In: Astronomical Data Analysis Software and Systems (ADASS) XIII, vol. 314, pp. 597 (2004)

    Google Scholar 

  52. Allwright, M., Bhalla, N., Pinciroli, C., Dorigo, M.: Argos plug-ins for experiments in autonomous construction. Technical report, Technical report TR/IRIDIA/2018-007, IRIDIA, Université Libre de Bruxelles (2018)

    Google Scholar 

  53. Azuma, S., Yoshimura, R., Sugie, T.: Broadcast control of multi-agent systems. Automatica 49(8), 2307–2316 (2013)

    MathSciNet  MATH  Google Scholar 

  54. Balch, T.: Teambots software and documentation. Available through the World-Wide Web at http://www.teambots.org (2001)

  55. Balch, T.: Behavioral diversity in learning robot teams. Technical report, Georgia Institute of Technology (1998)

    Google Scholar 

  56. Balch, T.: The teambots environment for multi-robot systems development. Working notes of Tutorial on Mobile Robot Programming Paradigms, ICRA (2002)

    Google Scholar 

  57. Balch, T., Parker, L.E.: Robot teams: from diversity to polymorphism. AK Peters/CRC Press (2002)

    Google Scholar 

  58. Barca, J.C., Sekercioglu, Y.A.: Swarm robotics reviewed. Robotica 31(3), 345–359 (2013)

    Google Scholar 

  59. Baruch, J.E.F.: Robots in astronomy. Vistas Astronomy 35, 399–438 (1992)

    Google Scholar 

  60. Bayindir, L., Şahin, E.: A review of studies in swarm robotics. Turkish J. Electr. Eng. Comput. Sci. 15(2), 115–147 (2007)

    Google Scholar 

  61. Beckers, R., Holland, O.E., Deneubourg, J.-L.: From local actions to global tasks: Stigmergy and collective robotics. In: Artificial Life IV, vol. 181, p. 189 (1994)

    Google Scholar 

  62. Beni, G.: The concept of cellular robotic system. In: Proceedings IEEE International Symposium on Intelligent Control 1988, pp. 57–62 (1988)

    Google Scholar 

  63. Beni, G., Wang, J.: Swarm intelligence (proceedings seventh annual meeting of the robotics society of Japan) (1989)

    Google Scholar 

  64. Beni, G.: From swarm intelligence to swarm robotics. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 1–9. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_1

    Chapter  Google Scholar 

  65. Blackmore, S.: Precision farming: an introduction. Outlook Agric. 23(4), 275–280 (1994)

    Google Scholar 

  66. Bluman, J.E., Kang, C.-K., Landrum, D.B., Fahimi, F., Mesmer, B.: Marsbee-can a bee fly on mars? In: 55th AIAA Aerospace Sciences Meeting, p. 0328 (2017)

    Google Scholar 

  67. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Google Scholar 

  68. Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., Dorigo, M.: Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Autonomous Agents Multi-agent Syst. 28(1), 101–125 (2014)

    Google Scholar 

  69. Camazine, S., et al.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2001)

    Google Scholar 

  70. Cao, Y.U., Fukunaga, A.S., Kahng, A.: Cooperative mobile robotics: antecedents and directions. Autonomous Robots 4(1), 7–27 (1997)

    Google Scholar 

  71. Cavalcanti, A., Freitas, R.A.: Nanorobotics control design: a collective behavior approach for medicine. IEEE Trans. Nanobiosci. 4(2), 133–140 (2005)

    Google Scholar 

  72. Cavalcanti, A., Shirinzadeh, B., Freitas, R.A., Hogg, T.: Nanorobot architecture for medical target identification. Nanotechnology 19(1), 015103 (2007)

    Google Scholar 

  73. Cavalcanti, A., Shirinzadeh, B., Zhang, M., Kretly, L.: Nanorobot hardware architecture for medical defense. Sensors 8(5), 2932–2958 (2008)

    Google Scholar 

  74. Chakraborty, A., Kar., A.: Swarm Intelligence: A Review of Algorithms, pp. 475–494, March 2017

    Google Scholar 

  75. Cheraghi, A.R., Abdelgalil, A., Graffi, K.: Universal 2-dimensional terrain marking for autonomous robot swarms. In: 2020 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), pp. 24–32. IEEE (2020)

    Google Scholar 

  76. Cheraghi, A.R., Actun, K., Shahzad, S., Graffi, K.: Swarm-sim: a 2d & 3d simulation core for swarm agents. In: 3rd International Conference of Intelligent Robotic and Control Engineering (IRCE 2020) (2020)

    Google Scholar 

  77. Ahmad Reza Cheraghi and University Duesseldorf. Swarm-sim (2020)

    Google Scholar 

  78. Cheraghi, A.R., Graffi, K.: A leader based coating algorithm for simple and cave shaped objects with robot swarms. In: 2020 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), pp. 43–51. IEEE (2020)

    Google Scholar 

  79. Cheraghi, A.R., Janete, A.B., Graffi, K.: Robot swarm flocking on a 2d triangular graph. In: 2020 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), pp. 154–162. IEEE (2020)

    Google Scholar 

  80. Cheraghi, A.R., Peters, J., Graffi, K.: Prevention of ant mills in pheromone-based search algorithm for robot swarms. In: Submitted to 3rd International Conference of Intelligent Robotic and Control Engineering (IRCE 2020) (2020)

    Google Scholar 

  81. Cheraghi, A.R., Vila, F.S., Graffi, K.: Phototactic movement of battery-powered and self-charging robot swarms. In: 2020 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), pp. 73–79. IEEE (2020)

    Google Scholar 

  82. Cheraghi, A.R., Wunderlich, G., Graffi, K.: General coating of arbitrary objects using robot swarms. In: 2020 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), pp. 59–67. IEEE (2020)

    Google Scholar 

  83. Cheraghi, A.R., Zenz, J., Graffi, K.: Opportunistic network behavior in a swarm: passing messages to destination. In: 2020 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), pp. 138–144. IEEE (2020)

    Google Scholar 

  84. Choset, H.: Coverage for robotics-a survey of recent results. Ann. Math. Artif. Intell. 31(1–4), 113–126 (2001)

    MATH  Google Scholar 

  85. Coulouris, G.F., Dollimore, J., Kindberg, T.: Distributed systems: concepts and design. Pearson education (2005)

    Google Scholar 

  86. Decugniere, A., et al.: The cart-bot and the cooperative transport of multiple objects in the swarmanoid project. Technical Report TR/IRIDIA/2008-014 IRIDIA, Universite Libre de Bruxelles (2008)

    Google Scholar 

  87. DeMarco, K., Squires, E., Day, M., Pippin, C.: Simulating collaborative robots in a massive multi-agent game environment (scrimmage). In: Distributed Autonomous Robotic Systems, pp. 283–297. Springer (2019)

    Google Scholar 

  88. Deneubourg, J.-L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien, L.: The dynamics of collective sorting robot-like ants and ant-like robots. In: Proceedings of the First International Conference on Simulation of Adaptive Behavior on From Animals to Animats, pp. 356–363 (1991)

    Google Scholar 

  89. Dorigo, M.: Swarm-bot: an experiment in swarm robotics. In: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005, pp. 192–200. IEEE (2005)

    Google Scholar 

  90. Marco Dorigo, M.: Swarm-bots and swarmanoid: two experiments in embodied swarm intelligence. In: Web Intelligence, pp. 2–3 (2009)

    Google Scholar 

  91. Dorigo, M., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robot. Automation Mag. 20(4), 60–71 (2013)

    MathSciNet  Google Scholar 

  92. Dorigo, M., et al.: Evolving self-organizing behaviors for a swarm-bot. Autonomous Robots 17(2–3), 223–245 (2004)

    Google Scholar 

  93. Dorigo, M., et al.: The swarm-bots project. In: International Workshop on Swarm Robotics, pp. 31–44. Springer (2004). https://doi.org/10.1007/978-3-540-30552-1_4

  94. Dorigo, M., et al.: SWARM-BOT: design and implementation of colonies of self-assembling robots, pp. 103–135, January 2006

    Google Scholar 

  95. Ducatelle, F., Di Caro, G.A., Pinciroli, C., Gambardella, L.M.: Self-organized cooperation between robotic swarms. Swarm Intell. 5(2), 73 (2011)

    Google Scholar 

  96. Ducatelle, F., Di Caro, G.A., Pinciroli, C., Mondada, F., Gambardella, L.: Communication assisted navigation in robotic swarms: self-organization and cooperation. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4981–4988. IEEE (2011)

    Google Scholar 

  97. Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: A taxonomy for swarm robots. In: Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 1993), vol. 1, pp. 441–447, July 1993

    Google Scholar 

  98. Eberhart, R., Simpson, P., Dobbins, R.: Computational intelligence PC tools. Academic Press Professional Inc. (1996)

    Google Scholar 

  99. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS 1995, pp. 39–43. IEEE (1995)

    Google Scholar 

  100. Eberhart, R.C., Shi, Y., Kennedy, J.: Swarm intelligence. Elsevier (2001)

    Google Scholar 

  101. Ferrante, E., Turgut, A.E., Huepe, C., Stranieri, A., Pinciroli, C., Dorigo, M.: Self-organized flocking with a mobile robot swarm: a novel motion control method. Adaptive Behav. 20(6), 460–477 (2012)

    Google Scholar 

  102. Fiorini, P., Prassler, E.: Cleaning and household robots: a technology survey. Autonomous Robots 9(3), 227–235 (2000)

    Google Scholar 

  103. Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robot. Autonomous Syst. 42, 143–166 (2003)

    MATH  Google Scholar 

  104. Freese, M., Singh, S., Ozaki, F., Matsuhira, N.: Virtual robot experimentation platform v-rep: a versatile 3d robot simulator. In: International Conference on Simulation, Modeling, and Programming for Autonomous Robots, pp. 51–62. Springer (2010). https://doi.org/10.1007/978-3-642-17319-6_8

  105. Fukuda, T., Nakagawa, S.: Approach to the dynamically reconfigurable robotic system. J. Intell. Robot. Syst. 1(1), 55–72 (1988)

    Google Scholar 

  106. Gage, D.W.: Command control for many-robot systems. Technical report, Naval Command Control and Ocean Surveillance Center Rdt And E Div San Diego CA (1992)

    Google Scholar 

  107. García-López, V., Chen, F., et al.: Molecular machines open cell membranes. Nature 548(7669), 567 (2017)

    Google Scholar 

  108. Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: tools for multi-robot and distributed sensor systems. In: Proceedings of the 11th International Conference Advanced Robotics, vol. 1, pp. 317–323 (2003)

    Google Scholar 

  109. Gerkey, B.P., Vaughan, R.T., Stoy, K., Howard, A., Sukhatme, G.S., Mataric, M.J.: Most valuable player: a robot device server for distributed control. In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium (Cat. No. 01CH37180), vol. 3, pp. 1226–1231. IEEE (2001)

    Google Scholar 

  110. Grassé, P.-P.: La reconstruction du nid et les coordinations interindividuelles chezbellicositermes natalensis etcubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux 6(1), 41–80 (1959)

    Google Scholar 

  111. Gro\(\beta \), R., Dorigo, M.: Evolution of solitary and group transport behaviors for autonomous robots capable of self-assembling. Adaptive Behav. 16(5), 285–305 (2008)

    Google Scholar 

  112. Gupta, A., Saxena, A., Anand, P., Sharma, P., Goyal, P.R., Singh, R.: Robo-cleaner. Imperial J. Interdisciplinary Res. 2, 5 (2016)

    Google Scholar 

  113. Hayes, A.T.: How many robots? group size and efficiency in collective search tasks. In: Distributed Autonomous Robotic Systems 5, pp. 289–298. Springer (2002). https://doi.org/10.1007/978-4-431-65941-9_29

  114. Hayes, A.T., Dormiani-Tabatabaei, P.: Self-organized flocking with agent failure: Off-line optimization and demonstration with real robots. In: IEEE International Conference on Proceedings Robotics and Automation. ICRA 2002, vol. 4, pp. 3900–3905. IEEE (2002)

    Google Scholar 

  115. Hayes, A.T., Martinoli, A., Goodman, R.M.: Swarm robotic odor localization. In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium (Cat. No. 01CH37180), vol. 2, pp. 1073–1078. IEEE (2001)

    Google Scholar 

  116. Heimbuch, J.: Nature Blows My Mind! Miraculous Termite Mounds (2012). https://www.treehugger.com/natural-sciences/nature-blows-my-mind-miracles-termite-mounds.html

  117. Higgins, F., Tomlinson, A., Martin, K.M.: Survey on security challenges for swarm robotics. In: 2009 Fifth International Conference on Autonomic and Autonomous Systems, pp. 307–312, April 2009

    Google Scholar 

  118. Hirukawa, H., et al.: Humanoid robotics platforms developed in hrp. Robot. Autonomous Syst. 48(4), 165–175 (2004)

    Google Scholar 

  119. Holland, O., Melhuish, C.: Stigmergy, self-organization, and sorting in collective robotics. Artif. Life 5(2), 173–202 (1999)

    Google Scholar 

  120. Hougen, D.F., Chandrasekaran, S.: Swarm intelligence for cooperation of bio-nano robots using quorum sensing. In: 2006 Bio Micro and Nanosystems Conference, p. 104. IEEE (2006)

    Google Scholar 

  121. Iglesias, C.A., Garijo, M., González, J.C.: A survey of agent-oriented methodologies. In: Müller, J.P., Rao, A.S., Singh, M.P. (eds.) Intelligent Agents V: Agents Theories, Architectures, and Languages, pp. 317–330. Springer, Heidelberg (1999)

    Google Scholar 

  122. Iocchi, L., Nardi, D., Salerno, M.: Reactivity and deliberation: a survey on multi-robot systems. In: Workshop on Balancing Reactivity and Social Deliberation in Multi-Agent Systems, pp. 9–32. Springer (2000). https://doi.org/10.1007/3-540-44568-4_2

  123. Ippisch, A., Graffi, K.: An android framework for opportunistic wireless mesh networking. In: Proceedings of the International Conference on Networked Systems, pp. 1–2 (2015)

    Google Scholar 

  124. Ippisch, A., Graffi, K.: Infrastructure mode based opportunistic networks on android devices. In: 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA), pp. 454–461. IEEE (2017)

    Google Scholar 

  125. Jansson, F., et al.: Kilombo: a kilobot simulator to enable effective research in swarm robotics. arXiv preprint arXiv:1511.04285 (2015)

  126. Kanehiro, F., Hirukawa, H., Kajita, S.: Openhrp: open architecture humanoid robotics platform. Int. J. Robot. Res. 23(2), 155–165 (2004)

    Google Scholar 

  127. Karaboga, D., Akay, B.: A survey: algorithm simulating bee swarm intelligence. Artif. Intell. Rev. 31, 68–85 (2009)

    MATH  Google Scholar 

  128. Kayser, M., et al.: Design and digital fabrication of tubular structures using robot swarms. In: Robotic Fabrication in Architecture, Art and Design, pp. 285–296. Springer (2018). https://doi.org/10.1007/978-3-319-92294-2_22

  129. Kazadi, S.T.: Swarm engineering. Ph.D. thesis, California Institute of Technology (2000)

    Google Scholar 

  130. Kearns, D.B.: A field guide to bacterial swarming motility. Nature Rev. Microbiol. 8(9), 634 (2010)

    Google Scholar 

  131. Kennedy, J.: The particle swarm: social adaptation of knowledge. In: IEEE International Conference on Evolutionary Computation, 1997, pp. 303–308. IEEE (1997)

    Google Scholar 

  132. Khaldi, B., Cherif, F.: An overview of swarm robotics: swarm intelligence applied to multi-robotics. Int. J. Comput. Appl. 126(2) (2015)

    Google Scholar 

  133. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), vol. 3, pp. 2149–2154. IEEE (2004)

    Google Scholar 

  134. Kolling, A., Walker, P., Chakraborty, N., Sycara, K., Lewis, M.: Human interaction with robot swarms: a survey. IEEE Trans. Hum. Mach. Syst. 46(1), 9–26 (2016)

    Google Scholar 

  135. Krishnan, A.: Killer robots: legality and ethicality of autonomous weapons. Routledge (2016)

    Google Scholar 

  136. Kube, C.R., Bonabeau, E.: Cooperative transport by ants and robots. Robotics Autonomous Syst. 30(1–2), 85–101 (2000)

    Google Scholar 

  137. Kube, C.R., Zhang, H.: Collective robotics: from social insects to robots. Adaptive Behav. 2(2), 189–218 (1993)

    Google Scholar 

  138. Labella,T.H., Dorigo, M., Deneubourg, J.-L.: Division of labor in a group of robots inspired by ants’ foraging behavior. ACM Trans. Autonomous Adaptive Syst. (TAAS) 1(1), 4–25 (2006)

    Google Scholar 

  139. Lewis, M.A., Bekey, G.A.: The behavioral self-organization of nanorobots using local rules. In: IROS, pp. 1333–1338 (1992)

    Google Scholar 

  140. Liu, W., Winfield, A.: Modeling and optimization of adaptive foraging in swarm robotic systems. I. J. Robotic Res. 29, 1743–1760 (2010)

    Google Scholar 

  141. Liu, W., Winfield, A.F.T., Sa, J.: Modelling swarm robotic systems: a case study in collective foraging. Towards Autonomous Robotic Systems, pp. 25–32 (2007)

    Google Scholar 

  142. Liu, W., Winfield, A.F.T., Sa, J., Chen, J., Dou, L.: Towards energy optimization: emergent task allocation in a swarm of foraging robots. Adaptive Behav. 15(3), 289–305 (2007)

    Google Scholar 

  143. Lopes, Y.K., Leal, A.B., Dodd, T.J., Groß, R.: Application of supervisory control theory to swarms of e-puck and kilobot robots. In: International Conference on Swarm Intelligence, pp. 62–73. Springer (2014). https://doi.org/10.1007/978-3-319-09952-1_6

  144. Maes, P.: Artificial life meets entertainment: lifelike autonomous agents. Commun. ACM 38(11), 108–114 (1995)

    Google Scholar 

  145. Magnenat, S., Rétornaz, P., Bonani, M., Longchamp, V., Mondada, F.: Aseba: a modular architecture for event-based control of complex robots. IEEE/ASME Trans. Mechatron. 16(2), 321–329 (2011)

    Google Scholar 

  146. Martinoli, A.: Swarm intelligence in autonomous collective robotics: from tools to the analysis and synthesis of distributed control strategies. Ph.D. thesis, ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE (1999)

    Google Scholar 

  147. Mason, C.: Collaborative networks of independent automatic telescopes. In: Optical Astronomy from the Earth and Moon, vol. 55, p. 234 (1994)

    Google Scholar 

  148. Masár, M.: A biologically inspired swarm robot coordination algorithm for exploration and surveillance. In: 2013 IEEE 17th International Conference on Intelligent Engineering Systems (INES), pp. 271–275, June 2013

    Google Scholar 

  149. Mataric, M.J.: Designing emergent behaviors: from local interactions to collective intelligence. In: Proceedings of the Second International Conference on Simulation of Adaptive Behavior, pp. 432–441 (1993)

    Google Scholar 

  150. Matarić, M.J.: Issues and approaches in the design of collective autonomous agents. Robotics Autonomous Syst. 16(2–4), 321–331 (1995)

    Google Scholar 

  151. Matarić, M.J.: Reinforcement learning in the multi-robot domain. In: Robot Colonies, pp. 73–83. Springer (1997)

    Google Scholar 

  152. Matarić, M.J.: Learning in behavior-based multi-robot systems: Policies, models, and other agents. Cognitive Syst. Res. 2(1), 81–93 (2001)

    Google Scholar 

  153. Maxim, P.M., Spears, W.M., Spears, D.F.: Robotic chain formations. IFAC Proc. Volumes 42(22), 19–24 (2009)

    Google Scholar 

  154. Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., Von Stryk, O.: Comprehensive simulation of quadrotor uavs using ros and gazebo. In: International Conference on Simulation, Modeling, and Programming for Autonomous Robots, pp. 400–411. Springer (2012)

    Google Scholar 

  155. Michel, O.: Webots: symbiosis between virtual and real mobile robots. In: International Conference on Virtual Worlds, pp. 254–263. Springer (1998)

    Google Scholar 

  156. Miner, D.: Swarm robotics algorithms: A survey, 04 2019

    Google Scholar 

  157. Mittal, R., Konno, A., Komizunai, S.: Implementation of hoap-2 humanoid walking motion in openhrp simulation. In: 2015 International Conference on Computing Communication Control and Automation, pp. 29–34. IEEE (2015)

    Google Scholar 

  158. Hafizulazwan Mohamad Nor, M., Hilmi Ismail, Z., Ashraf Ahmad, M.: Broadcast control of multi-robot systems with norm-limited update vector. Int. J. Adv. Robotic Syst. 17(4), 1729881420945958 (2020)

    Google Scholar 

  159. Mohamed, N., Al-Jaroodi, J., Jawhar, A.: Middleware for robotics: a survey. In: RAM, pp. 736–742 (2008)

    Google Scholar 

  160. Mondada, F., Guignard, A., Bonani, M., Bar, D., Lauria, M., Floreano, D.: Swarm-bot: from concept to implementation. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), vol. 2, pp. 1626–1631. IEEE (2003)

    Google Scholar 

  161. Mondada, F., et al.: Swarm-bot: a new distributed robotic concept. Autonomous Robots 17(2–3), 193–221 (2004)

    Google Scholar 

  162. Navarro, I., Matía, F.: An introduction to swarm robotics. ISRN Robotics 2013, 09 (2012)

    Google Scholar 

  163. Navarro, I., Matía, F.: A survey of collective movement of mobile robots. Int. J. Adv. Robotic Syst. 10(1), 73 (2013)

    Google Scholar 

  164. Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm. Swarm Intell. 2(1), 1–23 (2008)

    Google Scholar 

  165. Olivares-Mendez, M.A., Kannan, S., Voos, H.: Vision based fuzzy control autonomous landing with uavs: from v-rep to real experiments. In: 2015 23rd Mediterranean Conference on Control and Automation (MED), pp. 14–21. IEEE (2015)

    Google Scholar 

  166. Olivier, M.: Cyberbotics ltd-webotstm: Professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1(1), 40–43 (2004)

    Google Scholar 

  167. Pandey, A., Kaushik, A., Jha, A.K., Kapse, G.: A technological survey on autonomous home cleaning robots. Int. J. Sci. Res. Publications 4(4), 1–7 (2014)

    Google Scholar 

  168. Patil, M., Abukhalil, T., Patel, S., Sobh, T.: Ub swarm: Hardware implementation of heterogeneous swarm robot with fault detection and power management. Int. J. Comput. 15, 162–176 (2016)

    Google Scholar 

  169. Peralta, E., Fabregas, E., Farias, G., Vargas, H., Dormido, S.: Development of a khepera iv library for the v-rep simulator. IFAC-PapersOnLine 49(6), 81–86 (2016)

    Google Scholar 

  170. Pinciroli, C.: The swarmanoid simulator. UniversitéLibre de Bruxelles, Bruxelles (2007)

    MATH  Google Scholar 

  171. Pinciroli, C., et al.: Argos: a modular, multi-engine simulator for heterogeneous swarm robotics. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5027–5034. IEEE (2011)

    Google Scholar 

  172. Prabakaran, V., Elara, M.R., Pathmakumar, T., Nansai, S.: Floor cleaning robot with reconfigurable mechanism. Automation Construction 91, 155–165 (2018)

    Google Scholar 

  173. Purohit, A., Mokaya, F., Zhang, P.: Demo abstract: collaborative indoor sensing with the sensorfly aerial sensor network. In: 2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN), pp. 145–146. IEEE (2012)

    Google Scholar 

  174. Purohit, A., Sun, Z., Mokaya, F., Zhang, P.: Sensorfly: controlled-mobile sensing platform for indoor emergency response applications. In: 2011 10th International Conference on Information Processing in Sensor Networks (IPSN), pp. 223–234. IEEE (2011)

    Google Scholar 

  175. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: ACM SIGGRAPH computer graphics, vol. 21, pp. 25–34. ACM (1987)

    Google Scholar 

  176. Eric Rohmer, Surya PN Singh, and Marc Freese. V-rep: a versatile and scalable robot simulation framework. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1321–1326. IEEE (2013)

    Google Scholar 

  177. Ronzhin, A., Rigoll, G., Meshcheryakov, R.: Interactive Collaborative Robotics: Third International Conference, ICR 2018, Leipzig, Germany, September 18–22, 2018, Proceedings, vol. 11097. Springer (2018)

    Google Scholar 

  178. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective behaviors. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 3293–3298. IEEE (2012)

    Google Scholar 

  179. Rubenstein, M., Nagpal, R.: Kilobot: a robotic module for demonstrating behaviors in a large scale (\(2^{10}\)) units) collective. Institute of Electrical and Electronics Engineers (2010 01)

    Google Scholar 

  180. Şahin, E.: Swarm robotics: From sources of inspiration to domains of application. In: International workshop on swarm robotics, pp. 10–20. Springer (2004)

    Google Scholar 

  181. Şahin, E., Girgin, S., Bayindir, L., Turgut, A.E.: Swarm robotics. In: Swarm Intelligence, pp. 87–100. Springer (2008)

    Google Scholar 

  182. Sahin, E., et al.: Swarm-bot: pattern formation in a swarm of self-assembling mobile robots. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 4, p. 6. IEEE (2002)

    Google Scholar 

  183. Sati, S., Ippisch, A., Graffi, K.: Replication probability-based routing scheme for opportunistic networks. In: 2017 International Conference on Networked Systems (NetSys), pp. 1–8. IEEE (2017)

    Google Scholar 

  184. Sati, S., Probst, C., Graffi, K.: Analysis of buffer management policies for opportunistic networks. In: 2016 25th International Conference on Computer Communication and Networks (ICCCN), pp. 1–8. IEEE (2016)

    Google Scholar 

  185. Schwager, M., McLurkin, J., Slotine, J.-J.E., Rus, D.: From theory to practice: distributed coverage control experiments with groups of robots. In: Experimental Robotics, pp. 127–136. Springer (2009)

    Google Scholar 

  186. Senanayake, M., Senthooran, I., Barca, J.C., Chung, H., Kamruzzaman, J., Murshed, M.: Search and tracking algorithms for swarms of robots: a survey. Robot. Autonomous Syst. 75, 422–434 (2016)

    Google Scholar 

  187. Seyfried, J., et al.: The i-swarm project: Intelligent small world autonomous robots for micro-manipulation. In: International Workshop on Swarm Robotics, pp. 70–83. Springer (2004)

    Google Scholar 

  188. Shakkottai, S., Rappaport, T.S., Karlsson, P.C.: Cross-layer design for wireless networks. IEEE Commun. Mag 41(10), 74–80 (2003)

    Google Scholar 

  189. Shi, Z., Tu, J., Zhang, Q., Liu, L., Wei, J.: A survey of swarm robotics system. In: International Conference in Swarm Intelligence, pp. 564–572. Springer (2012). https://doi.org/10.1007/978-3-642-30976-2_68

  190. Shlyakhov, N.E., Vatamaniuk, I.V., Ronzhin, A.L.: Survey of methods and algorithms of robot swarm aggregation. J. Phys. Conf. Series 803, (2017)

    Google Scholar 

  191. Sokol, J.: Army Ants Act Like Algorithms to Make Deliveries More Efficient (2015). https://www.smithsonianmag.com/science-nature/army-ants-act-algorithms-make-deliveries-more-efficient-180957367/

  192. Soysal, O.: Bahçeci, Erkin, Şahin, Erol: Aggregation in swarm robotic systems: Evolution and probabilistic control. Turkish J. Electr. Eng. Comput. Sci. 15(2), 199–225 (2007)

    Google Scholar 

  193. Soysal, O., Sahin, E.: Probabilistic aggregation strategies in swarm robotic systems. In: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005, pp. 325–332. IEEE (2005)

    Google Scholar 

  194. Spears, W.M., Spears, D.F., Hamann, J.C., Heil, R.: Distributed, physics-based control of swarms of vehicles. Autonomous Robots 17(2–3), 137–162 (2004)

    Google Scholar 

  195. Stone, P.: Veloso, Manuela: Multiagent systems: A survey from a machine learning perspective. Autonomous Robots 8(3), 345–383 (2000)

    Google Scholar 

  196. Tan, Y.: Swarm robotics: collective behavior inspired by nature. J. Comput. Sci. Syst. Biol. 6, (2013)

    Google Scholar 

  197. Tan, Y.: A Survey on Swarm Robotics. 01 2017

    Google Scholar 

  198. Tan, Y., Zheng, Z.: Research advance in swarm robotics. Defence Technol. 9(1), 18–39 (2013)

    Google Scholar 

  199. Trianni, V., IJsselmuiden, J., Haken, R.: The saga concept: swarm robotics for agricultural applications. Technical report, Technical Report. 2016. http://laral.istc.cnr.it/saga (2016)

  200. Trianni, V., Tuci, E., Ampatzis, C., Dorigo, M.: Evolutionary swarm robotics: a theoretical and methodological itinerary from individual neuro-controllers to collective behaviours. The horizons of evolutionary robotics 153 (2014)

    Google Scholar 

  201. Trueblood, M., Genet, R.: Microcomputer control of telescopes, p. 1985. Willmann-Bell, Richmond (1985)

    Google Scholar 

  202. Turgut, A.E., Gokce, F., Celikkanat, H., Bayindir, L., Sahin, E.: Kobot: a mobile robot designed specifically for swarm robotics research. Middle East Technical University, Ankara, Turkey, METU-CENG-TR Tech. report, 5(2007) (2007)

    Google Scholar 

  203. Valentini, G., et al.: Kilogrid: a novel experimental environment for the kilobot robot. Swarm Intell. 12(3), 245–266 (2018)

    Google Scholar 

  204. Vaughan, R.: Massively multi-robot simulation in stage. Swarm Intell. 2(2–4), 189–208 (2008)

    Google Scholar 

  205. Vaughan, R.T., Gerkey, B.P.: Reusable robot software and the player/stage project. In: Software Engineering for Experimental Robotics, pages 267–289. Springer (2007)

    Google Scholar 

  206. Wang, J., Zhang, R., Yan, Y., Dong, X., Li, J.M.: Locating hazardous gas leaks in the atmosphere via modified genetic, mcmc and particle swarm optimization algorithms. Atmospheric Environ. 157, 7–37 (2017)

    Google Scholar 

  207. Wang, L.F., Tan, K.C., Prahlad, V.: Developing khepera robot applications in a webots environment. In: MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No. 00TH8530), pp. 71–76. IEEE (2000)

    Google Scholar 

  208. Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-inspired robot construction team. Science 343(6172), 754–758 (2014)

    Google Scholar 

  209. Whitesides, G.M., Grzybowski, B.: Self-assembly at all scales. Science 295(5564), 2418–2421 (2002)

    Google Scholar 

  210. Woern, H., Szymanski, M., Seyfried, J.: The i-swarm project. In: ROMAN 2006-The 15th IEEE International Symposium on Robot and Human Interactive Communication, pp. 492–496. IEEE (2006)

    Google Scholar 

  211. Wooldridge, M., Jennings, N.R.: Agent theories, architectures, and languages: a survey. In: Wooldridge, M.J., Jennings, N.R. (eds.) Intelligent Agents, pp. 1–39. Springer, Heidelberg (1995)

    Google Scholar 

  212. Yan, Z., Jouandeau, N., Cherif, A.A.: A survey and analysis of multi-robot coordination. Int. J. Adv. Robot. Syst. 10(12), 399 (2013)

    Google Scholar 

  213. Yogeswaran, M., Ponnambalam, S.G.: An extensive review of research in swarm robotics. pp. 140–145, 01 2010

    Google Scholar 

  214. Young, S., Kott, A.: A survey of research on control of teams of small robots in military operations. arXiv preprint arXiv:1606.01288 (2016)

Download references

Acknowledgments

We would like to thank the Arab-German Young Academy of Sciences and Humanities for funding this research as well as our collaboration partner Dr. Ahmed Khalil for the valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Reza Cheraghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheraghi, A.R., Shahzad, S., Graffi, K. (2022). Past, Present, and Future of Swarm Robotics. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-030-82199-9_13

Download citation

Publish with us

Policies and ethics