Skip to main content

Dichotomous Outcomes

  • Chapter
  • First Online:
Analysis of Data from Randomized Controlled Trials
  • 1121 Accesses

Abstract

In the examples of the first chapters, the outcome variable of the RCT was continuous. In this chapter, the analysis of data from RCTs with a dichotomous outcome is discussed. In general, the same principles can be used for RCTs with a dichotomous outcome than for RCTs with a continuous outcome. The difference is that for dichotomous outcomes, logistic models must be used instead of linear models. However, when there is more than one follow-up measurement, instead of a logistic mixed model analysis, it is advised to use logistic generalized estimating equations to deal with the dependency of the observations and to estimate an appropriate treatment effect. It is also argued that an adjustment for the baseline value is often not necessary, because at baseline mostly all subjects have the same value (e.g., they all have a certain disease). Finally, the problem of non-collapsibility is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert, P. S. (1999). Longitudinal data analysis (repeated measures) in clinical trials. Statistics in Medicine, 18, 1707–1732.

    Article  Google Scholar 

  • Apeldoorn, A. T., Ostelo, R. W., van Helvoirt, H., Fritz, J. M., Knol, D. L., van Tulder, M., & de Vet, H. (2012). A randomized controlled trial on the effectiveness of a classification-based system for subacute and chronic low back pain. Spine, 37, 1347–1356.

    Article  Google Scholar 

  • Bellamy, S. L., Gibberd, R., Hancock, L., Howley, P., Kennedy, B., Klar, N., Lipsitz, S., & Ryan, L. (2009). Analysis of dichotomous outcome data for community intervention studies. Statistical Methods in Medical Research, 9, 135.

    Article  Google Scholar 

  • Goldstein, H. (2003). Multilevel statistical models (3nd ed.). Edward Arnold.

    MATH  Google Scholar 

  • Greenland, S., & Robins, J. M. (2009). Identifiability, exchangeability and confounding revisited. Epidemiologic Perspectives & Innovations, 6, 4.

    Article  Google Scholar 

  • Heo, M., & Leon, A. C. (2005). Comparison of statistical methods for analysis of clustered binary outcomes. Statistics in Medicine, 24, 911–923.

    Article  MathSciNet  Google Scholar 

  • Hernan, M. A., Clayton, D., & Keiding, N. (2011). The Simpson’s paradox unravelled. International Journal of Epidemiology, 40, 780–785.

    Article  Google Scholar 

  • Hu, F. B., Goldberg, J., Hedeker, D., Flay, B. R., & Pentz, M. (1998). Comparison of population-averaged and subject-specific approaches for analyzing repeated binary outcomes. American Journal of Epidemiology, 147, 694–703.

    Article  Google Scholar 

  • Hubbard, A. E., Ahern, J., Fleischer, N. L., van der Laan, M., Lippman, S. A., Jewell, N., Bruckner, T., & Satariano, W. A. (2010). To GEE or not to GEE. Comparing population average and mixed models for estimating the associations between neighborhood risk factors and health. Epidemiology, 21, 467–474.

    Article  Google Scholar 

  • Kim, H.-Y., Preisser, J. S., Rozier, R. G., & Valiyaparambi, J. V. (2006). Multilevel analysis of group randomized trials with binary data. Community Dentistry and Oral Epidemiology, 34, 241–251.

    Article  Google Scholar 

  • Laird, N. M., & Ware, J. H. (1982). Random effects models for longitudinal data. Biometrics, 38, 963–974.

    Article  Google Scholar 

  • Lesaffre, E., & Spiessens, B. (2001). On the effect of the number of quadrature points in a logistic random-effects model: An example. Applied Statistics, 50, 325–335.

    MathSciNet  MATH  Google Scholar 

  • Liang, K., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 45–51.

    Article  MathSciNet  Google Scholar 

  • Little, R. J. A. (1995). Modelling the drop-out mechanism repeated measures studies. Journal of the American Statistical Association, 90, 1112–1121.

    Article  MathSciNet  Google Scholar 

  • Liu, Q., & Pierce, D. A. (1994). A note on Gauss–Hermite quadrature. Biometrika, 81, 624–629.

    MathSciNet  MATH  Google Scholar 

  • Newman, S. C. (2004). Commonalities in the classical, collapsibility and counterfactual concepts in confounding. Journal of Clinical Epidemiology, 57, 325–329.

    Article  Google Scholar 

  • Omar, R. Z., Wright, E. M., Turner, R. M., & Thompson, S. G. (1999). Analysing repeated measurements data: A practical comparison of methods. Statistics in Medicine, 18, 1587–1603.

    Article  Google Scholar 

  • Rabe-Hesketh, S., & Skrondal, A. (2001). Parameterisation of multivariate random effects models for categorical data. Biometrics, 57, 1256–1264.

    Article  MathSciNet  Google Scholar 

  • Subramanian, S. V. (2004). The relevance of multilevel statistical methods for identifying causal neighbourhood effects. Social Science & Medicine, 58, 1961–1967.

    Article  Google Scholar 

  • ten Have, T. R., Ratcliffe, S. J., Reboussin, B. A., & Miller, M. E. (2004). Deviations from the population-average cluster-specific relationship for clustered binary data. Statistical Methods in Medical Research, 13, 3–16.

    Article  MathSciNet  Google Scholar 

  • Twisk, J. W. R. (2013). Applied longitudinal data analysis for epidemiology (2nd ed.). Cambridge University Press.

    Book  Google Scholar 

  • Twisk, J. W. R., de Vente, W., Apeldoorn, A. T., & de Boer, M. (2017). Should we use logistic mixed model analysis for the effect estimation in a longitudinal RCT with a dichotomous outcome variable? Epidemiology, Biostatistics and Public Health, 14(3), 1–8.

    Google Scholar 

  • Warmerdam, L., van Straten, A., Twisk, J., Riper, H., & Cuijpers, P. (2008). Internet-based treatment for adults with depressive symptoms: Randomized controlled trial. Journal of Medical Internet Research, 10, e44.

    Article  Google Scholar 

  • Zeger, S. L., & Liang, K.-Y. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics, 42, 121–130.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Twisk, J.W.R. (2021). Dichotomous Outcomes. In: Analysis of Data from Randomized Controlled Trials. Springer, Cham. https://doi.org/10.1007/978-3-030-81865-4_8

Download citation

Publish with us

Policies and ethics