Skip to main content

Magma Mixing: The Trigger for Explosive Volcanic Eruptions

  • Chapter
  • First Online:
The Mixing of Magmas

Part of the book series: Advances in Volcanology ((VOLCAN))

Abstract

Volcanic eruptions are potentially catastrophic phenomena that can have a huge impact on society and the environment. Understanding the causes, dynamics and timescales of eruptions is of greatest importance for mitigating the medium- to large-scale impact of these natural events. In this chapter we show that the most explosive volcanic eruptions occurred on planet Earth are associated with magma mixing processes. Discriminating whether the mixing process was the cause or the effect of the eruptions is not easy, although there is evidence that mixing might have been the triggering factor. In any case, being magma mixing a common factor it is not wise to ignore its occurrence as it may help in shedding light on eruption dynamics. This will be the focus of this chapter.

There are two possible outcomes: if the result confirms the hypothesis, then you’ve made a measurement. If the result is contrary to the hypothesis, then you’ve made a discovery.

Enrico Fermi

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacon CR (1986) Magmatic inclusions in silicic and intermediate volcanic rocks. J Geophys Res 91(B6):6091. ISSN: 0148-0227. https://doi.org/10.1029/jb091ib06p06091

  • Beier C, Haase KM, Hansteen TH (2006) Magma Evolution of the Sete Cidades Volcano, São Miguel, Azores. J Petrol 47(7):1375–1411. ISSN: 1460-2415

    Google Scholar 

  • Blake S, Campbell IH (1986) The dynamics of magma-mixing during flow in volcanic conduits. Contrib Miner Petrol 94(1):72–81

    Google Scholar 

  • Catrakis HJ, Dimotakis PE (1998) Shape complexity in turbulence. Phys Rev Lett 80(5):968–971

    Article  Google Scholar 

  • Cioni R et al (1995) Compositional layering and syneruptive mixing of a periodically refilled shallow magma chamber: the AD 79 Plinian eruption of Vesuvius. J Petrol 36:739–750

    Article  Google Scholar 

  • Clocchiatti R et al (1994) Assessment of a shallow magmatic system: the 1888-90 eruption, Vulcano Island, Italy. Bull Volcanol 56(6-7):466–486. ISSN: 0258-8900. https://doi.org/10.1007/BF00302828

  • Clynne MA (1999) A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California. J Petrol 40(1):105–132. ISSN: 0022-3530. https://doi.org/10.1093/petroj/40.1.105

  • Corrsin S (1951) On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J Appl Phys 22(4):469–473. ISSN: 00218979. https://doi.org/10.1063/1.1699986

  • Davydova VO, Shcherbakov VD, Yu Plechov P (2018) The timescales of magma mixing in the plumbing system of Bezymianny Volcano (Kamchatka): insights from diffusion chronometry. Moscow Univ Geol Bull 73(5):444–450. ISSN: 19348436. https://doi.org/10.3103/S0145875218050058

  • De Astis G et al (2006) Geological map of the island of Vulcano (Aeolian Islands), scale 1:10,000. In: Litographia Artistica Cartographica, Florence, Italy

    Google Scholar 

  • Druitt TH et al (2012) Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482(7383):77-U97

    Article  Google Scholar 

  • Folch A, Marti J (1998) The generation of overpressure in felsic magma chambers by replenishment. Earth Planet Sci Lett 163(1–4):301–314. ISSN: 0012821X. https://doi.org/10.1016/S0012-821X(98)00196-4

  • Frazzetta G, La Volpe L (1991) Volcanic history and maximum expected eruption at "La Fossa di Vulcano" (Aeolian Islands, Italy). Acta Vulcanologicy 1:107–113

    Google Scholar 

  • Gardner JE et al (1995) Influence of magma composition on the eruptive activity of Mount St Helens,Washington. Geology 23(6):523–530. ISSN: 00917613. https://doi.org/10.1130/0091-7613(1995)023

  • Gardner JE (2007) Heterogeneous bubble nucleation in highly viscous silicate melts during instantaneous decompression from high pressure. Chem Geol 236(1–2):1–12. ISSN: 00092541. https://doi.org/10.1016/j.chemgeo.2006.08.006

  • Gardner JE, Hélène Denis M (2004) Heterogeneous bubble nucleation on Fe-Ti oxide crystals in high-silica rhyolitic melts. Geochimica et Cosmochimica Acta 68(17):3587–3597. ISSN: 00167037. https://doi.org/10.1016/j.gca.2004.02.021

  • Gerbe MC et al (1992) Mineralogical and geochemical evolution of the 1982-1983 Galunggung eruption (Indonesia). Bull Volcanol 54(4):284–298. ISSN: 02588900. https://doi.org/10.1007/BF00301483

  • Gertisser R et al (2021) Processes and timescales of magma genesis and differentiation leading to the great tambora eruption in 1815. J Petrol 53(2):271–297. ISSN: 0022-3530. https://doi.org/10.1093/petrology/egr062

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271(1–4):123-134

    Google Scholar 

  • Gualda GAR, Ghiorso MS (2007) Magnetite scavenging and the buoyancy of bubbles in magmas. Part 2: Energetics of crystal-bubble attachment in magmas. Contrib Mineral Petrol 154(4):479–490. ISSN: 00107999. https://doi.org/10.1007/s00410-007-0206-8

  • Hibbard MJ (1994) Petrography to petrogenesis. Prentice Hall

    Google Scholar 

  • Hurwitz S, Navon O (1994) Bubble nucleation in rhyolitic melts: experiments at high pressure, temperature, and water content. Earth Planet Sci Lett 122(3–4):267–280. ISSN: 0012821X. https://doi.org/10.1016/0012-821X(94)90001-9

  • Kent AJR et al (2010) Preferential eruption of andesitic magmas through recharge filtering. English. In: Nature Geoscience 3(9):631–636

    Google Scholar 

  • Kolmogorov A et al. (1941) The local structure of turbulence in incompressible viscous fluid for very Large Reynolds’ numbers". DoSSR 30:301–305. ISSN: 0002-3264. https://ui.adsabs.harvard.edu/abs/1941DoSSR..30..301K/abstract

  • Kratzmann DJ et al (2009) Compositional variations and magma mixing in the 1991 eruptions of Hudson volcano, Chile. Bull Volcanol 71(4):419–439. ISSN: 14320819. https://doi.org/10.1007/s00445-008-0234-x

  • Leonard GS et al (2002) Basalt triggering of the c. AD 1305 Kaharoa rhyolite eruption, Tarawera Volcanic Complex, New Zealand. J Volcanol Geotherm Res 115(3–4):461–486. ISSN: 03770273. https://doi.org/10.1016/S0377-0273(01)00326-2

  • Mader HM, Llewellin EW, Mueller SP (2013) The rheology of two-phase magmas: a review and analysis. J Volcanol Geotherm Res 257:135–158. ISSN: 03770273. https://doi.org/10.1016/j.jvolgeores.2013.02.014

  • Mangan M, Sisson T (2000) Delayed, disequilibrium degassing in rhyolite magma: decompression experiments and implications for explosive volcanism. Earth Planet Sci Lett 183(3–4):441–455. ISSN: 0012821X. https://doi.org/10.1016/S0012-821X(00)00299-5

  • Marsh BD (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib Mineral Petrol 78(1):85–98. ISSN: 0010-7999. https://doi.org/10.1007/BF00371146

  • Martin VM et al (2008) Bang! Month-scale eruption triggering at Santorini volcano. Science 321(5893):1178

    Article  Google Scholar 

  • Murphy MD et al (1998) The role of magma mixing in triggering the current eruption at the Soufriere Hills Volcano, Montserrat,West Indies. Geophys Res Lett 25(18):3433–3436. ISSN: 00948276. https://doi.org/10.1029/98GL00713

  • Obukhov AM (1949) The structure of the temperature field in a turbulent flow. Izv. Akad. Nauk. SSSR, Ser. Geogr. Geophys. 13(58)

    Google Scholar 

  • Oldenburg CM et al (1989) Dynamic mixing in magma bodies - theory, simulations, and implications. J Geophys Res-Solid Earth Planets 94(B7):9215–9236

    Google Scholar 

  • Pallister JS, Hoblitt RP, Reyes AG (1992) A basalt trigger for the 1991 eruptions of Pinatubo volcano? Nature 356(6368):426-28. ISSN: 00280836. https://doi.org/10.1038/356426a0

  • Paredes-Mariño J et al (2017) Enhancement of eruption explosivity by heterogeneous bubble nucleation triggered by magma mingling. Sci Rep 7(1):1–10. ISSN: 20452322. https://doi.org/10.1038/s41598-017-17098-3

  • Perugini D, Poli G (2005) Viscous fingering during replenishment of felsic magma chambers by continuous inputs of mafic magmas: Field evidence and fluid-mechanics experiments. Geology 33(1):5–8

    Article  Google Scholar 

  • Perugini D et al (2015) Concentration variance decay during magma mixing: a volcanic chronometer. Sci Rep 5. ISSN: 20452322. https://doi.org/10.1038/srep14225

  • Piochi M et al (2009) Constraining the recent plumbing system of Vulcano (Aeolian Arc, Italy) by textural, petrological, and fractal analysis: the 1739 A.D. Pietre Cotte lava flow. Geochem Geophys Geosyst 10(1). ISSN: 15252027. https://doi.org/10.1029/2008GC002176

  • Queiroz G et al (2015) Eruptive history and evolution of sete cidades volcano, são miguel Island, Azores. Geolog Soc Memoir. 44(1):87–104. Geological Society of London. https://doi.org/10.1144/M44.7

  • Raynal F, Gence JN (1997) Energy saving in chaotic laminar mixing. Int J Heat Mass Transf 40(14):3267–3273

    Google Scholar 

  • Reagan MK (2003) Time-scales of differentiation from mafic parents to rhyolite in north american continental arcs. J Petrol 44(9):1703–1726. ISSN: 1460-2415. https://doi.org/10.1093/petrology/egg057

  • Robin C, Camus G, Gourgaud A (1991) Eruptive and magmatic cycles at Fuego de Colima volcano (Mexico). J Volcanol Geotherm Res 45(3–4):209–225. ISSN: 03770273. https://doi.org/10.1016/0377-0273(91)90060-D

  • Roscoe R (1952) The viscosity of suspensions of rigid spheres. Brit J Appl Phys 3(8):267–269. ISSN: 0508-3443. https://doi.org/10.1088/0508-3443/3/8/306

  • Self S, Rampino MR (2012) The 1963-1964 eruption of Agung volcano (Bali, Indonesia). Bull Volcanol 74(6):1521–1536. ISSN: 02588900. https://doi.org/10.1007/s00445-012-0615-z

  • Sigmundsson F et al (2010) Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature 468(7322):426–432. ISSN: 00280836. https://doi.org/10.1038/nature09558

  • Smith PM, Asimow PD (2005) Adiabat\(\_\)1ph: A new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochem Geophys Geosyst 6(2):n/a–n/a. ISSN: 15252027. https://doi.org/10.1029/2004GC000816

  • Snyder D (2000) Thermal effects of the intrusion of basaltic magma into a more silicic magma chamber and implications for eruption triggering. Earth Planet Sci Lett 175(3–4):257–273

    Google Scholar 

  • Sparks RSJ, Marshall LA (1986) Thermal and mechanical constraints on mixing between mafic and silicic magmas. J Volcanol Geotherm Res 29(1–4):99–124. ISSN: 03770273. https://doi.org/10.1016/0377-0273(86)90041-7

  • Sparks SRJ, Sigurdsson H, Wilson L (1977) Magma mixing: a mechanism for triggering acid explosive eruptions. Nature 267(5609):315–318. ISSN: 00280836. https://doi.org/10.1038/267315a0

  • Tepley FJ et al (2000) Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichón Volcano, Mexico. J Petrol 41(9):1397–1411. ISSN: 1460-2415. https://doi.org/10.1093/petrology/41.9.1397

  • Turcotte DL (1992) Fractals and chaos in geology and geophysics. Cambridge University Press, Cambridge

    Google Scholar 

  • Turner JS, Campbell IH (1986) Convection and mixing in magma chambers. Earth Sci Rev 23(4):255–352. https://doi.org/10.1016/0012-8252(86)90015-2

  • Vetere F et al (2013) Viscosity changes during crystallization of a shoshonitic magma: new insights on lava flow emplacement. J Mineral Petrol Sci 108(3):144–160. ISSN: 1345-6296. https://doi.org/10.2465/jmps.120724

  • N. Volynets O et al (1999) Holocene eruptive history of Ksudach volcanic massif, South Kamchatka: evolution of a large magmatic chamber. J Volcanol Geotherm Res 91(1–2):23–42. ISSN: 03770273. https://doi.org/10.1016/S0377-0273(99)00049-9

  • Vona A et al (2011) The rheology of crystal-bearing basaltic magmas from Stromboli and Etna. Geochimica et Cosmochimica Acta 75(11): 3214–3236. ISSN: 00167037. https://doi.org/10.1016/j.gca.2011.03.031

  • Williams SN, Self S (1983) The October 1902 plinian eruption of Santa Maria volcano, Guatemala. J Volcanol Geotherm Res 16(1–2):33–56. ISSN: 03770273. https://doi.org/10.1016/0377-0273(83)90083-5

  • Zanon V (2003) Magmatic feeding system and crustal magma accumulation beneath Vulcano Island (Italy): evidence from CO 2 fluid inclusions in quartz xenoliths. J Geophys Res 108(B6):2298. ISSN: 0148-0227. https://doi.org/10.1029/2002JB002140

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Perugini .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perugini, D. (2021). Magma Mixing: The Trigger for Explosive Volcanic Eruptions. In: The Mixing of Magmas. Advances in Volcanology. Springer, Cham. https://doi.org/10.1007/978-3-030-81811-1_10

Download citation

Publish with us

Policies and ethics