Skip to main content

Probiotic Lactic Acid Bacteria

Taxonomy, Properties and Benefits

  • Living reference work entry
  • First Online:
Handbook of Food Bioactive Ingredients

Abstract

Probiotic microorganisms are defined as “living microorganisms, which upon ingestion in certain numbers, exert health benefits beyond inherent basic nutrition,” and most of them belong to lactic acid bacteria (LAB), for instance, Bifidobacterium sp., Lactobacillus sp., and Enterococcus sp. LAB are a varied category of Gram-positive, non-spore-forming, catalase-negative bacteria that can be found in various environments, including plants and animals. Researchers approve that probiotic must be able to survive transport over the harsh gastrointestinal (GI) tract to exert beneficial impacts on the colon, even though there is considerable information on useful immunological impacts also from dead cells. LAB are the most important probiotic microorganisms because they are autochthonous in the human gastrointestinal tract of healthy people.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdolhosseinzadeh E, Dehnad AR, Pourjafar H, Homayouni A, Ansari F. The production of probiotic scallion yogurt: viability of Lactobacillus acidoplilus freely and microencapsulated in the product. Carpathian J Food Sci Technol. 2018;10(3).

    Google Scholar 

  • Agriopoulou S, Stamatelopoulou E, Sachadyn-Król M, Varzakas T. Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: quality and safety aspects. Microorganisms. 2020;8(6):952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antognoni F, Mandrioli R, Potente G, Saa DLT, Gianotti A. Changes in carotenoids, phenolic acids and antioxidant capacity in bread wheat doughs fermented with different lactic acid bacteria strains. Food Chem. 2019;292:211–6.

    Article  CAS  PubMed  Google Scholar 

  • Axelsson L, Ahrné S. Lactic acid bacteria. In: Priest FG, Goodfellow M, editors. Applied microbial systematics. Dordrecht: Springer Netherlands; 2000. p. 367–88.

    Chapter  Google Scholar 

  • Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42–51.

    Article  CAS  PubMed  Google Scholar 

  • Borriello S, et al. Safety of probiotics that contain lactobacilli or bifidobacteria. Clin Infect Dis. 2003;36(6):775–80.

    Article  CAS  PubMed  Google Scholar 

  • Cannon J, Lee T, Bolanos J, Danziger L. Pathogenic relevance of Lactobacillus: a retrospective review of over 200 cases. Eur J Clin Microbiol Infect Dis. 2005;24(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  • Carocho M, Ferreira IC. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol. 2013;51:15–25.

    Article  CAS  PubMed  Google Scholar 

  • Castro J, Tornadijo M, Fresno J, Sandoval H. Biocheese: a food probiotic carrier. BioMed Res Int. 2015;2015.

    Google Scholar 

  • Chen Y, et al. Effect of selenium supplements on the antioxidant activity and nitrite degradation of lactic acid bacteria. World J Microbiol Biotechnol. 2019;35(4):1–13.

    Article  Google Scholar 

  • Dargahi N, Johnson J, Donkor O, Vasiljevic T, Apostolopoulos V. Immunomodulatory effects of probiotics: can they be used to treat allergies and autoimmune diseases? Maturitas. 2019;119:25–38.

    Article  CAS  PubMed  Google Scholar 

  • de LeBlanc A d M, et al. Evaluation of the biosafety of recombinant lactic acid bacteria designed to prevent and to treat colitis. J Med Microbiol. 2016;65:np.

    Google Scholar 

  • de Oliveira KÁR, Fernandes KFD, de Souza EL. Current advances on the development and application of probiotic-loaded edible films and coatings for the bioprotection of fresh and minimally processed fruit and vegetables. Foods. 2021;10(9):2207.

    Article  PubMed  PubMed Central  Google Scholar 

  • Demers-Mathieu V, Mathijssen GB, DaPra C, Medo E. The effects of probiotic supplementation on the gene expressions of immune cell surface markers and levels of antibodies and pro-inflammatory cytokines in human milk. J Perinatol. 2021;41(5):1083–91.

    Article  CAS  PubMed  Google Scholar 

  • Douillard FP, de Vos WM. Functional genomics of lactic acid bacteria: from food to health. Microb Cell Factories. 2014;13(1):S8. https://doi.org/10.1186/1475-2859-13-S1-S8.

    Article  Google Scholar 

  • Farhadi A, Keshavarzian A, Ranjbaran Z, Fields JZ, Banan A. The role of protein kinase C isoforms in modulating injury and repair of the intestinal barrier. J Pharmacol Exp Ther. 2006;316(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  • Feng T, Wang J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review. Gut Microbes. 2020;12(1):1801944.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frece J, et al. Synbiotic effect of Lactobacillus helveticus M92 and prebiotics on the intestinal microflora and immune system of mice. J Dairy Res. 2009;76(1):98–104.

    Article  CAS  PubMed  Google Scholar 

  • Gänzle MG, Hertel C, van der Vossen JM, Hammes WP. Effect of bacteriocin-producing lactobacilli on the survival of Escherichia coli and Listeria in a dynamic model of the stomach and the small intestine. Int J Food Microbiol. 1999;48(1):21–35.

    Article  PubMed  Google Scholar 

  • Gao Y, et al. Lactobacillus plantarum Y44 alleviates oxidative stress by regulating gut microbiota and colonic barrier function in Balb/C mice with subcutaneous D-galactose injection. Food Funct. 2021a;12(1):373–86.

    Article  CAS  PubMed  Google Scholar 

  • Gao J, et al. Probiotics in the dairy industry – advances and opportunities. Compr Rev Food Sci Food Saf. 2021b.

    Google Scholar 

  • Grajek W, Olejnik A, Sip A. Probiotics, prebiotics and antioxidants as functional foods. Acta Biochim Pol. 2005;52(3):665–71.

    Article  CAS  PubMed  Google Scholar 

  • Guder A, Wiedemann I, Sahl HG. Posttranslationally modified bacteriocins – the lantibiotics. Pept Sci. 2000;55(1):62–73.

    Article  CAS  Google Scholar 

  • Gupta A, Sharma N. Characterization of potential probiotic lactic acid bacteria-Pediococcus acidilactici Ch-2 isolated from Chuli-A traditional apricot product of Himalayan region for the production of novel bioactive compounds with special therapeutic properties. J Food Microbiol Saf Hyg. 2017;2(1):1–11.

    Article  Google Scholar 

  • Hedberg M, Hasslöf P, Sjöström I, Twetman S, Stecksén-Blicks C. Sugar fermentation in probiotic bacteria – an in vitro study (in Eng). Oral Microbiol Immunol. 2008;23(6):482–5. https://doi.org/10.1111/j.1399-302X.2008.00457.x.

    Article  CAS  PubMed  Google Scholar 

  • Heenan C, Adams M, Hosken R, Fleet G. Survival and sensory acceptability of probiotic microorganisms in a nonfermented frozen vegetarian dessert. LWT-Food Sci Technol. 2004;37(4):461–6.

    Article  CAS  Google Scholar 

  • Homayouni A, Javadi M, Ansari F, Pourjafar H, Jafarzadeh M, Barzegar A. Advanced methods in ice cream analysis: a review. Food Anal Methods. 2018;11(11):3224–34.

    Article  Google Scholar 

  • Homayouni A, Ansari F, Azizi A, Pourjafar H, Madadi M. Cheese as a potential food carrier to deliver probiotic microorganisms into the human gut: a review. Curr Nutr Food Sci. 2020a;16(1):15–28.

    Article  Google Scholar 

  • Homayouni A, et al. Soy ice cream as a carrier for efficient delivering of Lactobacillus casei. Nutr Food Sci. 2020b.

    Google Scholar 

  • Homayouni A, et al. Prevention of gestational diabetes mellitus (GDM) and probiotics: mechanism of action: a review. Curr Diabetes Rev. 2020c;16(6):538–45.

    PubMed  Google Scholar 

  • Huang C-H, Li S-W, Huang L, Watanabe K. Identification and classification for the Lactobacillus casei Group, (in English). Front Microbiol Hypothesis Theory. 2018;9(1974). https://doi.org/10.3389/fmicb.2018.01974.

  • Ilango S, Antony U. Probiotic microorganisms from non-dairy traditional fermented foods. Trends Food Sci Technol. 2021.

    Google Scholar 

  • Jin M, Wang Y, Xu C, Lu Z, Huang M, Wang Y. Preparation and biological activities of an exopolysaccharide produced by Enterobacter cloacae Z0206. Carbohydr Polym. 2010;81(3):607–11.

    Article  CAS  Google Scholar 

  • Jones RM, Neish AS. Redox signaling mediated by the gut microbiota. Free Radic Biol Med. 2017;105:41–7.

    Article  CAS  PubMed  Google Scholar 

  • Kailasapathy K, Harmstorf I, Phillips M. Survival of Lactobacillus acidophilus and Bifidobacterium animalis ssp. lactis in stirred fruit yogurts. LWT-Food Sci Technol. 2008;41(7):1317–22.

    Article  CAS  Google Scholar 

  • Katina K, et al. Fermentation-induced changes in the nutritional value of native or germinated rye. J Cereal Sci. 2007;46(3):348–55.

    Article  CAS  Google Scholar 

  • Kemsawasd V, Chaikham P. Effects of frozen storage on viability of probiotics and antioxidant capacities of synbiotic riceberry and sesame-riceberry milk ice creams. Curr Res Nutr Food Sci J. 2020;8(1):107–21.

    Article  Google Scholar 

  • Konar N, et al. Conventional and sugar-free probiotic white chocolate: effect of inulin DP on various quality properties and viability of probiotics. J Funct Foods. 2018;43:206–13.

    Article  CAS  Google Scholar 

  • Kong Y, Olejar KJ, On SL, Chelikani V. The potential of Lactobacillus spp. for modulating oxidative stress in the gastrointestinal tract. Antioxidants. 2020;9(7):610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • König H, Fröhlich J. Lactic acid bacteria. In: Biology of microorganisms on grapes, in must and in wine. Springer; 2017. p. 3–41.

    Chapter  Google Scholar 

  • Lase E, Davidson A, Lister I, Fachrial E. Probiotic activity and antibiotic sensitivity of lactic acid bacteria isolated from healthy breastfed newborn baby feces. In: IOP Conference Series: Materials Science and Engineering, vol. 1071, no. 1. IOP Publishing; 2021, p. 012015.

    Google Scholar 

  • Lei W, Liu C, Pan L, Peng C, Wang J, Zhou H. Screening of probiotic Lactobacilli with potential anti-allergic activity based on hyaluronidase inhibition and degranulation of RBL-2H3 cells in vitro. LWT. 2021;140:110707.

    Article  CAS  Google Scholar 

  • Li W, Ji J, Chen X, Jiang M, Rui X, Dong M. Structural elucidation and antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydr Polym. 2014;102:351–9.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, et al. Protective effects of selenium-glutathione-enriched probiotics on CCl4-induced liver fibrosis. J Nutr Biochem. 2018;58:138–49.

    Article  CAS  PubMed  Google Scholar 

  • Ljungh A, Wadstrom T. Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol. 2006;7(2):73–90.

    CAS  PubMed  Google Scholar 

  • Makarova KS, Koonin EV. Evolutionary genomics of lactic acid bacteria (in Eng). J Bacteriol. 2007;189(4):1199–208. https://doi.org/10.1128/JB.01351-06.

    Article  CAS  PubMed  Google Scholar 

  • Mårtensson O, Öste R, Holst O. The effect of yoghurt culture on the survival of probiotic bacteria in oat-based, non-dairy products. Food Res Int. 2002;35(8):775–84.

    Article  Google Scholar 

  • Maurya AP, Maurya VK, Thakur RL. Bacteriocin producing lactic acid bacteria: their relevance to human nutrition and health. In: Preparation of phytopharmaceuticals for the management of disorders. Elsevier; 2021. p. 297–302.

    Chapter  Google Scholar 

  • McNeilly TN, et al. IgA and IgG antibody responses following systemic immunization of cattle with native H7 flagellin differ in epitope recognition and capacity to neutralise TLR5 signalling. Vaccine. 2010;28(5):1412–21.

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Mishra H. Technological aspects of probiotic functional food development. Forum Nutr. 2012;11(4):117–30.

    Google Scholar 

  • Mishra V, Shah C, Mokashe N, Chavan R, Yadav H, Prajapati J. Probiotics as potential antioxidants: a systematic review. J Agric Food Chem. 2015;63(14):3615–26.

    Article  CAS  PubMed  Google Scholar 

  • Mora-Villalobos JA, et al. Multi-product lactic acid bacteria fermentations: a review. Fermentation. 2020;6(1):23.

    Article  CAS  Google Scholar 

  • Mu G, Li H, Tuo Y, Gao Y, Zhang Y. Antioxidative effect of Lactobacillus plantarum Y44 on 2, 2′-azobis (2-methylpropionamidine) dihydrochloride (ABAP)-damaged Caco-2 cells. J Dairy Sci. 2019;102(8):6863–75.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa H, et al. Effects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 in Caenorhabditis elegans. Aging Cell. 2016;15(2):227–36.

    Article  CAS  PubMed  Google Scholar 

  • Norouzi S, Pourjafar H, Ansari F, Homayouni A. A survey on the survival of Lactobacillus paracasei in fermented and non-fermented frozen soy dessert. Biocatal Agric Biotechnol. 2019;21:101297.

    Article  Google Scholar 

  • Nyanzi R, Jooste PJ, Buys EM. Invited review: probiotic yogurt quality criteria, regulatory framework, clinical evidence, and analytical aspects. J Dairy Sci. 2021;104(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  • Panghal A, Janghu S, Virkar K, Gat Y, Kumar V, Chhikara N. Potential non-dairy probiotic products–a healthy approach. Food Biosci. 2018;21:80–9.

    Article  CAS  Google Scholar 

  • Parker M, et al. Naturally fermented milk from northern Senegal: bacterial community composition and probiotic enrichment with Lactobacillus rhamnosus. Front Microbiol. 2018;9:2218.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peivasteh-Roudsari L, Pirhadi M, Karami H, Tajdar-Oranj B, Molaee-Aghaee E, Sadighara P. Probiotics and food safety: an evidence-based review. J Food Saf Hyg. 2019;5(1):1–9.

    Google Scholar 

  • Pfeiler EA, Klaenhammer TR. The genomics of lactic acid bacteria. Trends Microbiol. 2007;15(12):546–53. https://doi.org/10.1016/j.tim.2007.09.010.

    Article  CAS  PubMed  Google Scholar 

  • Pot B, Salvetti E, Mattarelli P, Felis GE. The potential impact of the lactobacillus name change: the results of an expert meeting organised by the Lactic Acid Bacteria Industrial Platform (LABIP). Trends Food Sci Technol. 2019;94:105–13.

    Article  CAS  Google Scholar 

  • Pourjafar H, Noori N, Gandomi H, Basti AA. Study of protective role of double coated beads of calcium alginate-chitosan-eudragit S100 nanoparticles achieved from microencapsulation of Lactobacillus acidophilus as a predominant flora of human and animals gut. J Vet Res. 2016;71(3).

    Google Scholar 

  • Pourjafar H, Noori N, Gandomi H, Basti AA, Ansari F. Viability of microencapsulated and non-microencapsulated Lactobacilli in a commercial beverage. Biotechnol Rep. 2020;25:e00432.

    Article  Google Scholar 

  • Pourjafar H, Noori N, Gandomi H, Basti AA, Ansari F. Effect of microencapsulation and coating on the survivability of lactobacilli probiotics in yogurt and gastrointestinal conditions. Carpathian J Food Sci Technol. 2021;13(1):120–33.

    CAS  Google Scholar 

  • Prado FC, Parada JL, Pandey A, Soccol CR. Trends in non-dairy probiotic beverages. Food Res Int. 2008;41(2):111–23.

    Article  CAS  Google Scholar 

  • Qiao Y, Sun J, Ding Y, Le G, Shi Y. Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Appl Microbiol Biotechnol. 2013;97(4):1689–97.

    Article  CAS  PubMed  Google Scholar 

  • Reale A, Zotta T, Ianniello RG, Mamone G, Di Renzo T. Selection criteria of lactic acid bacteria to be used as starter for sweet and salty leavened baked products. LWT. 2020;133:110092.

    Article  CAS  Google Scholar 

  • Retnaningrum E, Yossi T, Nur’azizah R, Sapalina F, Kulla PDK. Characterization of a bacteriocin as biopreservative synthesized by indigenous lactic acid bacteria from dadih soya traditional product used in West Sumatra, Indonesia. Biodiversitas J Biol Divers. 2020; 21(9).

    Google Scholar 

  • Reuben RC, Roy PC, Sarkar SL, Alam R-U, Jahid IK. Isolation, characterization, and assessment of lactic acid bacteria toward their selection as poultry probiotics. BMC Microbiol. 2019;19(1):253. https://doi.org/10.1186/s12866-019-1626-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzello CG, Lorusso A, Russo V, Pinto D, Marzani B, Gobbetti M. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria. Int J Food Microbiol. 2017;241:252–61.

    Article  CAS  PubMed  Google Scholar 

  • Rodrı́guez E, González B, Gaya P, Nuñez M, Medina M. Diversity of bacteriocins produced by lactic acid bacteria isolated from raw milk. Int Dairy J. 2000;10(1–2):7–15.

    Article  Google Scholar 

  • Salazar N, et al. Exopolysaccharides produced by Bifidobacterium longum IPLA E44 and Bifidobacterium animalis subsp. lactis IPLA R1 modify the composition and metabolic activity of human faecal microbiota in pH-controlled batch cultures. Int J Food Microbiol. 2009;135(3):260–7.

    Article  CAS  PubMed  Google Scholar 

  • Salvetti E, Torriani S, Felis GE. The genus lactobacillus: a taxonomic update (in Eng). Probiotics Antimicrob Proteins. 2012;4(4):217–26. https://doi.org/10.1007/s12602-012-9117-8.

    Article  PubMed  Google Scholar 

  • Saxelin M, et al. Lactobacilli and bacteremia in southern Finland, 1989–1992. Clin Infect Dis. 1996;22(3):564–6.

    Article  CAS  PubMed  Google Scholar 

  • Seth A, Yan F, Polk DB, Rao R. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC-and MAP kinase-dependent mechanism. Am J Physiol-Gastrointest Liver Physiol. 2008;294(4):G1060–9.

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Lee S, Park Y-S. Molecular typing tools for identifying and characterizing lactic acid bacteria: a review. Food Sci Biotechnol. 2020a;29(10):1301–18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma A, et al. A biorefinery approach for the production of ferulic acid from agroresidues through ferulic acid esterase of lactic acid bacteria. 3 Biotech. 2020b;10(8):1–10.

    Google Scholar 

  • Shen Q, Shang N, Li P. In vitro and in vivo antioxidant activity of Bifidobacterium animalis 01 isolated from centenarians. Curr Microbiol. 2011;62(4):1097–103.

    Article  CAS  PubMed  Google Scholar 

  • Singh A, et al. Autochthonous Lactobacillus spp. isolated from Murrah buffalo calves show potential application as probiotic. Curr Res Biotechnol. 2021;3:109–19.

    Article  CAS  Google Scholar 

  • Stasiak-Różańska L, Berthold-Pluta A, Pluta AS, Dasiewicz K, Garbowska M. Effect of simulated gastrointestinal tract conditions on survivability of probiotic bacteria present in commercial preparations. Int J Environ Res Public Health. 2021;18(3):1108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Strandén I, Garrick D. Derivation of equivalent computing algorithms for genomic predictions and reliabilities of animal merit. J Dairy Sci. 2009;92(6):2971–5.

    Article  PubMed  Google Scholar 

  • Strus M, Marewicz E, Kukla G, Ruranska-Smutnicka D, Przondo-Mordarska A, Heczko PB. Surface properties of Lactobacillus strains of human origin. Microb Ecol Health Dis. 2001;13(4):240–5.

    Google Scholar 

  • Šušković J, Kos B, Beganović J, Leboš Pavunc A, Habjanič K, Matošić S. Antimicrobial activity–the most important property of probiotic and starter lactic acid bacteria. Food Technol Biotechnol. 2010;48(3):296–307.

    Google Scholar 

  • Tabrizi A, Khalili L, Homayouni-Rad A, Pourjafar H, Dehghan P, Ansari F. Prebiotics, as promising functional food to patients with psychological disorders: a review on mood disorders, sleep, and cognition. NeuroQuantology. 2019;17(6).

    Google Scholar 

  • Taghizadeh Moghaddam S, Javadi A, Matin AA. Reduction of bisphenol A by Lactobacillus acidophilus and Lactobacillus plantarum in yoghurt. Int J Dairy Technol. 2020;73(4):737–42.

    Article  CAS  Google Scholar 

  • Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol. 2010;60(1):249–66.

    Article  CAS  PubMed  Google Scholar 

  • Valerio F, et al. The viability of probiotic Lactobacillus paracasei IMPC2. 1 coating on apple slices during dehydration and simulated gastro-intestinal digestion. Food Biosci. 2020;34:100533.

    Article  CAS  Google Scholar 

  • Wang B-G, Xu H-B, Xu F, Zeng Z-l, Wei H. Efficacy of oral Bifidobacterium bifidum ATCC 29521 on microflora and antioxidant in mice. Can J Microbiol. 2016;62(3):249–62.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, et al. Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production. Appl Microbiol Biotechnol. 2017;101(7):3015–26.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Guo Y, Chen H, Wei H, Wan C. Potential of Lactobacillus plantarum ZDY2013 and Bifidobacterium bifidum WBIN03 in relieving colitis by gut microbiota, immune, and anti-oxidative stress. Can J Microbiol. 2018;64(5):327–37.

    Article  CAS  PubMed  Google Scholar 

  • Wassenaar TM, et al. Virulence genes in a probiotic E. coli product with a recorded long history of safe use. Eur J Microbiol Immunol. 2015;5(1):81–93.

    Article  CAS  Google Scholar 

  • Watkins C, et al. The viability of probiotics in water, breast milk, and infant formula. Eur J Pediatr. 2018;177(6):867–70.

    Article  PubMed  Google Scholar 

  • Whelan K, Quigley EM. Probiotics in the management of irritable bowel syndrome and inflammatory bowel disease. Curr Opin Gastroenterol. 2013;29(2):184–9.

    Article  PubMed  Google Scholar 

  • Wu J, Zhang Y, Ye L, Wang C. The anti-cancer effects and mechanisms of lactic acid bacteria exopolysaccharides in vitro: a review. Carbohydr Polym. 2021;253:117308.

    Article  CAS  PubMed  Google Scholar 

  • Xin J, et al. Preventing non-alcoholic fatty liver disease through Lactobacillus johnsonii BS15 by attenuating inflammation and mitochondrial injury and improving gut environment in obese mice. Appl Microbiol Biotechnol. 2014;98(15):6817–29.

    Article  CAS  PubMed  Google Scholar 

  • Yan M, et al. Extrusion of dissolved oxygen by exopolysaccharide from Leuconostoc mesenteroides and its implications in relief of the oxygen stress. Front Microbiol. 2018;9:2467.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zendo T. Screening and characterization of novel bacteriocins from lactic acid bacteria. Biosci Biotechnol Biochem. 2013;77(5):893–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, et al. Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B. Microb Cell Factories. 2013;12(1):57. https://doi.org/10.1186/1475-2859-12-57.

    Article  CAS  Google Scholar 

  • Zielińska D, Kolożyn-Krajewska D. Food-origin lactic acid bacteria may exhibit probiotic properties. BioMed Res Int. 2018;2018.

    Google Scholar 

  • Zucko J, Starcevic A, Diminic J, Oros D, Mortazavian AM, Putnik P. Probiotic–friend or foe? Curr Opin Food Sci. 2020;32:45–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Pourjafar .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ansari, F., Bahadori, A., Samakkhah, S.A., Pirouzian, H.R., Pourjafar, H. (2023). Probiotic Lactic Acid Bacteria. In: Jafari, S.M., Rashidinejad, A., Simal-Gandara, J. (eds) Handbook of Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-81404-5_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81404-5_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81404-5

  • Online ISBN: 978-3-030-81404-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics