Skip to main content

Characteristics of the Spinal Cord Injured Patient as a Host of Central Nervous System Implanted Biomaterials

  • Chapter
  • First Online:
Engineering Biomaterials for Neural Applications

Abstract

Spinal cord injury (SCI) is a systemic injury. The spinal damage provokes not only local responses but also a number of dysregulations in peripheral organs that, in turn, affect the spinal cord. Each human lesion is unique and thus biomaterial-based therapies should be individually tailored. Studies performed on human subjects and postmortem tissue samples are burdened by important limitations. Four categories of human SCI have been established based on the macroscopic/low magnification appearance of the injured cord: solid cord injuries, contusions/cavities, lacerations, and massive compressions. In addition, two different damages occur after SCI: the insult itself that leads to the primary damage and the subsequent cascade of pathological processes that further enlarge the lesion, defined as the secondary damage. Beside, there is increasing evidence that acute and chronic SCI are associated with a severe dysfunction of the immune system, which includes three main syndromic alterations: (i) systemic inflammation; (ii) immunodeficiency; and (iii) autoimmune reactions. SCI dysfunction is mainly due to the alteration in the communication between the immune and neuroendocrine systems. Intestinal dysbiosis has been found in SCI patients, accompanied by loss of the integrity of the intestinal barrier. This increased intestinal permeability may play a role in the observed increase in bacterial translocation and, through it, in the disturbances of the innate and adaptive immune responses found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol 10:282

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tran AP, Warren PM, Silver J (2018) The biology of regeneration failure and success after spinal cord injury. Physiol Rev 98:881–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. O’Shea TM, Burda JE, Sofroniew MV (2017) Cell biology of spinal cord injury and repair. J Clin Invest 127:3259–3270

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brennan FH, Popovich PG (2018) Emerging targets for reprograming the immune response to promote repair and recovery of function after spinal cord injury. Curr Opin Neurol 31:334–344

    Article  CAS  PubMed  Google Scholar 

  5. Namimatsu S, Ghazizadeh M, Sugisaki Y (2005) Reversing the effects of formalin fixation with citraconic anhydride and heat: a universal antigen retrieval method. J Histochem Cytochem 53:3–11

    Article  CAS  PubMed  Google Scholar 

  6. Fleming JC, Norenberg MD, Ramsay DA et al. (2006) The cellular inflammatory response in human spinal cords after injury. Brain 129:3249–3269

    Article  PubMed  Google Scholar 

  7. Chang A, Nishiyama A, Peterson J et al. (2000) NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci 20:6404–6412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paniagua-Torija B, Norenberg M, Arevalo-Martin A et al. (2018) Cells in the adult human spinal cord ependymal region do not proliferate after injury. J Pathol 246:415–421

    Article  CAS  PubMed  Google Scholar 

  9. Bunge RP, Puckett WR, Becerra JL et al. (1993) Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv Neurol 59:75–89

    CAS  PubMed  Google Scholar 

  10. Tator CH (1995) Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol 5:407–413

    Article  CAS  PubMed  Google Scholar 

  11. Kakulas BA (1999) A review of the neuropathology of human spinal cord injury with emphasis on special features. J Spinal Cord Med 22:119–24

    Article  CAS  PubMed  Google Scholar 

  12. Norenberg MD, Smith J, Marcillo A (2004) The pathology of human spinal cord injury: defining the problems. J Neurotrauma 21:429–440

    Article  PubMed  Google Scholar 

  13. Choo AM, Liu J, Liu Z et al. (2009) Modeling spinal cord contusion, dislocation, and distraction: characterization of vertebral clamps, injury severities, and node of Ranvier deformations. J Neurosci Methods 181:6–17

    Article  PubMed  Google Scholar 

  14. Steward O, Willenberg R (2017) Rodent spinal cord injury models for studies of axon regeneration. Exp Neurol 287:374–383

    Article  PubMed  Google Scholar 

  15. Domínguez-Bajo A, González-Mayorga A, López-Dolado E et al. (2020) Graphene oxide microfibers promote regenerative responses after chronic implantation in the cervical injured spinal cord. ACS Biomater Sci Eng 6:2401–2414

    Article  PubMed  CAS  Google Scholar 

  16. Chang HT (2007) Subacute human spinal cord contusion: few lymphocytes and many macrophages. Spinal Cord 45:174–182

    Article  CAS  PubMed  Google Scholar 

  17. Betz R, Biering-Sørensen F, Burns SP et al. (2019) The 2019 revision of the international standards for neurological classification of spinal cord injury (ISNCSCI)—what’s new? Spinal Cord 57:815–817

    Article  Google Scholar 

  18. Dimitrijevic MR, Faganel J, Lehmkuhl D, Sherwood A (1983) Motor control in man after partial or complete spinal cord injury. Adv Neurol 39:915–926

    CAS  PubMed  Google Scholar 

  19. Kakulas BA (1999) The applied neuropathology of human spinal cord injury. Spinal Cord 37:79–88

    Article  CAS  PubMed  Google Scholar 

  20. Quencer RM, Bunge RP (1996) The injured spinal cord: Imaging, histopathologic, clinical correlates, and basic science approaches to enhancing neural function after spinal cord injury. Spine (Phila Pa 1976) 21:2064–2066

    Article  CAS  Google Scholar 

  21. Metz GA, Curt A, van de Meent H et al. (2000) Validation of the weight-drop contusion model in rats: A comparative study of human spinal cord injury. J Neurotrauma 17:1–17

    Article  CAS  PubMed  Google Scholar 

  22. Freund P, Seif M, Weiskopf N et al. (2019) MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers. Lancet Neurol 18:1123–1135

    Article  PubMed  Google Scholar 

  23. Simard JM, Woo SK, Norenberg MD et al. (2010) Brief suppression of Abcc8 prevents autodestruction of spinal cord after trauma. Sci Transl Med 2:28ra29

    Google Scholar 

  24. Hayes KC, Kakulas BA (1997) Neuropathology of human spinal cord injury sustained in sports-related activities. J Neurotrauma 14:235–248

    Article  CAS  PubMed  Google Scholar 

  25. Kakulas BA (2004) Neuropathology: the foundation for new treatments in spinal cord injury. Spinal Cord 42:549–563

    Article  CAS  PubMed  Google Scholar 

  26. Tator CH, Koyanagi I (1997) Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg 86:483–492

    Article  CAS  PubMed  Google Scholar 

  27. Zrzavy T, Schwaiger C, Wimmer I et al. (2021) Acute and non-resolving inflammation associate with oxidative injury after human spinal cord injury. Brain 144:144–161

    Article  PubMed  Google Scholar 

  28. Buss A, Pech K, Kakulas BA et al. (2007) Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury. Brain 130:940–953

    Article  PubMed  Google Scholar 

  29. Buss A, Pech K, Kakulas BA et al. (2009) NG2 and phosphacan are present in the astroglial scar after human traumatic spinal cord injury. BMC Neurol 9:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Yu WR, Fehlings MG (2011) Fas/FasL - mediated apoptosis and inflammation are key features of acute human spinal cord injury: implications for translational, clinical application. Acta Neuropathol 122:747–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wolman L (1967) Post-traumatic regeneration of nerve fibres in the human spinal cord and its relation to intramedullary neuroma. J Pathol Bacteriol 94:123–129

    Article  CAS  PubMed  Google Scholar 

  32. Ito T, Oyanagi K, Wakabayashi K, Ikuta F (1996) Traumatic spinal cord injury: A neuropathological study on the longitudinal spreading of the lesions. Acta Neuropathol 93:13–18

    Article  CAS  Google Scholar 

  33. Hashizume Y, Iljima S, Kishimoto H, Hirano A (1983) Pencil-shaped softening of the spinal cord - Pathologic study in 12 autopsy cases. Acta Neuropathol 61:219–224

    Article  CAS  PubMed  Google Scholar 

  34. Quencer RM, Bunge RP, Egnor M et al. (1992) Acute traumatic central cord syndrome: MRI-pathological correlations. Neuroradiology 34:85–94

    Article  CAS  PubMed  Google Scholar 

  35. Goldstein B, Hammond MC, Stiens SA, Little JW (1998) Posttraumatic syringomyelia: Profound neuronal loss, yet preserved function. Arch Phys Med Rehabil 79:107–112

    Article  CAS  PubMed  Google Scholar 

  36. Brodbelt AR, Stoodley MA (2003) Post-traumatic syringomyelia: a review. J Clin Neurosci 10:401–408

    Article  CAS  PubMed  Google Scholar 

  37. Klekamp J (2012) Treatment of posttraumatic syringomyelia. J Neurosurg Spine 17:199–211

    Article  PubMed  Google Scholar 

  38. Klekamp J (2002) The pathophysiology of syringomyelia - historical overview and current concept. Acta Neurochir (Wien) 144:649–664

    Article  CAS  Google Scholar 

  39. Emery E, Aldana P, Bunge MB et al. (1998) Apoptosis after traumatic human spinal cord injury. J Neurosurg 89:911–920

    Article  CAS  PubMed  Google Scholar 

  40. Buss A, Brook GA, Kakulas B et al. (2004) Gradual loss of myelin and formation of an astrocytic scar during Wallerian degeneration in the human spinal cord. Brain 127:34–44

    Article  CAS  PubMed  Google Scholar 

  41. Becerra JL, Puckett WR, Hiester ED et al. (1995) MR-pathologic comparisons of Wallerian degeneration in spinal cord injury. AJNR Am J Neuroradiol 16:125–133

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ackery AD, Norenberg MD, Krassioukov A (2007) Calcitonin gene-related peptide immunoreactivity in chronic human spinal cord injury. Spinal Cord 45:678–686

    Article  CAS  PubMed  Google Scholar 

  43. Yang L, Blumbergs PC, Jones NR et al. (2004) Early expression and cellular localization of proinflammatory cytokines interleukin-1β, interleukin-6, and tumor necrosis factor-α in human traumatic spinal cord injury. Spine (Phila Pa 1976) 29:966–971

    Article  Google Scholar 

  44. Schmitt AB, Buss A, Breuer S et al. (2000) Major histocompatibility complex class II expression by activated microglia caudal to lesions of descending tracts in the human spinal cord is not associated with a T cell response. Acta Neuropathol 100:528–536

    Article  CAS  PubMed  Google Scholar 

  45. Kwon BK, Stammers AMT, Belanger LM et al. (2010) Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J Neurotrauma 27:669–682

    Article  PubMed  Google Scholar 

  46. Kwon BK, Streijger F, Fallah N et al. (2017) Cerebrospinal fluid biomarkers to stratify injury severity and predict outcome in human traumatic spinal cord injury. J Neurotrauma 34:567–580

    Article  PubMed  Google Scholar 

  47. Buss A, Pech K, Kakulas B et al. (2008) TGF-β1 and TGF-β2 expression after traumatic human spinal cord injury. Spinal Cord 46:364–371

    Article  CAS  PubMed  Google Scholar 

  48. Buss A, Pech K, Kakulas BA et al. (2007) Matrix metalloproteinases and their inhibitors in human traumatic spinal cord injury. BMC Neurol 7:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Scholtes F, Adriaensens P, Storme L et al. (2006) Correlation of postmortem 9.4 tesla magnetic resonance imaging and immunohistopathology of the human thoracic spinal cord 7 months after traumatic cervical spine injury. Neurosurgery 59:671–678

    Article  PubMed  Google Scholar 

  50. Puckett WR, Hiester ED, Norenberg MD et al. (1997) The astroglial response to Wallerian degeneration after spinal cord injury in humans. Exp Neurol 148:424–432

    Article  CAS  PubMed  Google Scholar 

  51. Bruce JH, Norenberg MD, Kraydieh S et al. (2000) Schwannosis: role of gliosis and proteoglycan in human spinal cord injury. J Neurotrauma 17:781–788

    Article  CAS  PubMed  Google Scholar 

  52. Guest JD, Hiester ED, Bunge RP (2005) Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp Neurol 192:384–393

    Article  CAS  PubMed  Google Scholar 

  53. González P, González-Fernández C, Campos-Martín Y et al. (2020) Spatio-temporal and cellular expression patterns of PTK7 in the healthy and traumatically injured rat and human spinal cord. Cell Mol Neurobiol 40:1087–1103

    Article  PubMed  CAS  Google Scholar 

  54. González P, González-Fernández C, Campos-Martín Y et al. (2020) Frizzled 1 and Wnt1 as new potential therapeutic targets in the traumatically injured spinal cord. Cell Mol Life Sci 77:4631–4662

    Article  PubMed  CAS  Google Scholar 

  55. Buss A, Sellhaus B, Wolmsley A et al. (2005) Expression pattern of NOGO-A protein in the human nervous system. Acta Neuropathol 110:113–119

    Article  CAS  PubMed  Google Scholar 

  56. Buss A, Pech K, Merkler D et al. (2005) Sequential loss of myelin proteins during Wallerian degeneration in the human spinal cord. Brain 128:356–364

    Article  CAS  PubMed  Google Scholar 

  57. Hughes JT, Brownell B (1963) Aberrant nerve fibres within the spinal cord. J Neurol Neurosurg Psychiatry 26:528–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang ZH, Walter GF, Gerhard L (1996) The expression of nerve growth factor receptor on Schwann cells and the effect of these cells on the regeneration of axons in traumatically injured human spinal cord. Acta Neuropathol 91:180–184

    Article  CAS  PubMed  Google Scholar 

  59. Cawsey T, Duflou J, Weickert CS, Gorrie CA (2015) Nestin-positive ependymal cells are increased in the human spinal cord after traumatic central nervous system injury. J Neurotrauma 32:1393–1402

    Article  PubMed  PubMed Central  Google Scholar 

  60. Schwab JM, Zhang Y, Kopp MA et al. (2014) The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Exp Neurol 258:121–129

    Article  CAS  PubMed  Google Scholar 

  61. Kopp MA, Druschel C, Meisel C et al. (2013) The SCIentinel study—prospective multicenter study to define the spinal cord injury-induced immune depression syndrome (SCI-IDS)—study protocol and interim feasibility data. BMC Neurol 13:168

    Article  PubMed  PubMed Central  Google Scholar 

  62. Davies AL, Hayes KC, Dekaban GA (2007) Clinical correlates of elevated serum concentrations of cytokines and autoantibodies in patients with spinal cord injury. Arch Phys Med Rehabil 88:1384–1393

    Article  PubMed  Google Scholar 

  63. Beck KD, Nguyen HX, Galvan MD et al. (2010) Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain 133:433–447

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ankeny DP, Lucin KM, Sanders VM et al. (2006) Spinal cord injury triggers systemic autoimmunity: Evidence for chronic B lymphocyte activation and lupus-like autoantibody synthesis. J Neurochem 99:1073–1087

    Article  CAS  PubMed  Google Scholar 

  65. Bracchi-Ricard V, Zha J, Smith A et al. (2016) Chronic spinal cord injury attenuates influenza virus-specific antiviral immunity. J Neuroinflammation 13:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Brommer B, Engel O, Kopp MA et al. (2016) Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level. Brain 139:692–707

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kopp MA, Watzlawick R, Martus P et al. (2017) Long-term functional outcome in patients with acquired infections after acute spinal cord injury. Neurology 88:892–900

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hayes KC, Hull TCL, Delaney GA et al. (2002) Elevated serum titers of proinflammatory cytokines and CNS autoantibodies in patients with chronic spinal cord injury. J Neurotrauma 17:753–761

    Article  Google Scholar 

  69. Frost F, Roach MJ, Kushner I, Schreiber P (2005) Inflammatory C-reactive protein and cytokine levels in asymptomatic people with chronic spinal cord injury. Arch Phys Med Rehabil 86:312–317

    Article  PubMed  Google Scholar 

  70. Bank M, Stein A, Sison C et al. (2015) Elevated circulating levels of the pro-inflammatory cytokine macrophage migration inhibitory factor in individuals with acute spinal cord injury. Arch Phys Med Rehabil 96:633–644

    Article  PubMed  Google Scholar 

  71. Segal JL, Gonzales E, Yousefi S et al. (1997) Circulating levels of IL-2R, ICAM-1, and IL-6 in spinal cord injuries. Arch Phys Med Rehabil 78:44–47

    Article  CAS  PubMed  Google Scholar 

  72. Sambrano GR, Steinberg D (1995) Recognition of oxidatively damaged and apoptotic cells by an oxidized low density lipoprotein receptor on mouse peritoneal macrophages: role of membrane phosphatidylserine. Proc Natl Acad Sci USA 92:1396–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Khallou-Laschet J, Varthaman A, Fornasaet G et al. (2010) Macrophage plasticity in experimental atherosclerosis. PLoS One 5:e8852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Pello OM, Silvestre C, De Pizzol M, Andrés V (2011) A glimpse on the phenomenon of macrophage polarization during atherosclerosis. Immunobiology 216:1172–1176

    Article  CAS  PubMed  Google Scholar 

  75. Franceschi C, Garagnani P, Vitale G et al. (2017) Inflammaging and ‘Garb-aging’. Trends Endocrinol Metab 28:199–212

    Article  CAS  PubMed  Google Scholar 

  76. Rawji KS, Mishra MK, Michaels NJ et al. (2016) Immunosenescence of microglia and macrophages: impact on the ageing central nervous system. Brain 139:653–661

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jackaman C, Tomay F, Duong L et al. (2017) Aging and cancer: the role of macrophages and neutrophils. Ageing Res Rev 36:105–116

    Article  CAS  PubMed  Google Scholar 

  78. Alvarez-Mon MA, Gómez AM, Orozco A et al. (2017) Abnormal distribution and function of circulating monocytes and enhanced bacterial translocation in major depressive disorder. Front Psychiatry 10:812

    Article  Google Scholar 

  79. Stein A, Panjwani A, Sison C et al. (2013) Pilot study: elevated circulating levels of the proinflammatory cytokine macrophage migration inhibitory factor in patients with chronic spinal cord injury. Arch Phys Med Rehabil 94:1498–1507

    Article  PubMed  Google Scholar 

  80. Farkas GJ, Gorgey AS, Dolbow DR, Berg AS, Gater DR (2018) The influence of level of spinal cord injury on adipose tissue and its relationship to inflammatory adipokines and cardiometabolic profiles. J Spinal Cord Med 41:407–415

    Article  PubMed  Google Scholar 

  81. Dumitriu IE, Araguás ET, Baboonian C, Kaski JC (2009) CD4+CD28null T cells in coronary artery disease: when helpers become killers. Cardiovasc Res 81:11–19

    Article  CAS  PubMed  Google Scholar 

  82. Kigerl KA, Gensel JC, Ankeny DP et al. (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Murray PJ (2018) Immune regulation by monocytes. Semin Immunol 35:12–18

    Article  CAS  PubMed  Google Scholar 

  84. Diaz D, Lopez-Dolado E, Haro S et al. (2021) Systemic inflammation and the breakdown of intestinal homeostasis are key events in chronic spinal cord injury patients. Int J Mol Sci 22:744

    Article  CAS  PubMed Central  Google Scholar 

  85. Campagnolo DI, Bartlett JA, Keller SE, Sanchez W, Oza R (1997) Impaired phagocytosis of Staphylococcus aureus in complete tetraplegics. Am J Phys Med Rehabil 76:276–280

    Article  CAS  PubMed  Google Scholar 

  86. Cruse JM, Lewis RE, Bishop GR et al. (1993) Decreased immune reactivity and neuroendocrine alterations related to chronic stress in spinal cord injury and stroke patients. Pathobiology 61:183–192

    Article  CAS  PubMed  Google Scholar 

  87. Cruse JM, Lewis RE, Bishop GR et al. (1992) Neuroendocrine-immune interactions associated with loss and restoration of immune system function in spinal cord injury and stroke patients. Immunol Res 11:104–116

    Article  CAS  PubMed  Google Scholar 

  88. Zha J, Smith A, Andreansky S et al. (2014) Chronic thoracic spinal cord injury impairs CD8+ T-cell function by up-regulating programmed cell death-1 expression. J Neuroinflammation 11:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Monahan R, Stein A, Gibbs K, Bank M, Bloom O (2015) Circulating T cell subsets are altered in individuals with chronic spinal cord injury. Immunol Res 63:3–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kil K, Zang YC, Yang D, Markowski J et al. (1999) T cell responses to myelin basic protein in patients with spinal cord injury and multiple sclerosis. J Neuroimmunol 98:201–207

    Article  CAS  PubMed  Google Scholar 

  91. Mizrachi Y, Ohry A, Aviel A et al. (1983) Systemic humoral factors participating in the course of spinal cord injury. Spinal Cord 21:287–293

    Article  CAS  Google Scholar 

  92. Taranova NP, Makarov AI, Amelina OA et al. (1992) The production of autoantibodies to nerve tissue glycolipid antigens in patients with traumatic spinal cord injuries. Zh Vopr Neirokhir Im N N Burdenko 4–5:21–24

    Google Scholar 

  93. Palmers I, Ydens E, Put E et al. (2016) Antibody profiling identifies novel antigenic targets in spinal cord injury patients. J Neuroinflammation 13:243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Hergenroeder GW, Moore AN, Schmitt KM et al. (2016) Identification of autoantibodies to glial fibrillary acidic protein in spinal cord injury patients. Neuroreport 27:90–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zajarías-Fainsod D, Carrillo-Ruiz J, Mestre H et al. (2012) Autoreactivity against myelin basic protein in patients with chronic paraplegia. Eur Spine J 21:964–970

    Article  PubMed  Google Scholar 

  96. Arevalo-Martin A, Grassner L, Garcia-Ovejero D et al. (2018) Elevated autoantibodies in subacute human spinal cord injury are naturally occurring antibodies. Front Immunol 9:2365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Nance DM, Sanders VM (2007) Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun 21:736–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pavlov VA, Tracey KJ (2017) Neural regulation of immunity: molecular mechanisms and clinical translation. Nat Neurosci 20:156–166

    Article  CAS  PubMed  Google Scholar 

  99. Campagnolo DI, Bartlett JA, Keller SE (2000) Influence of neurological level on immune function following spinal cord injury: a review. J Spinal Cord Med 23:121–128

    Article  CAS  PubMed  Google Scholar 

  100. Ueno M, Ueno-Nakamura Y, Niehaus J et al. (2016) Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury. Nat Neurosci 19:784–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang Y, Guan Z, Reader B et al. (2013) Autonomic dysreflexia causes chronic immune suppression after spinal cord injury. J Neurosci 33:12970–12981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pukos N, Goodus MT, Sahinkaya FR et al. (2019) Myelin status and oligodendrocyte lineage cells over time after spinal cord injury: what do we know and what still needs to be unwrapped? Glia 67:2178–2202

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We thank Dr. Elisa López-Dolado and Dr. Raquel Madroñero Mariscal for their help with Fig. 2.4 composition.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel García-Ovejero or Melchor Álvarez-Mon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Ovejero, D., Arévalo-Martín, Á., Díaz, D., Álvarez-Mon, M. (2022). Characteristics of the Spinal Cord Injured Patient as a Host of Central Nervous System Implanted Biomaterials. In: López-Dolado, E., Concepción Serrano, M. (eds) Engineering Biomaterials for Neural Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-81400-7_2

Download citation

Publish with us

Policies and ethics