Skip to main content

Headache in Subarachnoid Hemorrhage

  • Chapter
  • First Online:
Management of Subarachnoid Hemorrhage

Abstract

This chapter discusses the headache management in subarachnoid hemorrhage (SAH). Headache is the alarming sign for SAH, it is usually severe in nature and described by the patient as the worst headache have ever had. The management of SAH headache is usually difficult because of its intensity. Opioids is the drug of choice in managing severe SAH headache, although combining with non-opioids leads to decrease the opioids requirement and better analgesic effect. Medications used in controlling SAH headache have many adverse effects including sedation that may affect the neurological assessment. The complexity of managing SAH headache remains in controlling the pain without causing oversedation that may mask the neurological deterioration of SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wartenberg KE, Mayer SA. Medical complications after subarachnoid hemorrhage. Neurosurg Clin N Am. 2010;21(2):325–38. https://doi.org/10.1016/j.nec.2009.10.012.

    Article  PubMed  Google Scholar 

  2. Dodick DW. Thunderclap headache. J Neurol Neurosurg Psychiatry. 2002;72(1):6–11. https://doi.org/10.1136/JNNP.72.1.6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Swope R, Glover K, Gokun Y, Fraser JF, Cook AM. Evaluation of headache severity after aneurysmal subarachnoid hemorrhage. Interdiscip Neurosurg. 2014;1(4):119–22. https://doi.org/10.1016/J.INAT.2014.07.003.

    Article  Google Scholar 

  4. Glisic EK, Gardiner L, Josti L, et al. Inadequacy of headache management after subarachnoid hemorrhage. Am J Crit Care. 2016;25(2):136–43. https://doi.org/10.4037/ajcc2016486.

    Article  PubMed  Google Scholar 

  5. Cross DT, Tirschwell DL, Clark MA, et al. Mortality rates after subarachnoid hemorrhage: variations according to hospital case volume in 18 states. J Neurosurg. 2003;99(5):810–7. https://doi.org/10.3171/jns.2003.99.5.0810.

    Article  PubMed  Google Scholar 

  6. Gaetani P, Tartara F, Pignatti P, Tancioni F, Rodriguez Y, Baena R, De Benedetti F. Cisternal CSF levels of cytokines after subarachnoid hemorrhage. Neurol Res. 1998;20(4):337–42. https://doi.org/10.1080/01616412.1998.11740528.

    Article  CAS  PubMed  Google Scholar 

  7. Polin RS, Bavbek M, Shaffrey ME, et al. Detection of soluble E-selectin, ICAM-1, VCAM-1, and L-selectin in the cerebrospinal fluid of patients after subarachnoid hemorrhage. J Neurosurg. 1998;89(4):559–67. https://doi.org/10.3171/jns.1998.89.4.0559.

    Article  CAS  PubMed  Google Scholar 

  8. Mijalski C, Dakay K, Miller-Patterson C, Saad A, Silver B, Khan M. Magnesium for treatment of reversible cerebral vasoconstriction syndrome: case series. Neurohospitalist. 2016;6(3):111–3. https://doi.org/10.1177/1941874415613834.

    Article  PubMed  Google Scholar 

  9. Sobey CG, Faraci FM. Subarachnoid haemorrhage: what happens to the cerebral arteries? Clin Exp Pharmacol Physiol. 1998;25(11):867–76. http://www.ncbi.nlm.nih.gov/pubmed/9807657. Accessed 26 Feb 2019.

    Article  CAS  Google Scholar 

  10. Zimmermann M, Seifert V. Endothelin and subarachnoid hemorrhage: an overview. Neurosurgery. 1998;43(4):863–75; discussion 875–6. http://www.ncbi.nlm.nih.gov/pubmed/9766314. Accessed 26 Feb 2019.

    Article  CAS  Google Scholar 

  11. Woolf CJ, Thompson SWN. The induction and maintenance of central sensitization is dependent on N-methyl-d-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain. 1991;44(3):293–9. https://doi.org/10.1016/0304-3959(91)90100-C.

    Article  CAS  PubMed  Google Scholar 

  12. Devlin JW, Skrobik Y, Gélinas C, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46(9):e825–73. https://doi.org/10.1097/CCM.0000000000003299.

    Article  PubMed  Google Scholar 

  13. Payen JF, Bosson JL, Chanques G, Mantz J, Labarere J. Pain assessment is associated with decreased duration of mechanical ventilation in the intensive care unit: a post Hoc analysis of the DOLOREA study. Anesthesiology. 2009;111(6):1308–16. https://doi.org/10.1097/ALN.0b013e3181c0d4f0.

    Article  PubMed  Google Scholar 

  14. Gélinas C, Johnston C. Pain assessment in the critically ill ventilated adult: validation of the critical-care pain observation tool and physiologic indicators. Clin J Pain. 2007;23(6):497–505. https://doi.org/10.1097/AJP.0b013e31806a23fb.

    Article  PubMed  Google Scholar 

  15. Payen JF, Bru O, Bosson JL, et al. Assessing pain in critically ill sedated patients by using a behavioral pain scale. Crit Care Med. 2001;29(12):2258–63. https://doi.org/10.1097/00003246-200112000-00004.

    Article  CAS  PubMed  Google Scholar 

  16. Yu A, Teitelbaum J, Scott J, et al. Evaluating pain, sedation, and delirium in the neurologically critically III—feasibility and reliability of standardized tools: a multi-institutional study. Crit Care Med. 2013;41(8):2002–7. https://doi.org/10.1097/CCM.0b013e31828e96c0.

    Article  PubMed  Google Scholar 

  17. Echegaray-Benites C, Kapoustina O, Gélinas C. Validation of the use of the Critical-Care Pain Observation Tool (CPOT) with brain surgery patients in the neurosurgical intensive care unit. Intensive Crit Care Nurs. 2014;30(5):257–65. https://doi.org/10.1016/j.iccn.2014.04.002.

    Article  PubMed  Google Scholar 

  18. Dehghani H, Tavangar H, Ghandehari A. Validity and reliability of behavioral pain scale in patients with low level of consciousness due to head trauma hospitalized in intensive care unit. Arch Trauma Res. 2014;3(1):18608. https://doi.org/10.5812/atr.18608.

    Article  Google Scholar 

  19. Joffe AM, McNulty B, Boitor M, Marsh R, Gélinas C. Validation of the Critical-Care Pain Observation Tool in brain-injured critically ill adults. J Crit Care. 2016;36:76–80. https://doi.org/10.1016/j.jcrc.2016.05.011.

    Article  PubMed  Google Scholar 

  20. Morad AH, Tamargo RJ, Gottschalk A. The longitudinal course of pain and analgesic therapy following aneurysmal subarachnoid hemorrhage: a cohort study. Headache J Head Face Pain. 2016;56(10):1617–25. https://doi.org/10.1111/head.12908.

    Article  Google Scholar 

  21. World Health Organization. Scoping document for WHO guidelines for the pharmacological treatment of persisting pain in adults with medical illnesses SCOPING DOCUMENT FOR WHO guidelines for the pharmacological treatment of persisting pain in adults with medical illnesses this scoping document is an updated and merged version of the scoping documents on chronic malignant pain and chronic non-malignant pain of 2008. https://www.who.int/medicines/areas/quality_safety/Scoping_WHO_GLs_PersistPainAdults_webversion.pdf?ua=1. Accessed 28 Apr 2019.

  22. Boonstra AM, Stewart RE, Köke AJA, et al. Cut-off points for mild, moderate, and severe pain on the numeric rating scale for pain in patients with chronic musculoskeletal pain: variability and influence of sex and catastrophizing. Front Psychol. 2016;7:1466. https://doi.org/10.3389/fpsyg.2016.01466.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zelman DC, Dukes E, Brandenburg N, Bostrom A, Gore M. Identification of cut-points for mild, moderate and severe pain due to diabetic peripheral neuropathy. Pain. 2005;115(1):29–36. https://doi.org/10.1016/j.pain.2005.01.028.

    Article  PubMed  Google Scholar 

  24. Jensen MP, Smith DG, Ehde DM, Robinsin LR. Pain site and the effects of amputation pain: further clarification of the meaning of mild, moderate, and severe pain. Pain. 2001;91(3):317–22. http://www.ncbi.nlm.nih.gov/pubmed/11275389. Accessed 1 May 2019.

    Article  Google Scholar 

  25. Roberts G. A review of the efficacy and safety of opioid analgesics post-craniotomy. Nurs Crit Care. 2004;9(6):277–83. http://www.ncbi.nlm.nih.gov/pubmed/15575637. Accessed 1 May 2019.

    Article  Google Scholar 

  26. Jeffrey HM, Charlton P, Mellor DJ, Moss E, Vucevic M. Analgesia after intracranial surgery: a double-blind, prospective comparison of codeine and tramadol. Br J Anaesth. 1999;83(2):245–9. https://doi.org/10.1093/BJA/83.2.245.

    Article  CAS  PubMed  Google Scholar 

  27. Goldsack C, Scuplak SM, Smith M. A double-blind comparison of codeine and morphine for postoperative analgesia following intracranial surgery. Anaesthesia. 1996;51(11):1029–32. http://www.ncbi.nlm.nih.gov/pubmed/8943593. Accessed 1 May 2019.

    Article  CAS  Google Scholar 

  28. Stoneham MD, Cooper R, Quiney NF, Walters FJ. Pain following craniotomy: a preliminary study comparing PCA morphine with intramuscular codeine phosphate. Anaesthesia. 1996;51(12):1176–8. http://www.ncbi.nlm.nih.gov/pubmed/9038464. Accessed 1 May 2019.

    Article  CAS  Google Scholar 

  29. Ng KF, Tsui SL, Yang JC, Ho ET. Increased nausea and dizziness when using tramadol for post-operative patient-controlled analgesia (PCA) compared with morphine after intraoperative loading with morphine. Eur J Anaesthesiol. 1998;15(5):565–70. http://www.ncbi.nlm.nih.gov/pubmed/9785072. Accessed 1 May 2019.

    Article  CAS  Google Scholar 

  30. Houmes RJ, Voets MA, Verkaaik A, Erdmann W, Lachmann B. Efficacy and safety of tramadol versus morphine for moderate and severe postoperative pain with special regard to respiratory depression. Anesth Analg. 1992;74(4):510–4. http://www.ncbi.nlm.nih.gov/pubmed/1554117. Accessed 1 May 2019.

    Article  CAS  Google Scholar 

  31. Pang W-W, Mok MS, Lin C-H, Yang T-F, Huang M-H. Comparison of patient-controlled analgesia (PCA) with tramadol or morphine. Can J Anesth. 1999;46(11):1030–5. https://doi.org/10.1007/BF03013197.

    Article  CAS  PubMed  Google Scholar 

  32. Kotak D, Cheserem B, Solth A. A survey of post-craniotomy analgesia in British neurosurgical centres: time for perceptions and prescribing to change? Br J Neurosurg. 2009;23(5):538–42. https://doi.org/10.1080/02688690903100595.

    Article  CAS  PubMed  Google Scholar 

  33. Stoneham MD, Walters FJM. Post-operative analgesia for craniotomy patients: current attitudes among neuroanaesthetists. Eur J Anaesthesiol. 1995;12(6):571–5. https://europepmc.org/article/med/8665879. Accessed 27 Jul 2020.

    CAS  PubMed  Google Scholar 

  34. Jellish WS, Leonetti JP, Kristina S, Douglas A, Origitano TC. Morphine/ondansetron PCA for postoperative pain, nausea, and vomiting after skull base surgery. Otolaryngol Neck Surg. 2006;135(2):175–81. https://doi.org/10.1016/j.otohns.2006.02.027.

    Article  Google Scholar 

  35. Nada EM, Alabdulkareem A. Morphine versus fentanyl patient-controlled analgesia for postoperative pain control in major hepatic resection surgeries including living liver donors: a retrospective study. Saudi J Anaesth. 2018;12(2):250–5. https://doi.org/10.4103/sja.SJA_625_17.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zaw-Tun N, Bruera E. Active metabolites of morphine. J Palliat Care. 1992;8(2):48–50. http://www.ncbi.nlm.nih.gov/pubmed/1635007. Accessed 6 Mar 2019.

    Article  CAS  Google Scholar 

  37. Christrup LL. Morphine metabolites. Acta Anaesthesiol Scand. 1997;41(1 Pt 2):116–22. http://www.ncbi.nlm.nih.gov/pubmed/9061094. Accessed 6 Mar 2019.

    Article  CAS  Google Scholar 

  38. Hannam JA, Anderson BJ. Contribution of morphine and morphine-6-glucuronide to respiratory depression in a child. Anaesth Intensive Care. 2012;40(5):867–70. https://doi.org/10.1177/0310057X1204000516.

    Article  CAS  PubMed  Google Scholar 

  39. Egan TD. Remifentanil pharmacokinetics and pharmacodynamics: a preliminary appraisal. Clin Pharmacokinet. 1995;29(2):80–94. https://doi.org/10.2165/00003088-199529020-00003.

    Article  CAS  PubMed  Google Scholar 

  40. Karabinis A, Mandragos K, Stergiopoulos S, et al. Open Access Safety and efficacy of analgesia-based sedation with remifentanil versus standard hypnotic-based regimens in intensive care unit patients with brain injuries: a randomised, controlled trial [ISRCTN50308308]. Crit Care. 2004;8(4):R268–80. https://doi.org/10.1186/cc2896.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yu EHY, Tran DHD, Lam SW, Irwin MG. Remifentanil tolerance and hyperalgesia: short-term gain, long-term pain? Anaesthesia. 2016;71(11):1347–62. https://doi.org/10.1111/anae.13602.

    Article  CAS  PubMed  Google Scholar 

  42. Rajan S, Hutcherson MT, Sessler DI, et al. The effects of dexmedetomidine and remifentanil on hemodynamic stability and analgesic requirement after craniotomy: a randomized controlled trial. J Neurosurg Anesthesiol. 2016;28(4):282–90. https://doi.org/10.1097/ANA.0000000000000221.

    Article  PubMed  Google Scholar 

  43. Lexicomp | Clinical drug information. https://www.wolterskluwercdi.com/lexicomp-online/. Accessed 8 Sept 2020.

  44. Maghsoudi R, Tabatabai M, Radfar MH, et al. Opioid-sparing effect of intravenous paracetamol after percutaneous nephrolithotomy: a double-blind randomized controlled trial. J Endourol. 2014;28(1):23–7. https://doi.org/10.1089/end.2013.0267.

    Article  PubMed  Google Scholar 

  45. Sane S, Tolumehr A, Hassani E, Mahoori A. Comparison the effects of paracetamol with sufentanil infusion on postoperative pain control after craniotomy in patients with brain tumor. Adv Biomed Res. 2015;4(1):64. https://doi.org/10.4103/2277-9175.152610.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Verchère E, Grenier B, Mesli A, Siao D, Sesay M, Maurette P. Postoperative pain management after supratentorial craniotomy. J Neurosurg Anesthesiol. 2002;14(2):96–101. http://www.ncbi.nlm.nih.gov/pubmed/11907388. Accessed 3 Mar 2019.

    Article  Google Scholar 

  47. Muroi C, Hugelshofer M, Seule M, Keller E. The impact of nonsteroidal anti-inflammatory drugs on inflammatory response after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2014;20(2):240–6. https://doi.org/10.1007/s12028-013-9930-2.

    Article  CAS  PubMed  Google Scholar 

  48. Niemi T, Tanskanen P, Taxell C, Juvela S, Randell T, Rosenberg P. Effects of nonsteroidal anti-inflammatory drugs on hemostasis in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol. 1999;11(3):188–94. http://www.ncbi.nlm.nih.gov/pubmed/10414674. Accessed 3 Mar 2019.

    Article  CAS  Google Scholar 

  49. Harirforoosh S, Asghar W, Jamali F. Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J Pharm Pharm Sci. 2013;16(5):821–47. https://doi.org/10.18433/j3vw2f.

    Article  PubMed  Google Scholar 

  50. Ong CKS, Lirk P, Tan CH, Seymour RA. An evidence-based update on nonsteroidal anti-inflammatory drugs. Clin Med Res. 2007;5(1):19–34. https://doi.org/10.3121/cmr.2007.698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grewal A. Dexmedetomidine: new avenues. J Anaesthesiol Clin Pharmacol. 2011;27(3):297–302. https://doi.org/10.4103/0970-9185.83670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao LH, Shi ZH, Chen GQ, et al. Use of dexmedetomidine for prophylactic analgesia and sedation in patients with delayed extubation after craniotomy: a randomized controlled trial. J Neurosurg Anesthesiol. 2017;29(2):132–9. https://doi.org/10.1097/ANA.0000000000000260.

    Article  PubMed  Google Scholar 

  53. Song J, Ji Q, Sun Q, Gao T, Liu K, Li L. The opioid-sparing effect of intraoperative dexmedetomidine infusion after craniotomy. J Neurosurg Anesthesiol. 2016;28(1):14–20. https://doi.org/10.1097/ANA.0000000000000190.

    Article  PubMed  Google Scholar 

  54. Peng K, Jin X, Liu S, Ji F. Effect of intraoperative dexmedetomidine on post-craniotomy pain. Clin Ther. 2015;37(5):1114–21.e1. https://doi.org/10.1016/j.clinthera.2015.02.011.

    Article  CAS  PubMed  Google Scholar 

  55. Jakob SM, Ruokonen E, Grounds RM, et al. Dexmedetomidine vs midazolamor propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA. 2012;307(11):1151–60. https://doi.org/10.1001/jama.2012.304.

    Article  CAS  PubMed  Google Scholar 

  56. Clinical use of pregabalin in the management of central neuropathic pain. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656330/. Accessed 15 Jan 2020.

  57. Lionel KR, Sethuraman M, Abraham M, Vimala S, Prathapadas U, Hrishi AP. Effect of pregabalin on perioperative headache in patients with aneurysmal subarachnoid hemorrhage: a randomized double-blind, placebo-controlled trial. J Neurosci Rural Pract. 2019;10(03):438–43. https://doi.org/10.1055/s-0039-1697871.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cheng J-K, Chiou L-C. Mechanisms of the antinociceptive action of gabapentin. J Pharmacol Sci. 2006;100(5):471–86. http://www.ncbi.nlm.nih.gov/pubmed/16474201. Accessed 17 Apr 2019.

    Article  CAS  Google Scholar 

  59. Türe H, Sayin M, Karlikaya G, Bingol CA, Aykac B, Türe U. The analgesic effect of gabapentin as a prophylactic anticonvulsant drug on postcraniotomy pain: a prospective randomized study. Anesth Analg. 2009;109(5):1625–31. https://doi.org/10.1213/ane.0b013e3181b0f18b.

    Article  CAS  PubMed  Google Scholar 

  60. Dhakal LP, Hodge DO, Nagal J, et al. Safety and tolerability of gabapentin for aneurysmal subarachnoid hemorrhage (SAH) headache and meningismus. Neurocrit Care. 2015;22(3):414–21. https://doi.org/10.1007/s12028-014-0086-5.

    Article  CAS  PubMed  Google Scholar 

  61. Von der Brelie C, Seifert M, Rot S, et al. Sedation of patients with acute aneurysmal subarachnoid hemorrhage with ketamine is safe and might influence the occurrence of cerebral infarctions associated with delayed cerebral ischemia. World Neurosurg. 2017;97:374–82. https://doi.org/10.1016/j.wneu.2016.09.121.

    Article  PubMed  Google Scholar 

  62. Dorhout Mees SM, Bertens D, van der Worp HB, Rinkel GJE, van den Bergh WM. Magnesium and headache after aneurysmal subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. 2010;81(5):490–3. https://doi.org/10.1136/jnnp.2009.181404.

    Article  CAS  PubMed  Google Scholar 

  63. van den Bergh WM, Zuur JK, Kamerling NA, et al. Role of magnesium in the reduction of ischemic depolarization and lesion volume after experimental subarachnoid hemorrhage. J Neurosurg. 2002;97(2):416–22. https://doi.org/10.3171/jns.2002.97.2.0416.

    Article  PubMed  Google Scholar 

  64. Feigin VL, Anderson N, Rinkel GJ, Algra A, van Gijn J, Bennett DA. Corticosteroids for aneurysmal subarachnoid haemorrhage and primary intracerebral haemorrhage. Cochrane Database Syst Rev. 2005;3 https://doi.org/10.1002/14651858.CD004583.pub2.

  65. Frontera JA, Fernandez A, Claassen J, et al. Hyperglycemia after SAH: predictors, associated complications, and impact on outcome. Stroke. 2006;37(1):199–203. https://doi.org/10.1161/01.STR.0000194960.73883.0f.

    Article  PubMed  Google Scholar 

  66. Nahum AM. Grant’s atlas of anatomy, 7th edition. Edited by James E. Anderson, 608 pp, illus, Williams & Wilkins, Baltimore, 1978. $30.00. Head Neck Surg. 1979;1(5):465–5. https://doi.org/10.1002/hed.2890010513.

  67. Ward JB. Greater occipital nerve block. Semin Neurol. 2003;23(1):59–61. https://doi.org/10.1055/s-2003-40752.

    Article  PubMed  Google Scholar 

  68. Osborn I, Sebeo J. “Scalp block” during craniotomy: a classic technique revisited. J Neurosurg Anesthesiol. 2010;22(3):187–94. https://doi.org/10.1097/ANA.0b013e3181d48846.

    Article  PubMed  Google Scholar 

  69. Sebeo J, Osborn IP. The use of “scalp block” in pediatric patients. Open J Anesthesiol. 2012;02(03):70–3. https://doi.org/10.4236/ojanes.2012.23017.

    Article  Google Scholar 

  70. Manohar N, Rao KS, Chakrabarti D, Srinivas DB. Scalp block: tool for diagnosis in postoperative headache of unknown origin. J Neurosurg Anesthesiol. 2018;30(4):381–2. https://www.google.com/search?rlz=1C1GCEU_enQA881QA881&sxsrf=ALeKk03L3oY2DhkSic_k-_53lq7FCm1FCQ:1590843942725&source=univ&tbm=isch&q=17.+Manohar,+Nitin+MD,+DNB,+DM,+Rao,+Keerthi+S.+DA,+DNB,+PDF;+Chakrabarti,+Dhritiman+MD,+DM;+Srinivas,+Deepti+B.+MD.+Scalp+block:+Tool+for+diagnosis+in+Postoperative+Headache+of+Unknown+Origin.+Journal+of+Neurosurgical+Anesthesiology:+October+2018+-+Volume+30+-+Issue+4+-+p+381-382&sa=X&ved=2ahUKEwiImOXA09vpAhX27XMBHeGyCMcQsAR6BAgCEAE&cshid=1590844100991299&biw=1920&bih=937. Accessed 30 May 2020.

  71. Venkatesulu KB, Nandhakumar A, Cherian M, Mehta P, Kalingarayar S, Shanmugam S. Scalp block for management of subarachnoid hemorrhage (SAH)-induced headache. J Neurosurg Anesthesiol. 2019;31(3):356–7. https://doi.org/10.1097/ANA.0000000000000523.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Abdallah Mitwally .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitwally, H.A., Ahmed, S.M.G. (2022). Headache in Subarachnoid Hemorrhage. In: Ganaw, A.E.A., Shaikh, N., Shallik, N.A., Marcus, M.A.E. (eds) Management of Subarachnoid Hemorrhage. Springer, Cham. https://doi.org/10.1007/978-3-030-81333-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81333-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81332-1

  • Online ISBN: 978-3-030-81333-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics