Skip to main content

Circulating Glutamate as a Potential Biomarker of Central Fat Accumulation and Concomitant Cardiometabolic Alterations

  • Living reference work entry
  • First Online:
Biomarkers in Nutrition

Abstract

Accumulation of excess lipids in ectopic locations such as visceral adipose tissue (VAT), liver, skeletal muscle, and pancreas contributes to a higher risk of cardiometabolic diseases or complications including steatohepatitis, type 2 diabetes, and heart diseases. In the last decade, many studies have reported that circulating concentration of the amino acid glutamate is positively associated with measurements of the amount of visceral or abdominal fat. Therefore, this analyte has been suggested as a potential biomarker for these conditions. Yet, the pathophysiology of the association between circulating glutamate and visceral/abdominal obesity has not been elucidated. Dietary glutamate is extensively used by enterocytes, resulting in a very small proportion reaching the bloodstream. Therefore, increased dietary glutamate intake, in the form of monosodium glutamate or other, is unlikely to explain the association between circulating glutamate and central adiposity. Branched-chain amino acids are known to be elevated in obesity through downregulation of their catabolism in this condition. Because glutamate is a by-product of this pathway, and not a substrate, it is unlikely that lower BCAA catabolism increases circulating glutamate levels. Additional pathways may contribute to explain the link between glutamate and abdominal, visceral obesity. The uncertainty regarding the basis of this association underscores the necessity of performing additional research to firmly establish the biological plausibility and biomarker potential of circulating glutamate concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

aKG:

Alpha-ketoglutarate

BCAAs:

Branched-chain amino acids

BCAT:

Branched-chain aminotransferase

BCKA:

Branched-chain ketoacid

BCKD:

Branched chain ketoacid dehydrogenase

BMI:

Body mass index

CT:

Computed tomography

CVD:

Cardiovascular diseases

DXA:

Dual energy absorptiometry

HbA1c:

Glycated hemoglobin

HDL:

High density lipoprotein

HOMA-IR:

Homeostatic model assessment of insulin resistance

LDL:

Low-density lipoprotein

MetS:

Metabolic syndrome

MRI:

Magnetic resonance imaging

MSG:

Monosodium glutamate

NAFLD:

Nonalcoholic fatty liver diseases

SAT:

Subcutaneous adipose tissue

SD:

Standard deviation

T2D:

Type 2 diabetes

VAT:

Visceral adipose tissue

VLDL:

Very-low-density lipoprotein

WC:

Waist circumference

References

  • Aasheim ET, Elshorbagy AK, Diep LM, Sovik TT, Mala T, Valdivia-Garcia M, Olbers T, Bohmer T, Birkeland KI, Refsum H. Effect of bariatric surgery on sulphur amino acids and glutamate. Br J Nutr. 2011;106:432–40.

    Article  CAS  PubMed  Google Scholar 

  • Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, Marczak L, Mokdad AH, Moradi-Lakeh M, Naghavi M, Salama JS, Vos T, Abate KH, Abbafati C, Ahmed MB, Al-Aly Z, Alkerwi A, Al-Raddadi R, Amare AT, Amberbir A, Amegah AK, Amini E, Amrock SM, Anjana RM, Ärnlöv J, Asayesh H, Banerjee A, Barac A, Baye E, Bennett DA, Beyene AS, Biadgilign S, Biryukov S, Bjertness E, Boneya DJ, Campos-Nonato I, Carrero JJ, Cecilio P, Cercy K, Ciobanu LG, Cornaby L, Damtew SA, Dandona L, Dandona R, Dharmaratne SD, Duncan BB, Eshrati B, Esteghamati A, Feigin VL, Fernandes JC, Fürst T, Gebrehiwot TT, Gold A, Gona PN, Goto A, Habtewold TD, Hadush KT, Hafezi-Nejad N, Hay SI, Horino M, Islami F, Kamal R, Kasaeian A, Katikireddi SV, Kengne AP, Kesavachandran CN, Khader YS, Khang YH, Khubchandani J, Kim D, Kim YJ, Kinfu Y, Kosen S, Ku T, Defo BK, Kumar GA, Larson HJ, Leinsalu M, Liang X, Lim SS, Liu P, Lopez AD, Lozano R, Majeed A, Malekzadeh R, Malta DC, Mazidi M, McAlinden C, McGarvey ST, Mengistu DT, Mensah GA, Mensink GBM, Mezgebe HB, Mirrakhimov EM, Mueller UO, Noubiap JJ, Obermeyer CM, Ogbo FA, Owolabi MO, Patton GC, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27.

    Article  PubMed  Google Scholar 

  • Balkau B, Deanfield JE, Despres JP, Bassand JP, Fox KA, Smith SC Jr, Barter P, Tan CE, Van Gaal L, Wittchen HU, Massien C, Haffner SM. International day for the evaluation of abdominal obesity (IDEA): a study of waist circumference, cardiovascular disease, and diabetes mellitus in 168,000 primary care patients in 63 countries. Circulation. 2007;116:1942–51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Biswas D, Duffley L, Pulinilkunnil T. Role of branched-chain amino acid-catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis. FASEB J. 2019;33:8711–8731. https://doi.org/10.1096/fj.201802842RR.

  • Borel AL, Nazare JA, Smith J, Almeras N, Tremblay A, Bergeron J, Poirier P, Despres JP. Visceral and not subcutaneous abdominal adiposity reduction drives the benefits of a 1-year lifestyle modification program. Obesity (Silver Spring). 2012;20:1223–33.

    Article  CAS  Google Scholar 

  • Bouchard C, Tremblay A. Genetic influences on the response of body fat and fat distribution to positive and negative energy balances in human identical twins. J Nutr. 1997;127:943s–7s.

    Article  CAS  PubMed  Google Scholar 

  • Boulet MM, Chevrier G, Grenier-Larouche T, Pelletier M, Nadeau M, Scarpa J, Prehn C, Marette A, Adamski J, Tchernof A. Alterations of plasma metabolite profiles related to adipose tissue distribution and cardiometabolic risk. Am J Physiol Endocrinol Metab. 2015;309:E736–46.

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JT. Glutamate, at the interface between amino acid and carbohydrate metabolism. J Nutr. 2000;130:988s–90s.

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JT, Brosnan ME. Glutamate: a truly functional amino acid. Amino Acids. 2013;45:413–8.

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JT, Drewnowski A, Friedman MI. Is there a relationship between dietary MSG and [corrected] obesity in animals or humans? Amino Acids. 2014;46:2075–87.

    Article  CAS  PubMed  Google Scholar 

  • Carpentier AC. Postprandial fatty acid metabolism in the development of lipotoxicity and type 2 diabetes. Diabetes Metab. 2008;34:97–107.

    Article  CAS  PubMed  Google Scholar 

  • Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444:881–7.

    Article  CAS  PubMed  Google Scholar 

  • Gaggini M, Carli F, Rosso C, Buzzigoli E, Marietti M, Della Latta V, Ciociaro D, Abate ML, Gambino R, Cassader M, Bugianesi E, Gastaldelli A. Altered amino acid concentrations in NAFLD: impact of obesity and insulin resistance. Hepatology. 2018;67:145–58.

    Article  CAS  PubMed  Google Scholar 

  • Geidenstam N, Magnusson M, Danielsson APH, Gerszten RE, Wang TJ, Reinius LE, Mulder H, Melander O, Ridderstrale M. Amino acid signatures to evaluate the beneficial effects of weight loss. Int J Endocrinol. 2017;2017:6490473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88.

    Article  PubMed  PubMed Central  Google Scholar 

  • He K, Du S, Xun P, Sharma S, Wang H, Zhai F, Popkin B. Consumption of monosodium glutamate in relation to incidence of overweight in Chinese adults: China health and nutrition survey (CHNS). Am J Clin Nutr. 2011;93:1328–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadota Y, Toyoda T, Kitaura Y, Adams SH, Shimomura Y. Regulation of hepatic branched-chain α-ketoacid dehydrogenase complex in rats fed a high-fat diet. Obes Res Clin Pract. 2013;7:e439–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalhan SC, Guo L, Edmison J, Dasarathy S, Mccullough AJ, Hanson RW, Milburn M. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism. 2011;60:404–13.

    Article  CAS  PubMed  Google Scholar 

  • Kimberly WT, O’Sullivan JF, Nath AK, Keyes M, Shi X, Larson MG, Yang Q, Long MT, Vasan R, Peterson RT, Wang TJ, Corey KE, Gerszten RE. Metabolite profiling identifies anandamide as a biomarker of nonalcoholic steatohepatitis. JCI Insight. 2017;2:e92989

    Google Scholar 

  • Kume S, Araki S, Ono N, Shinhara A, Muramatsu T, Araki H, Isshiki K, Nakamura K, Miyano H, Koya D, Haneda M, Ugi S, Kawai H, Kashiwagi A, Uzu T, Maegawa H. Predictive properties of plasma amino acid profile for cardiovascular disease in patients with type 2 diabetes. PLoS One. 2014;9:e101219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labonte CC, Farsijani S, Marliss EB, Gougeon R, Morais JA, Pereira S, Bassil M, Winter A, Murphy J, Combs TP, Chevalier S. Plasma amino acids vs conventional predictors of insulin resistance measured by the Hyperinsulinemic clamp. J Endocr Soc. 2017;1:861–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Gulseth HL, Langleite TM, Norheim F, Olsen T, Refsum H, Jensen J, Birkeland KI, Drevon CA. Branched-chain amino acid metabolism, insulin sensitivity and liver fat response to exercise training in sedentary dysglycaemic and normoglycaemic men. Diabetologia. 2021;64:410–23.

    Article  CAS  PubMed  Google Scholar 

  • Lerin C, Goldfine AB, Boes T, Liu M, Kasif S, Dreyfuss JM, De Sousa-Coelho AL, Daher G, Manoli I, Sysol JR, Isganaitis E, Jessen N, Goodyear LJ, Beebe K, Gall W, Venditti CP, Patti ME. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism. Mol Metab. 2016;5:926–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, Shi J, Zhao S, Liu W, Wang X, Xia H, Liu Z, Cui B, Liang P, Xi L, Jin J, Ying X, Wang X, Zhao X, Li W, Jia H, Lan Z, Li F, Wang R, Sun Y, Yang M, Shen Y, Jie Z, Li J, Chen X, Zhong H, Xie H, Zhang Y, Gu W, Deng X, Shen B, Xu X, Yang H, Xu G, Bi Y, Lai S, Wang J, Qi L, Madsen L, Wang J, Ning G, Kristiansen K, Wang W. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23:859–68.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zheng Y, Guasch-Ferre M, Ruiz-Canela M, Toledo E, Clish C, Liang L, Razquin C, Corella D, Estruch R, Fito M, Gomez-Gracia E, Aros F, Ros E, Lapetra J, Fiol M, Serra-Majem L, Papandreou C, Martinez-Gonzalez MA, Hu FB, Salas-Salvado J. High plasma glutamate and low glutamine-to-glutamate ratio are associated with type 2 diabetes: case-cohort study within the PREDIMED trial. Nutr Metab Cardiovasc Dis. 2019;29:1040–9.

    Article  CAS  PubMed  Google Scholar 

  • Maltais-Payette I, Boulet MM, Prehn C, Adamski J, Tchernof A. Circulating glutamate concentration as a biomarker of visceral obesity and associated metabolic alterations. Nutr Metab (Lond). 2018;15:78.

    Article  CAS  Google Scholar 

  • Maltais-Payette I, Allam-Ndoul B, Perusse L, Vohl MC, Tchernof A. Circulating glutamate level as a potential biomarker for abdominal obesity and metabolic risk. Nutr Metab Cardiovasc Dis. 2019;29:1353–60.

    Article  CAS  PubMed  Google Scholar 

  • Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    Article  CAS  PubMed  Google Scholar 

  • Menni C, Migaud M, Glastonbury CA, Beaumont M, Nikolaou A, Small KS, Brosnan MJ, Mohney RP, Spector TD, Valdes AM. Metabolomic profiling to dissect the role of visceral fat in cardiometabolic health. Obesity (Silver Spring). 2016;24:1380–8.

    Article  CAS  Google Scholar 

  • Neeland IJ, Ross R, Despres JP, Matsuzawa Y, Yamashita S, Shai I, Seidell J, Magni P, Santos RD, Arsenault B, Cuevas A, Hu FB, Griffin B, Zambon A, Barter P, Fruchart JC, Eckel RH. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 2019;7:715–25.

    Article  PubMed  Google Scholar 

  • Newgard CB. Metabolomics and metabolic diseases: where do we stand? Cell Metab. 2017;25:43–56.

    Article  CAS  PubMed  Google Scholar 

  • Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicoletti CF, Morandi Junqueira-Franco MV, Dos Santos JE, Marchini JS, Salgado W Jr, Nonino CB. Protein and amino acid status before and after bariatric surgery: a 12-month follow-up study. Surg Obes Relat Dis. 2013;9:1008–12.

    Article  PubMed  Google Scholar 

  • Okekunle AP, Li Y, Liu L, Du S, Wu X, Chen Y, Li Y, Qi J, Sun C, Feng R. Abnormal circulating amino acid profiles in multiple metabolic disorders. Diabetes Res Clin Pract. 2017;132:45–58.

    Article  CAS  PubMed  Google Scholar 

  • Olney JW. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science. 1969;164:719–21.

    Article  CAS  PubMed  Google Scholar 

  • Qi S, Xu D, Li Q, Xie N, Xia J, Huo Q, Li P, Chen Q, Huang S. Metabonomics screening of serum identifies pyroglutamate as a diagnostic biomarker for nonalcoholic steatohepatitis. Clin Chim Acta. 2017;473:89–95.

    Article  CAS  PubMed  Google Scholar 

  • Reeds PJ, Burrin DG, Stoll B, Jahoor F. Intestinal glutamate metabolism. J Nutr. 2000;130:978s–82s.

    Article  CAS  PubMed  Google Scholar 

  • She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab. 2007;293:E1552–63.

    Article  CAS  PubMed  Google Scholar 

  • Shi Z, Luscombe-Marsh ND, Wittert GA, Yuan B, Dai Y, Pan X, Taylor AW. Monosodium glutamate is not associated with obesity or a greater prevalence of weight gain over 5 years: findings from the Jiangsu nutrition study of Chinese adults. Br J Nutr. 2010;104:457–63.

    Article  CAS  PubMed  Google Scholar 

  • Shin AC, Fasshauer M, Filatova N, Grundell LA, Zielinski E, Zhou JY, Scherer T, Lindtner C, White PJ, Lapworth AL, Ilkayeva O, Knippschild U, Wolf AM, Scheja L, Grove KL, Smith RD, Qian WJ, Lynch CJ, Newgard CB, Buettner C. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism. Cell Metab. 2014a;20:898–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J, Arnold M, Erte I, Forgetta V, Yang TP, Walter K, Menni C, Chen L, Vasquez L, Valdes AM, Hyde CL, Wang V, Ziemek D, Roberts P, Xi L, Grundberg E, Waldenberger M, Richards JB, Mohney RP, Milburn MV, John SL, Trimmer J, Theis FJ, Overington JP, Suhre K, Brosnan MJ, Gieger C, Kastenmuller G, Spector TD, Soranzo N. An atlas of genetic influences on human blood metabolites. Nat Genet. 2014b;46:543–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuster A, Patlas M, Pinthus JH, Mourtzakis M. The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br J Radiol. 2012;85:1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takashina C, Tsujino I, Watanabe T, Sakaue S, Ikeda D, Yamada A, Sato T, Ohira H, Otsuka Y, Oyama-Manabe N, Ito YM, Nishimura M. Associations among the plasma amino acid profile, obesity, and glucose metabolism in Japanese adults with normal glucose tolerance. Nutr Metab (Lond). 2016;13:5.

    Article  CAS  Google Scholar 

  • Taylor R, Holman RR. Normal weight individuals who develop type 2 diabetes: the personal fat threshold. Clin Sci (Lond). 2015;128:405–10.

    Article  Google Scholar 

  • Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93:359–404.

    Article  CAS  PubMed  Google Scholar 

  • Therrien F, Marceau P, Turgeon N, Biron S, Richard D, Lacasse Y. The Laval questionnaire: a new instrument to measure quality of life in morbid obesity. Health Qual Life Outcomes. 2011;9:66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tochikubo O, Nakamura H, Jinzu H, Nagao K, Yoshida H, Kageyama N, Miyano H. Weight loss is associated with plasma free amino acid alterations in subjects with metabolic syndrome. Nutr Diabetes. 2016;6:e197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tricò D, Biancalana E, Solini A. Protein and amino acids in nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care. 2021;24:96–101.

    Article  CAS  PubMed  Google Scholar 

  • Tsai PJ, Huang PC. Circadian variations in plasma and erythrocyte concentrations of glutamate, glutamine, and alanine in men on a diet without and with added monosodium glutamate. Metabolism. 1999;48:1455–60.

    Article  CAS  PubMed  Google Scholar 

  • Tulipani S, Griffin J, Palau-Rodriguez M, Mora-Cubillos X, Bernal-Lopez RM, Tinahones FJ, Corkey BE, Andres-Lacueva C. Metabolomics-guided insights on bariatric surgery versus behavioral interventions for weight loss. Obesity (Silver Spring). 2016;24:2451–66.

    Article  CAS  Google Scholar 

  • Vaarhorst AA, Verhoeven A, Weller CM, Bohringer S, Goraler S, Meissner A, Deelder AM, Henneman P, Gorgels AP, Van Den Brandt PA, Schouten LJ, Van Greevenbroek MM, Merry AH, Verschuren WM, Van Den Maagdenberg AM, Van Dijk KW, Isaacs A, Boomsma D, Oostra BA, Van Duijn CM, Jukema JW, Boer JM, Feskens E, Heijmans BT, Slagboom PE. A metabolomic profile is associated with the risk of incident coronary heart disease. Am Heart J. 2014;168:45–52.e7.

    Article  CAS  PubMed  Google Scholar 

  • Wharton S, Lau DCW, Vallis M, Sharma AM, Biertho L, Campbell-Scherer D, Adamo K, Alberga A, Bell R, Boulé N, Boyling E, Brown J, Calam B, Clarke C, Crowshoe L, Divalentino D, Forhan M, Freedhoff Y, Gagner M, Glazer S, Grand C, Green M, Hahn M, Hawa R, Henderson R, Hong D, Hung P, Janssen I, Jacklin K, Johnson-Stoklossa C, Kemp A, Kirk S, Kuk J, Langlois MF, Lear S, Mcinnes A, Macklin D, Naji L, Manjoo P, Morin MP, Nerenberg K, Patton I, Pedersen S, Pereira L, Piccinini-Vallis H, Poddar M, Poirier P, Prud’Homme D, Salas XR, Rueda-Clausen C, Russell-Mayhew S, Shiau J, Sherifali D, Sievenpiper J, Sockalingam S, Taylor V, Toth E, Twells L, Tytus R, Walji S, Walker L, Wicklum S. Obesity in adults: a clinical practice guideline. CMAJ. 2020;192:E875–e891.

    Article  PubMed  PubMed Central  Google Scholar 

  • White PJ, Newgard CB. Branched-chain amino acids in disease. Science. 2019;363:582–3.

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Lapworth AL, An J, Wang L, McGarrah RW, Stevens RD, Ilkayeva O, George T, Muehlbauer MJ, Bain JR, Trimmer JK, Brosnan MJ, Rolph TP, Newgard CB. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol Metab. 2016;5:538–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO. Obesity and overweight. Fact Sheets. Geneva; 2018.

    Google Scholar 

  • Yamakado M, Tanaka T, Nagao K, Ishizaka Y, Mitushima T, Tani M, Toda A, Toda E, Okada M, Miyano H, Yamamoto H. Plasma amino acid profile is associated with visceral fat accumulation in obese Japanese subjects. Clin Obes. 2012;2:29–40.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Zhu Y, Best LG, Umans JG, Uppal K, Tran VT, Jones DP, Lee ET, Howard BV, Zhao J. Metabolic profiles of obesity in American Indians: the strong heart family study. PLoS One. 2016;11:e0159548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Ceglarek U, Huang T, Li L, Rood J, Ryan DH, Bray GA, Sacks FM, Schwarzfuchs D, Thiery J, Shai I, Qi L. Weight-loss diets and 2-y changes in circulating amino acids in 2 randomized intervention trials. Am J Clin Nutr. 2016a;103:505–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Hu FB, Ruiz-Canela M, Clish CB, Dennis C, Salas-Salvado J, Hruby A, Liang L, Toledo E, Corella D, Ros E, Fito M, Gomez-Gracia E, Aros F, Fiol M, Lapetra J, Serra-Majem L, Estruch R, Martinez-Gonzalez MA. Metabolites of glutamate metabolism are associated with incident cardiovascular events in the PREDIMED PREvencion con DIeta MEDiterranea (PREDIMED) trial. J Am Heart Assoc. 2016b;5:e003755

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Tchernof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Maltais-Payette, I., Tchernof, A. (2022). Circulating Glutamate as a Potential Biomarker of Central Fat Accumulation and Concomitant Cardiometabolic Alterations. In: Patel, V.B., Preedy, V.R. (eds) Biomarkers in Nutrition . Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-81304-8_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81304-8_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81304-8

  • Online ISBN: 978-3-030-81304-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics