Skip to main content

Radioimaging of Activated T Cells in Preclinical and Clinical Cancer Investigations

  • Chapter
  • First Online:
Nuclear Medicine and Immunology
  • 1332 Accesses

Abstract

This chapter is meant to present readers with detailed accounts of studies that have used either directly labeled or indirectly labeled activated T cells to gain insights into the complex nature of cancer immunotherapy (CIT). The goal of CIT is to achieve specific tumor cell eradication while imposing minimal systemic toxicity. Yet, the high cost of CIT and the challenges associated with patient stratification present clinicians with significant hurdles. The use of combined CITs further elevates the level of complexity of these cellular interactions. The complex nature of CIT, thus, demands a clear understanding of how immune cell functions and migration patterns relate to treatment effectiveness. The goal of T cell tracking investigations, therefore, is to provide accurate insights for linking migration patterns of activated T cells to clinical therapeutic outcomes. Moreover, accurate assessments of T cell migration and function during the course of CIT may allow clinicians to develop methods for stratifying patient populations and selecting ideal treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller JF, Sadelain M. The journey from discoveries in fundamental immunology to cancer immunotherapy. Cancer Cell. 2015;27(4):439–49. https://doi.org/10.1016/j.ccell.2015.03.007.

    Article  CAS  PubMed  Google Scholar 

  2. Ayed AO, Chang LJ, Moreb JS. Immunotherapy for multiple myeloma: current status and future directions. Crit Rev Oncol Hematol. 2015;96(3):399–412. https://doi.org/10.1016/j.critrevonc.2015.06.006.

    Article  PubMed  Google Scholar 

  3. Littman DR. Releasing the brakes on cancer immunotherapy. Cell. 2015;162(6):1186–90. https://doi.org/10.1016/j.cell.2015.08.038.

    Article  CAS  PubMed  Google Scholar 

  4. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161(2):205–14. https://doi.org/10.1016/j.cell.2015.03.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Palucka AK, Coussens LM. The basis of oncoimmunology. Cell. 2016;164(6):1233–47. https://doi.org/10.1016/j.cell.2016.01.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Emens LA, Ascierto PA, Darcy PK, Demaria S, Eggermont AMM, Redmond WL, et al. Cancer immunotherapy: opportunities and challenges in the rapidly evolving clinical landscape. Eur J Cancer. 2017;81:116–29. https://doi.org/10.1016/j.ejca.2017.01.035.

    Article  CAS  PubMed  Google Scholar 

  7. Jung SH, Lee HJ, Vo MC, Kim HJ, Lee JJ. Immunotherapy for the treatment of multiple myeloma. Crit Rev Oncol Hematol. 2017;111:87–93. https://doi.org/10.1016/j.critrevonc.2017.01.011.

    Article  PubMed  Google Scholar 

  8. Rasche L, Weinhold N, Morgan GJ, van Rhee F, Davies FE. Immunologic approaches for the treatment of multiple myeloma. Cancer Treat Rev. 2017;55:190–9. https://doi.org/10.1016/j.ctrv.2017.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Franchina DG, Dostert C, Brenner D. Reactive oxygen species: involvement in T cell signaling and metabolism. Trends Immunol. 2018;39(6):489–502. https://doi.org/10.1016/j.it.2018.01.005.

    Article  CAS  PubMed  Google Scholar 

  10. Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM, et al. Systemic immunity is required for effective cancer immunotherapy. Cell. 2017;168(3):487–502.e15. https://doi.org/10.1016/j.cell.2016.12.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Madden DL. From a patient advocate’s perspective: does cancer immunotherapy represent a paradigm shift? Curr Oncol Rep. 2018;20(1):8. https://doi.org/10.1007/s11912-018-0662-5.

    Article  PubMed  Google Scholar 

  12. Tang J, Shalabi A, Hubbard-Lucey VM. Comprehensive analysis of the clinical immuno-oncology landscape. Ann Oncol. 2018;29(1):84–91. https://doi.org/10.1093/annonc/mdx755.

    Article  CAS  PubMed  Google Scholar 

  13. Danhof S, Hudecek M, Smith EL. CARs and other T cell therapies for MM: the clinical experience. Best Pract Res Clin Haematol. 2018;31(2):147–57. https://doi.org/10.1016/j.beha.2018.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Suck G, Koh MBC. Emerging natural killer cell immunotherapies: large-scale ex vivo production of highly potent anticancer effectors. Hematol Oncol Stem Cell Ther. 2010;3(3):135–42.

    CAS  PubMed  Google Scholar 

  15. Granzin M, Soltenborn S, Muller S, Kollet J, Berg M, Cerwenka A, et al. Fully automated expansion and activation of clinical-grade natural killer cells for adoptive immunotherapy. Cytotherapy. 2015;17(5):621–32. https://doi.org/10.1016/j.jcyt.2015.03.611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fang F, Xiao W, Tian Z. NK cell-based immunotherapy for cancer. Semin Immunol. 2017;31:37–54. https://doi.org/10.1016/j.smim.2017.07.009.

    Article  CAS  PubMed  Google Scholar 

  17. Malmberg KJ, Carlsten M, Bjorklund A, Sohlberg E, Bryceson YT, Ljunggren HG. Natural killer cell-mediated immunosurveillance of human cancer. Semin Immunol. 2017;31:20–9. https://doi.org/10.1016/j.smim.2017.08.002.

    Article  CAS  PubMed  Google Scholar 

  18. Lin C, Zhang J. Reformation in chimeric antigen receptor based cancer immunotherapy: redirecting natural killer cell. Biochim Biophys Acta Rev Cancer. 2018;1869(2):200–15. https://doi.org/10.1016/j.bbcan.2018.01.005.

    Article  CAS  PubMed  Google Scholar 

  19. Daher M, Rezvani K. Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering. Curr Opin Immunol. 2018;51:146–53. https://doi.org/10.1016/j.coi.2018.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Andón FT, Digifico E, Maeda A, Erreni M, Mantovani A, Alonso MJ, et al., editors. Targeting tumor associated macrophages: the new challenge for nanomedicine, Seminars in immunology. Amsterdam: Elsevier; 2017.

    Google Scholar 

  21. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298(5594):850–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Park TS, Rosenberg SA, Morgan RA. Treating cancer with genetically engineered T cells. Trends Biotechnol. 2011;29(11):550–7. https://doi.org/10.1016/j.tibtech.2011.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang M, Yin B, Wang HY, Wang R-F. Current advances in T-cell-based cancer immunotherapy. Immunotherapy. 2014;6(12):1265–78.

    CAS  PubMed  Google Scholar 

  24. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 2011;19(3):620–6. https://doi.org/10.1038/mt.2010.272.

    Article  CAS  PubMed  Google Scholar 

  25. Wu CY, Rupp LJ, Roybal KT, Lim WA. Synthetic biology approaches to engineer T cells. Curr Opin Immunol. 2015;35:123–30. https://doi.org/10.1016/j.coi.2015.06.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klebanoff CA, Restifo NP. Customizing functionality and payload delivery for receptor-engineered T cells. Cell. 2016;167(2):304–6. https://doi.org/10.1016/j.cell.2016.09.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Johnson LA, June CH. Driving gene-engineered T cell immunotherapy of cancer. Cell Res. 2017;27(1):38–58. https://doi.org/10.1038/cr.2016.154.

    Article  CAS  PubMed  Google Scholar 

  28. Yee C. Adoptive T cell therapy: points to consider. Curr Opin Immunol. 2018;51:197–203. https://doi.org/10.1016/j.coi.2018.04.007.

    Article  CAS  PubMed  Google Scholar 

  29. Tyler CJ, Doherty DG, Moser B, Eberl M. Human Vgamma9/Vdelta2 T cells: innate adaptors of the immune system. Cell Immunol. 2015;296(1):10–21. https://doi.org/10.1016/j.cellimm.2015.01.008.

    Article  CAS  PubMed  Google Scholar 

  30. Chitadze G, Oberg H-H, Wesch D, Kabelitz D. The ambiguous role of γδ T lymphocytes in antitumor immunity. Trends Immunol. 2017;38(9):668–78.

    CAS  PubMed  Google Scholar 

  31. Kabelitz D. Human γδ T cells: from a neglected lymphocyte population to cellular immunotherapy: a personal reflection of 30 years of γδ T cell research. Clin Immunol. 2016;100(172):90–7.

    Google Scholar 

  32. Allegra A, Innao V, Gerace D, Vaddinelli D, Musolino C. Adoptive immunotherapy for hematological malignancies: current status and new insights in chimeric antigen receptor T cells. Blood Cells Mol Dis. 2016;62:49–63. https://doi.org/10.1016/j.bcmd.2016.11.001.

    Article  CAS  PubMed  Google Scholar 

  33. Blidner AG, Marino KV, Rabinovich GA. Driving CARs into sweet roads: targeting glycosylated antigens in cancer. Immunity. 2016;44(6):1248–50. https://doi.org/10.1016/j.immuni.2016.06.010.

    Article  CAS  PubMed  Google Scholar 

  34. Brown CE, Adusumilli PS. Next frontiers in CAR T-cell therapy. Mol Ther Oncolytics. 2016;3:16028. https://doi.org/10.1038/mto.2016.28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fesnak A, Lin C, Siegel DL, Maus MV. CAR-T cell therapies from the transfusion medicine perspective. Transfus Med Rev. 2016;30(3):139–45. https://doi.org/10.1016/j.tmrv.2016.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gad AZ, El-Naggar S, Ahmed N. Realism and pragmatism in developing an effective chimeric antigen receptor T-cell product for solid cancers. Cytotherapy. 2016;18(11):1382–92. https://doi.org/10.1016/j.jcyt.2016.07.004.

    Article  CAS  PubMed  Google Scholar 

  37. Geyer MB, Brentjens RJ. Review: Current clinical applications of chimeric antigen receptor (CAR) modified T cells. Cytotherapy. 2016;18(11):1393–409. https://doi.org/10.1016/j.jcyt.2016.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gill S, Maus MV, Porter DL. Chimeric antigen receptor T cell therapy: 25 years in the making. Blood Rev. 2016;30(3):157–67. https://doi.org/10.1016/j.blre.2015.10.003.

    Article  CAS  PubMed  Google Scholar 

  39. Newick K, Moon E, Albelda SM. Chimeric antigen receptor T-cell therapy for solid tumors. Mol Ther Oncolytics. 2016;3:16006. https://doi.org/10.1038/mto.2016.6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sadelain M. Chimeric antigen receptors: driving immunology towards synthetic biology. Curr Opin Immunol. 2016;41:68–76. https://doi.org/10.1016/j.coi.2016.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smith AJ, Oertle J, Warren D, Prato D. Chimeric antigen receptor (CAR) T cell therapy for malignant cancers: summary and perspective. J Cell Immunother. 2016;2(2):59–68. https://doi.org/10.1016/j.jocit.2016.08.001.

    Article  Google Scholar 

  42. Wang X, Riviere I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol Ther Oncolytics. 2016;3:16015. https://doi.org/10.1038/mto.2016.15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bollino D, Webb TJ. Chimeric antigen receptor-engineered natural killer and natural killer T cells for cancer immunotherapy. Transl Res. 2017;187:32–43. https://doi.org/10.1016/j.trsl.2017.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chang ZL, Chen YY. CARs: synthetic immunoreceptors for cancer therapy and beyond. Trends Mol Med. 2017;23(5):430–50. https://doi.org/10.1016/j.molmed.2017.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. de Wilde S, Guchelaar HJ, Zandvliet ML, Meij P. Understanding clinical development of chimeric antigen receptor T cell therapies. Cytotherapy. 2017;19(6):703–9. https://doi.org/10.1016/j.jcyt.2017.03.070.

    Article  CAS  PubMed  Google Scholar 

  46. Frey N. The what, when and how of CAR T cell therapy for ALL. Best Pract Res Clin Haematol. 2017;30(3):275–81. https://doi.org/10.1016/j.beha.2017.07.009.

    Article  PubMed  Google Scholar 

  47. Han S, Latchoumanin O, Wu G, Zhou G, Hebbard L, George J, et al. Recent clinical trials utilizing chimeric antigen receptor T cells therapies against solid tumors. Cancer Lett. 2017;390:188–200. https://doi.org/10.1016/j.canlet.2016.12.037.

    Article  CAS  PubMed  Google Scholar 

  48. Jaspers JE, Brentjens RJ. Development of CAR T cells designed to improve antitumor efficacy and safety. Pharmacol Ther. 2017;178:83–91. https://doi.org/10.1016/j.pharmthera.2017.03.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell. 2017;168(4):724–40. https://doi.org/10.1016/j.cell.2017.01.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Riviere I, Sadelain M. Chimeric antigen receptors: a cell and gene therapy perspective. Mol Ther. 2017;25(5):1117–24. https://doi.org/10.1016/j.ymthe.2017.03.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kenderian SS, Porter DL, Gill S. Chimeric antigen receptor T cells and hematopoietic cell transplantation: how not to put the CART before the horse. Biol Blood Marrow Transplant. 2017;23(2):235–46. https://doi.org/10.1016/j.bbmt.2016.09.002.

    Article  CAS  PubMed  Google Scholar 

  52. Zheng PP, Kros JM, Li J. Approved CAR T cell therapies: ice bucket challenges on glaring safety risks and long-term impacts. Drug Discov Today. 2018;23(6):1175–82. https://doi.org/10.1016/j.drudis.2018.02.012.

    Article  PubMed  Google Scholar 

  53. Si W, Li C, Wei P. Synthetic immunology: T-cell engineering and adoptive immunotherapy. Synth Syst Biotechnol. 2018;3(3):179–85. https://doi.org/10.1016/j.synbio.2018.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Siddiqi HF, Staser KW, Nambudiri VE. Research techniques made simple: CAR T-cell therapy. J Invest Dermatol. 2018;138(12):2501–4.e1. https://doi.org/10.1016/j.jid.2018.09.002.

    Article  CAS  PubMed  Google Scholar 

  55. Ramello MC, Haura EB, Abate-Daga D. CAR-T cells and combination therapies: what’s next in the immunotherapy revolution? Pharmacol Res. 2018;129:194–203. https://doi.org/10.1016/j.phrs.2017.11.035.

    Article  CAS  PubMed  Google Scholar 

  56. Grupp S. Beginning the CAR T cell therapy revolution in the US and EU. Curr Res Transl Med. 2018;66(2):62–4. https://doi.org/10.1016/j.retram.2018.03.004.

    Article  PubMed  Google Scholar 

  57. Halim L, Ajina A, Maher J. Pre-clinical development of chimeric antigen receptor T-cell immunotherapy: implications of design for efficacy and safety. Best Pract Res Clin Haematol. 2018;31(2):117–25. https://doi.org/10.1016/j.beha.2018.04.002.

    Article  PubMed  Google Scholar 

  58. Calmels B, Mfarrej B, Chabannon C. From clinical proof-of-concept to commercialization of CAR T cells. Drug Discov Today. 2018;23(4):758–62. https://doi.org/10.1016/j.drudis.2018.01.024.

    Article  PubMed  Google Scholar 

  59. Chen N, Li X, Chintala NK, Tano ZE, Adusumilli PS. Driving CARs on the uneven road of antigen heterogeneity in solid tumors. Curr Opin Immunol. 2018;51:103–10. https://doi.org/10.1016/j.coi.2018.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Minn AJ, Wherry EJ. Combination cancer therapies with immune checkpoint blockade: convergence on interferon signaling. Cell. 2016;165(2):272–5. https://doi.org/10.1016/j.cell.2016.03.031.

    Article  CAS  PubMed  Google Scholar 

  61. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016;17(12):e542–e51. https://doi.org/10.1016/s1470-2045(16)30406-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gay F, D’Agostino M, Giaccone L, Genuardi M, Festuccia M, Boccadoro M, et al. Immuno-oncologic approaches: CAR-T cells and checkpoint inhibitors. Clin Lymphoma Myeloma Leuk. 2017;17(8):471–8. https://doi.org/10.1016/j.clml.2017.06.014.

    Article  PubMed  Google Scholar 

  63. Shao J, Xu Q, Su S, Meng F, Zou Z, Chen F, et al. Engineered cells for costimulatory enhancement combined with IL-21 enhance the generation of PD-1-disrupted CTLs for adoptive immunotherapy. Cell Immunol. 2017;320:38–45. https://doi.org/10.1016/j.cellimm.2017.09.003.

    Article  CAS  PubMed  Google Scholar 

  64. Jacobson CA, Armand P. Immunotherapy in aggressive B-cell lymphomas. Best Pract Res Clin Haematol. 2018;31(3):299–305. https://doi.org/10.1016/j.beha.2018.07.015.

    Article  PubMed  Google Scholar 

  65. Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS, et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell. 2016;164(4):770–9. https://doi.org/10.1016/j.cell.2016.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Themeli M, Sadelain M. Combinatorial antigen targeting: ideal T-cell sensing and anti-tumor response. Trends Mol Med. 2016;22(4):271–3. https://doi.org/10.1016/j.molmed.2016.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Biggs MJ, Milone MC, Santos LC, Gondarenko A, Wind SJ. High-resolution imaging of the immunological synapse and T-cell receptor microclustering through microfabricated substrates. J R Soc Interface. 2011;8(63):1462–71. https://doi.org/10.1098/rsif.2011.0025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Illingworth JJ, Anton van der Merwe P. Dissecting T-cell activation with high-resolution live-cell microscopy. Immunology. 2012;135(3):198–206. https://doi.org/10.1111/j.1365-2567.2011.03537.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Neve-Oz Y, Razvag Y, Sajman J, Sherman E. Mechanisms of localized activation of the T cell antigen receptor inside clusters. Biochim Biophys Acta. 2015;1853(4):810–21. https://doi.org/10.1016/j.bbamcr.2014.09.025.

    Article  CAS  PubMed  Google Scholar 

  70. Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162(6):1229–41. https://doi.org/10.1016/j.cell.2015.08.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zitvogel L, Ayyoub M, Routy B, Kroemer G. Microbiome and anticancer immunosurveillance. Cell. 2016;165(2):276–87. https://doi.org/10.1016/j.cell.2016.03.001.

    Article  CAS  PubMed  Google Scholar 

  72. Hu KH, Butte MJ. T cell activation requires force generation. J Cell Biol. 2016;213(5):535–42. https://doi.org/10.1083/jcb.201511053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Le Borgne M, Raju S, Zinselmeyer BH, Le VT, Li J, Wang Y, et al. Real-time analysis of calcium signals during the early phase of T cell activation using a genetically encoded calcium biosensor. J Immunol. 2016;196(4):1471–9.

    PubMed  Google Scholar 

  74. Sathappan A, van Panhuys N. Advances in in vivo imaging techniques for the visualization and quantification of DC-T cell interactions. J Immunobiol. 2017;2:2. https://doi.org/10.4172/2476-1966.1000125.

    Article  Google Scholar 

  75. Stein JV, Gonzalez SF. Dynamic intravital imaging of cell-cell interactions in the lymph node. J Allergy Clin Immunol. 2017;139(1):12–20.

    PubMed  Google Scholar 

  76. Beaurepaire E, Pavone FS, So PTC, Gavgiotaki E, Filippidis G, Zerva I, et al. Nonlinear microscopy as diagnostic tool for the discrimination of activated T cells. Adv Microsc Imaging. 2017; https://doi.org/10.1117/12.2282895.

  77. Andrejeva G, Rathmell JC. Similarities and distinctions of cancer and immune metabolism in inflammation and tumors. Cell Metab. 2017;26(1):49–70. https://doi.org/10.1016/j.cmet.2017.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mukherjee M, Mace EM, Carisey AF, Ahmed N, Orange JS. Quantitative imaging approaches to study the CAR immunological synapse. Mol Ther. 2017;25(8):1757–68. https://doi.org/10.1016/j.ymthe.2017.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Beckermann KE, Dudzinski SO, Rathmell JC. Dysfunctional T cell metabolism in the tumor microenvironment. Cytokine Growth Factor Rev. 2017;35:7–14. https://doi.org/10.1016/j.cytogfr.2017.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dugnani E, Pasquale V, Bordignon C, Canu A, Piemonti L, Monti P. Integrating T cell metabolism in cancer immunotherapy. Cancer Lett. 2017;411:12–8. https://doi.org/10.1016/j.canlet.2017.09.039.

    Article  CAS  PubMed  Google Scholar 

  81. Ho P-C, Kaech SM. Reenergizing T cell anti-tumor immunity by harnessing immunometabolic checkpoints and machineries. Curr Opin Immunol. 2017;46:38–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kishton RJ, Sukumar M, Restifo NP. Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab. 2017;26(1):94–109. https://doi.org/10.1016/j.cmet.2017.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hardaway JC, Prince E, Arepally A, Katz SC. Regional infusion of chimeric antigen receptor T cells to overcome barriers for solid tumor immunotherapy. J Vasc Intervent Radiol. 2018;29(7):1017–21.e1.

    Google Scholar 

  84. Xiong W, Chen Y, Kang X, Chen Z, Zheng P, Hsu YH, et al. Immunological synapse predicts effectiveness of chimeric antigen receptor cells. Mol Ther. 2018;26(4):963–75. https://doi.org/10.1016/j.ymthe.2018.01.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang L, Romero P. Metabolic control of CD8+ T cell fate decisions and antitumor immunity. Trends Mol Med. 2018;24(1):30–48.

    CAS  PubMed  Google Scholar 

  86. Moogk D, Natarajan A, Krogsgaard M. T cell receptor signal transduction: affinity, force and conformational change. Curr Opin Chem Eng. 2018;19:43–50. https://doi.org/10.1016/j.coche.2017.12.007.

    Article  Google Scholar 

  87. Sukumar M, Kishton RJ, Restifo NP. Metabolic reprograming of anti-tumor immunity. Curr Opin Immunol. 2017;46:14–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang QY, Yang JD, Wang YS. Current strategies to improve the safety of chimeric antigen receptor (CAR) modified T cells. Immunol Lett. 2017;190:201–5. https://doi.org/10.1016/j.imlet.2017.08.018.

    Article  CAS  PubMed  Google Scholar 

  89. Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbe C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20. https://doi.org/10.1158/1078-0432.CCR-09-1624.

    Article  CAS  PubMed  Google Scholar 

  90. Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ. Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics. 2016;3:16011. https://doi.org/10.1038/mto.2016.11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pitt JM, Vetizou M, Daillere R, Roberti MP, Yamazaki T, Routy B, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44(6):1255–69. https://doi.org/10.1016/j.immuni.2016.06.001.

    Article  CAS  PubMed  Google Scholar 

  92. Frey N. Cytokine release syndrome: who is at risk and how to treat. Best Pract Res Clin Haematol. 2017;30(4):336–40. https://doi.org/10.1016/j.beha.2017.09.002.

    Article  PubMed  Google Scholar 

  93. Kim S, Moon EK. Development of novel avenues to overcome challenges facing CAR T cells. Transl Res. 2017;187:22–31. https://doi.org/10.1016/j.trsl.2017.05.009.

    Article  CAS  PubMed  Google Scholar 

  94. Perales MA, Kebriaei P, Kean LS, Sadelain M. Building a safer and faster CAR: seatbelts, airbags, and CRISPR. Biol Blood Marrow Transplant. 2018;24(1):27–31. https://doi.org/10.1016/j.bbmt.2017.10.017.

    Article  CAS  PubMed  Google Scholar 

  95. Gauthier J, Yakoub-Agha I. Chimeric antigen-receptor T-cell therapy for hematological malignancies and solid tumors: clinical data to date, current limitations and perspectives. Curr Res Transl Med. 2017;65(3):93–102. https://doi.org/10.1016/j.retram.2017.08.003.

    Article  CAS  PubMed  Google Scholar 

  96. Bailly C, Clery PF, Faivre-Chauvet A, Bourgeois M, Guerard F, Haddad F, et al. Immuno-PET for clinical theranostic approaches. Int J Mol Sci. 2016;18(1):57. https://doi.org/10.3390/ijms18010057.

    Article  CAS  PubMed Central  Google Scholar 

  97. Wu C, Ma G, Li J, Zheng K, Dang Y, Shi X, et al. In vivo cell tracking via (1)(8)F-fluorodeoxyglucose labeling: a review of the preclinical and clinical applications in cell-based diagnosis and therapy. Clin Imaging. 2013;37(1):28–36. https://doi.org/10.1016/j.clinimag.2012.02.023.

    Article  PubMed  Google Scholar 

  98. Tirumani SH, Ramaiya NH, Keraliya A, Bailey ND, Ott PA, Hodi FS, et al. Radiographic profiling of immune-related adverse events in advanced melanoma patients treated with ipilimumab. Cancer Immunol Res. 2015;3(10):1185–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kong BY, Menzies AM, Saunders CA, Liniker E, Ramanujam S, Guminski A, et al. Residual FDG-PET metabolic activity in metastatic melanoma patients with prolonged response to anti-PD-1 therapy. Pigment Cell Melanoma Res. 2016;29(5):572–7. https://doi.org/10.1111/pcmr.12503.

    Article  CAS  PubMed  Google Scholar 

  100. Cottereau AS, Becker S, Broussais F, Casasnovas O, Kanoun S, Roques M, et al. Prognostic value of baseline total metabolic tumor volume (TMTV0) measured on FDG-PET/CT in patients with peripheral T-cell lymphoma (PTCL). Ann Oncol. 2016;27(4):719–24. https://doi.org/10.1093/annonc/mdw011.

    Article  CAS  PubMed  Google Scholar 

  101. Cho SY, Lipson EJ, Im HJ, Rowe SP, Gonzalez EM, Blackford A, et al. Prediction of response to immune checkpoint inhibitor therapy using early-time-point (18)F-FDG PET/CT imaging in patients with advanced melanoma. J Nucl Med. 2017;58(9):1421–8. https://doi.org/10.2967/jnumed.116.188839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shah NN, Nagle SJ, Torigian DA, Farwell MD, Hwang WT, Frey N, et al. Early positron emission tomography/computed tomography as a predictor of response after CTL019 chimeric antigen receptor-T-cell therapy in B-cell non-Hodgkin lymphomas. Cytotherapy. 2018;20(12):1415–8. https://doi.org/10.1016/j.jcyt.2018.10.003.

    Article  CAS  PubMed  Google Scholar 

  103. Mekki A, Dercle L, Lichtenstein P, Marabelle A, Michot J-M, Lambotte O, et al. Detection of immune-related adverse events by medical imaging in patients treated with anti-programmed cell death 1. Eur J Cancer. 2018;96:91–104.

    CAS  PubMed  Google Scholar 

  104. Wang J, Hu Y, Yang S, Wei G, Zhao X, Wu W, et al. Role of fluorodeoxyglucose positron emission tomography/computed tomography in predicting the adverse effects of chimeric antigen receptor T cell therapy in patients with non-Hodgkin lymphoma. Biol Blood Marrow Transplant. 2019;25(6):1092–8. https://doi.org/10.1016/j.bbmt.2019.02.008.

    Article  CAS  PubMed  Google Scholar 

  105. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.

    CAS  PubMed  Google Scholar 

  106. Bauckneht M, Piva R, Sambuceti G, Grossi F, Morbelli S. Evaluation of response to immune checkpoint inhibitors: is there a role for positron emission tomography? World J Radiol. 2017;9(2):27–33. https://doi.org/10.4329/wjr.v9.i2.27.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Evangelista L, de Jong M, Del Vecchio S, Cai W. The new era of cancer immunotherapy: what can molecular imaging do to help? Clin Transl Imaging. 2017;5(4):299–301. https://doi.org/10.1007/s40336-017-0241-z.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hodi FS, Hwu WJ, Kefford R, Weber JS, Daud A, Hamid O, et al. Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with pembrolizumab. J Clin Oncol. 2016;34(13):1510–7. https://doi.org/10.1200/JCO.2015.64.0391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hildebrandt IJ, Gambhir SS. Molecular imaging applications for immunology. Clin Immunol. 2004;111(2):210–24. https://doi.org/10.1016/j.clim.2003.12.018.

    Article  CAS  PubMed  Google Scholar 

  110. Skitzki JJ, Muhitch JB, Evans SS. Tracking the elusive lymphocyte: methods of detection during adoptive immunotherapy. Immunol Investig. 2007;36(5–6):807–27. https://doi.org/10.1080/08820130701712867.

    Article  CAS  Google Scholar 

  111. Nair-Gill E, Wiltzius SM, Wei XX, Cheng D, Riedinger M, Radu CG, et al. PET probes for distinct metabolic pathways have different cell specificities during immune responses in mice. J Clin Invest. 2010;120(6):2005–15. https://doi.org/10.1172/JCI41250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Srinivas M, Aarntzen EH, Bulte JW, Oyen WJ, Heerschap A, de Vries IJ, et al. Imaging of cellular therapies. Adv Drug Deliv Rev. 2010;62(11):1080–93. https://doi.org/10.1016/j.addr.2010.08.009.

    Article  CAS  PubMed  Google Scholar 

  113. Kircher MF, Gambhir SS, Grimm J. Noninvasive cell-tracking methods. Nat Rev Clin Oncol. 2011;8(11):677–88. https://doi.org/10.1038/nrclinonc.2011.141.

    Article  CAS  PubMed  Google Scholar 

  114. Ottobrini L, Martelli C, Trabattoni DL, Clerici M, Lucignani G. In vivo imaging of immune cell trafficking in cancer. Eur J Nucl Med Mol Imaging. 2011;38(5):949–68. https://doi.org/10.1007/s00259-010-1687-7.

    Article  PubMed  Google Scholar 

  115. Youn H, Hong KJ. In vivo non invasive molecular imaging for immune cell tracking in small animals. Immune Netw. 2012;12(6):223–9. https://doi.org/10.4110/in.2012.12.6.223.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Leech JM, Sharif-Paghaleh E, Maher J, Livieratos L, Lechler RI, Mullen GE, et al. Whole-body imaging of adoptively transferred T cells using magnetic resonance imaging, single photon emission computed tomography and positron emission tomography techniques, with a focus on regulatory T cells. Clin Exp Immunol. 2013;172(2):169–77. https://doi.org/10.1111/cei.12087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Srinivas M, Melero I, Kaempgen E, Figdor CG, de Vries IJ. Cell tracking using multimodal imaging. Contrast Media Mol Imaging. 2013;8(6):432–8. https://doi.org/10.1002/cmmi.1561.

    Article  CAS  PubMed  Google Scholar 

  118. Liu Z, Li Z. Molecular imaging in tracking tumor-specific cytotoxic T lymphocytes (CTLs). Theranostics. 2014;4(10):990.

    PubMed  PubMed Central  Google Scholar 

  119. Neri D. Imaging T cells in vivo. J Nucl Med. 2015;56(8):1135–6. https://doi.org/10.2967/jnumed.115.159533.

    Article  CAS  PubMed  Google Scholar 

  120. Lee HW, Gangadaran P, Kalimuthu S, Ahn BC. Advances in molecular imaging strategies for in vivo tracking of immune cells. Biomed Res Int. 2016;2016:1946585. https://doi.org/10.1155/2016/1946585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hartimath SV, Draghiciu O, van de Wall S, Manuelli V, Dierckx RA, Nijman HW, et al. Noninvasive monitoring of cancer therapy induced activated T cells using [(18)F]FB-IL-2 PET imaging. Oncoimmunology. 2017;6(1):e1248014. https://doi.org/10.1080/2162402X.2016.1248014.

    Article  CAS  PubMed  Google Scholar 

  122. Du Y, Jin Y, Sun W, Fang J, Zheng J, Tian J. Advances in molecular imaging of immune checkpoint targets in malignancies: current and future prospect. Eur Radiol. 2019;29(8):4294–302. https://doi.org/10.1007/s00330-018-5814-3.

    Article  PubMed  Google Scholar 

  123. Wei W, Jiang D, Ehlerding EB, Luo Q, Cai W. Noninvasive PET imaging of T cells. Trends Cancer. 2018;4(5):359–73. https://doi.org/10.1016/j.trecan.2018.03.009.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zeelen C, Paus C, Draper D, Heskamp S, Signore A, Galli F, et al. In-vivo imaging of tumor-infiltrating immune cells: implications for cancer immunotherapy. Q J Nucl Med Mol Imaging. 2018;62(1):56–77. https://doi.org/10.23736/S1824-4785.17.03052-7.

    Article  PubMed  Google Scholar 

  125. Mayer AT, Gambhir SS. The immunoimaging toolbox. J Nucl Med. 2018;59(8):1174–82. https://doi.org/10.2967/jnumed.116.185967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Emami-Shahri N, Foster J, Kashani R, Gazinska P, Cook C, Sosabowski J, et al. Clinically compliant spatial and temporal imaging of chimeric antigen receptor T-cells. Nat Commun. 2018;9(1):1081. https://doi.org/10.1038/s41467-018-03524-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Adams CL, Rush CM, Smith KM, Garside P. Tracking antigen-specific lymphocytes in vivo. In: D’Ambrosio D, Sinigaglia F, editors. Cell migration in inflammation and immunity: methods and protocols. Totowa, NJ: Humana Press; 2003. p. 133–46.

    Google Scholar 

  128. Diken M, Pektor S, Miederer M. Harnessing the potential of noninvasive in vivo preclinical imaging of the immune system: challenges and prospects. Nanomedicine. 2016;11(20):2711–22.

    CAS  PubMed  Google Scholar 

  129. Hong H, Yang Y, Zhang Y, Cai W. Non-invasive cell tracking in cancer and cancer therapy. Curr Top Med Chem. 2010;10(12):1237–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Singh A, Radu C, Ribas A. PET imaging of the immune system: immune monitoring at the whole body level. Q J Nucl Med Mol Imaging. 2010;54(3):281–90.

    CAS  PubMed  Google Scholar 

  131. Bulte JW. In vivo MRI cell tracking: clinical studies. AJR Am J Roentgenol. 2009;193(2):314–25. https://doi.org/10.2214/AJR.09.3107.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Himmelreich U, Dresselaers T. Cell labeling and tracking for experimental models using magnetic resonance imaging. Methods. 2009;48(2):112–24. https://doi.org/10.1016/j.ymeth.2009.03.020.

    Article  CAS  PubMed  Google Scholar 

  133. Ahrens ET, Bulte JW. Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol. 2013;13(10):755–63. https://doi.org/10.1038/nri3531.

    Article  CAS  PubMed  Google Scholar 

  134. Seth A, Park HS, Hong KS. Current perspective on in vivo molecular imaging of immune cells. Molecules. 2017;22(6):881. https://doi.org/10.3390/molecules22060881.

    Article  CAS  PubMed Central  Google Scholar 

  135. Chapelin F, Capitini CM, Ahrens ET. Fluorine-19 MRI for detection and quantification of immune cell therapy for cancer. J Immunother Cancer. 2018;6(1):105.

    PubMed  PubMed Central  Google Scholar 

  136. Beckmann N, Cannet C, Babin AL, Blé FX, Zurbruegg S, Kneuer R, et al. In vivo visualization of macrophage infiltration and activity in inflammation using magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(3):272–98.

    CAS  PubMed  Google Scholar 

  137. Wang Y, Xu C, Ow H. Commercial nanoparticles for stem cell labeling and tracking. Theranostics. 2013;3(8):544–60. https://doi.org/10.7150/thno.5634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Weissleder R, Nahrendorf M, Pittet MJ. Imaging macrophages with nanoparticles. Nat Mater. 2014;13(2):125–38. https://doi.org/10.1038/nmat3780.

    Article  CAS  PubMed  Google Scholar 

  139. Meir R, Popovtzer R. Cell tracking using gold nanoparticles and computed tomography imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10(2):28544497. https://doi.org/10.1002/wnan.1480.

    Article  Google Scholar 

  140. Meir R, Motiei M, Popovtzer R. Gold nanoparticles for in vivo cell tracking. Nanomedicine. 2014;9(13):2059–69.

    CAS  PubMed  Google Scholar 

  141. Zanganeh S, Spitler R, Hutter G, Ho JQ, Pauliah M, Mahmoudi M. Tumor-associated macrophages, nanomedicine and imaging: the axis of success in the future of cancer immunotherapy. Immunotherapy. 2017;9(10):819–35.

    CAS  PubMed  Google Scholar 

  142. Thanarajasingam G, Bennani-Baiti N, Thompson CA. PET-CT in staging, response evaluation, and surveillance of lymphoma. Curr Treat Options Oncol. 2016;17(5):24. https://doi.org/10.1007/s11864-016-0399-z.

    Article  PubMed  Google Scholar 

  143. Gambhir SS. Imaging of T cells in patients with recurrent glioblastoma. Transl Cancer Res. 2017;6(S7):S1291–S2.

    Google Scholar 

  144. Karls S, Shah H, Jacene H. PET/CT for lymphoma post-therapy response assessment in other lymphomas, response assessment for autologous stem cell transplant, and lymphoma follow-up. Semin Nucl Med. 2018;48(1):37–49. https://doi.org/10.1053/j.semnuclmed.2017.09.004.

    Article  PubMed  Google Scholar 

  145. Shah K. Current advances in molecular imaging of gene and cell therapy for cancer. Cancer Biol Ther. 2005;4(5):518–23. https://doi.org/10.4161/cbt.4.5.1706.

    Article  CAS  PubMed  Google Scholar 

  146. Lucignani G, Ottobrini L, Martelli C, Rescigno M, Clerici M. Molecular imaging of cell-mediated cancer immunotherapy. Trends Biotechnol. 2006;24(9):410–8. https://doi.org/10.1016/j.tibtech.2006.07.003.

    Article  CAS  PubMed  Google Scholar 

  147. Tumeh PC, Radu CG, Ribas A. PET imaging of cancer immunotherapy. J Nucl Med. 2008;49(6):865–8. https://doi.org/10.2967/jnumed.108.051342.

    Article  PubMed  Google Scholar 

  148. Lazovic J, Jensen MC, Ferkassian E, Aguilar B, Raubitschek A, Jacobs RE. Imaging immune response in vivo: cytolytic action of genetically altered T cells directed to glioblastoma multiforme. Clin Cancer Res. 2008;14(12):3832–9. https://doi.org/10.1158/1078-0432.CCR-07-5067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Akins EJ, Dubey P. Noninvasive imaging of cell-mediated therapy for treatment of cancer. J Nucl Med. 2008;49(Suppl 2):180S–95S. https://doi.org/10.2967/jnumed.107.045971.

    Article  CAS  PubMed  Google Scholar 

  150. Ponomarev V. Nuclear imaging of cancer cell therapies. J Nucl Med. 2009;50(7):1013–6. https://doi.org/10.2967/jnumed.109.064055.

    Article  CAS  PubMed  Google Scholar 

  151. Liu G, Swierczewska M, Niu G, Zhang X, Chen X. Molecular imaging of cell-based cancer immunotherapy. Mol BioSyst. 2011;7(4):993–1003. https://doi.org/10.1039/c0mb00198h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kurtz DM, Gambhir SS. Tracking cellular and immune therapies in cancer. Adv Cancer Res. 2014;124:257–96.

    CAS  PubMed  Google Scholar 

  153. McCracken MN, Tavaré R, Witte ON, Wu A. Advances in PET detection of the antitumor T cell response. Adv Immunol. 2016;131:187–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Ehlerding EB, England CG, McNeel DG, Cai W. Molecular imaging of immunotherapy targets in cancer. J Nucl Med. 2016;57(10):1487–92. https://doi.org/10.2967/jnumed.116.177493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Haris M, Bagga P, Hariharan H, McGettigan-Croce B, Johnson LA, Reddy R. Molecular imaging biomarkers for cell-based immunotherapies. J Transl Med. 2017;15(1):140. https://doi.org/10.1186/s12967-017-1240-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kurozumi S, Fujii T, Matsumoto H, Inoue K, Kurosumi M, Horiguchi J, et al. Significance of evaluating tumor-infiltrating lymphocytes (TILs) and programmed cell death-ligand 1 (PD-L1) expression in breast cancer. Med Mol Morphol. 2017;50(4):185–94. https://doi.org/10.1007/s00795-017-0170-y.

    Article  CAS  PubMed  Google Scholar 

  157. Ponomarev V. Advancing immune and cell-based therapies through imaging. Mol Imaging Biol. 2017;19(3):379–84. https://doi.org/10.1007/s11307-017-1069-7.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Fruhwirth GO, Kneilling M, de Vries IJM, Weigelin B, Srinivas M, Aarntzen E. The potential of in vivo imaging for optimization of molecular and cellular anti-cancer immunotherapies. Mol Imaging Biol. 2018;20(5):696–704. https://doi.org/10.1007/s11307-018-1254-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Marciscano AE, Thorek DLJ. Role of noninvasive molecular imaging in determining response. Adv Radiat Oncol. 2018;3(4):534–47. https://doi.org/10.1016/j.adro.2018.07.006.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Shields AF, Jacobs PM, Sznol M, Graham MM, Germain RN, Lum LG, et al. Immune modulation therapy and imaging: workshop report. J Nucl Med. 2018;59(3):410–7. https://doi.org/10.2967/jnumed.117.195610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. van der Veen EL, Bensch F, Glaudemans A, Lub-de Hooge MN, de Vries EGE. Molecular imaging to enlighten cancer immunotherapies and underlying involved processes. Cancer Treat Rev. 2018;70:232–44. https://doi.org/10.1016/j.ctrv.2018.09.007.

    Article  CAS  PubMed  Google Scholar 

  162. Wang Q, Ornstein M, Kaufman HL. Imaging the immune response to monitor tumor immunotherapy. Expert Rev Vaccines. 2009;8(10):1427–37.

    CAS  PubMed  Google Scholar 

  163. Bier G, Hoffmann V, Kloth C, Othman AE, Eigentler T, Garbe C, et al. CT imaging of bone and bone marrow infiltration in malignant melanoma—challenges and limitations for clinical staging in comparison to 18FDG-PET/CT. Eur J Radiol. 2016;85(4):732–8. https://doi.org/10.1016/j.ejrad.2016.01.012.

    Article  PubMed  Google Scholar 

  164. Gholamrezanezhad A, Mirpour S, Ardekani JM, Bagheri M, Alimoghadam K, Yarmand S, et al. Cytotoxicity of 111In-oxine on mesenchymal stem cells: a time-dependent adverse effect. Nucl Med Commun. 2009;30(3):210–6.

    CAS  PubMed  Google Scholar 

  165. Adonai N, Nguyen KN, Walsh J, Iyer M, Toyokuni T, Phelps ME, et al. Ex vivo cell labeling with 64Cu–pyruvaldehyde-bis (N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci U S A. 2002;99(5):3030–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Paik J-Y, Lee K-H, Byun S-S, Choe Y, Kim B-T. Use of insulin to improve [18F] fluorodeoxyglucose labelling and retention for in vivo positron emission tomography imaging of monocyte trafficking. Nucl Med Commun. 2002;23(6):551–7.

    CAS  PubMed  Google Scholar 

  167. Ridolfi R, Riccobon A, Galassi R, Giorgetti G, Petrini M, Fiammenghi L, et al. Evaluation of in vivo labelled dendritic cell migration in cancer patients. J Transl Med. 2004;2(1):27.

    PubMed  PubMed Central  Google Scholar 

  168. Meller B, Frohn C, Brand JM, Lauer I, Schelper LF, von Hof K, et al. Monitoring of a new approach of immunotherapy with allogenic (111)In-labelled NK cells in patients with renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2004;31(3):403–7. https://doi.org/10.1007/s00259-003-1398-4.

    Article  PubMed  Google Scholar 

  169. Meier R, Piert M, Piontek G, Rudelius M, Oostendorp RA, Senekowitsch-Schmidtke R, et al. Tracking of [18F] FDG-labeled natural killer cells to HER2/neu-positive tumors. Nucl Med Biol. 2008;35(5):579–88.

    CAS  PubMed  Google Scholar 

  170. Melder RJ, Brownell AL, Shoup TM, Brownell GL, Jain RK. Imaging of activated natural killer cells in mice by positron emission tomography: preferential uptake in tumors. Cancer Res. 1993;53(24):5867–71.

    CAS  PubMed  Google Scholar 

  171. Melder RJ, Elmaleh D, Brownell AL, Brownell GL, Jain RK. A method for labeling cells for positron emission tomography (PET) studies. J Immunol Methods. 1994;175(1):79–87.

    CAS  PubMed  Google Scholar 

  172. Allan R, Sladen G, Bassingham S, Lazarus C, Clarke S, Fogelman I. Comparison of simultaneous 99m Tc-HMPAO and 111 In oxine labelled white cell scans in the assessment of inflammatory bowel disease. Eur J Nucl Med. 1993;20(3):195–200.

    CAS  PubMed  Google Scholar 

  173. Blocklet D, Toungouz M, Kiss R, Lambermont M, Velu T, Duriau D, et al. 111 In-oxine and 99m Tc-HMPAO labelling of antigen-loaded dendritic cells: in vivo imaging and influence on motility and actin content. Eur J Nucl Med Mol Imaging. 2003;30(3):440–7.

    CAS  PubMed  Google Scholar 

  174. Quillien V, Moisan A, Carsin A, Lesimple T, Lefeuvre C, Adamski H, et al. Biodistribution of radiolabelled human dendritic cells injected by various routes. Eur J Nucl Med Mol Imaging. 2005;32(7):731–41. https://doi.org/10.1007/s00259-005-1825-9.

    Article  CAS  PubMed  Google Scholar 

  175. Bhargava KK, Gupta RK, Nichols KJ, Palestro CJ. In vitro human leukocyte labeling with 64Cu: an intraindividual comparison with 111In-oxine and 18F-FDG. Nucl Med Biol. 2009;36(5):545–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. de Vries EF, Roca M, Jamar F, Israel O, Signore A. Guidelines for the labelling of leucocytes with (99m)Tc-HMPAO. Inflammation/Infection Taskgroup of the European Association of Nuclear Medicine. Eur J Nucl Med Mol Imaging. 2010;37(4):842–8. https://doi.org/10.1007/s00259-010-1394-4.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Roca M, de Vries EF, Jamar F, Israel O, Signore A. Guidelines for the labelling of leucocytes with (111)In-oxine. Inflammation/Infection Taskgroup of the European Association of Nuclear Medicine. Eur J Nucl Med Mol Imaging. 2010;37(4):835–41. https://doi.org/10.1007/s00259-010-1393-5.

    Article  PubMed  PubMed Central  Google Scholar 

  178. McAfee J, Samin A. In-111 labeled leukocytes: a review of problems in image interpretation. Radiology. 1985;155(1):221–9.

    CAS  PubMed  Google Scholar 

  179. Müller C, Zielinski C, Linkesch W, Ludwig H, Sinzinger H. In vivo tracing of indium-111 oxine-labeled human peripheral blood mononuclear cells in patients with lymphatic malignancies. J Nucl Med. 1989;30(6):1005–11.

    PubMed  Google Scholar 

  180. Olasz EB, Lang L, Seidel J, Green MV, Eckelman WC, Katz SI. Fluorine-18 labeled mouse bone marrow-derived dendritic cells can be detected in vivo by high resolution projection imaging. J Immunol Methods. 2002;260(1–2):137–48.

    CAS  PubMed  Google Scholar 

  181. Read EJ, Keenan AM, Carter CS, Yolles PS, Davey RJ. In vivo traffic of indium-111-oxine labeled human lymphocytes collected by automated apheresis. J Nucl Med. 1990;31(6):999–1006.

    CAS  PubMed  Google Scholar 

  182. Segal A, Arnot R, Thakur M, Lavender J. Indium-111-labelled leucocytes for localisation of abscesses. Lancet. 1976;308(7994):1056–8.

    Google Scholar 

  183. Thakur ML, Seifert CL, Madsen MT, McKenney SM, Desai AG, Park CH, editors. Neutrophil labeling: problems and pitfalls, Seminars in nuclear medicine. Amsterdam: Elsevier; 1984.

    Google Scholar 

  184. Hughes DK. Nuclear medicine and infection detection: the relative effectiveness of imaging with 111In-oxine-, 99mTc-HMPAO-, and 99mTc-stannous fluoride colloid-labeled leukocytes and with 67Ga-citrate. J Nucl Med Technol. 2003;31(4):196–201.

    CAS  PubMed  Google Scholar 

  185. Ulker O, Genc S, Ates H, Durak H, Atabey N. 99mTc-HMPAO labelling inhibits cell motility and cell proliferation and induces apoptosis of NC-NC cells. Mutat Res. 2007;631(2):69–76. https://doi.org/10.1016/j.mrgentox.2006.12.009.

    Article  CAS  PubMed  Google Scholar 

  186. Eriksson O, Sadeghi A, Carlsson B, Eich T, Lundgren T, Nilsson B, et al. Distribution of adoptively transferred porcine T-lymphoblasts tracked by (18)F-2-fluoro-2-deoxy-D-glucose and position emission tomography. Nucl Med Biol. 2011;38(6):827–33. https://doi.org/10.1016/j.nucmedbio.2011.02.011.

    Article  CAS  PubMed  Google Scholar 

  187. Bhatnagar P, Li Z, Choi Y, Guo J, Li F, Lee DY, et al. Imaging of genetically engineered T cells by PET using gold nanoparticles complexed to Copper-64. Integr Biol (Camb). 2013;5(1):231–8. https://doi.org/10.1039/c2ib20093g.

    Article  CAS  PubMed Central  Google Scholar 

  188. de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol. 2005;23(11):1407–13. https://doi.org/10.1038/nbt1154.

    Article  CAS  PubMed  Google Scholar 

  189. Srinivas M, Morel PA, Ernst LA, Laidlaw DH, Ahrens ET. Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn Reson Med. 2007;58(4):725–34.

    CAS  PubMed  Google Scholar 

  190. Smirnov P, Poirier-Quinot M, Wilhelm C, Lavergne E, Ginefri JC, Combadiere B, et al. In vivo single cell detection of tumor-infiltrating lymphocytes with a clinical 1.5 Tesla MRI system. Magn Reson Med. 2008;60(6):1292–7. https://doi.org/10.1002/mrm.21812.

    Article  PubMed  Google Scholar 

  191. Srinivas M, Turner MS, Janjic JM, Morel PA, Laidlaw DH, Ahrens ET. In vivo cytometry of antigen-specific t cells using 19F MRI. Magn Reson Med. 2009;62(3):747–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Arbab AS, Janic B, Jafari-Khouzani K, Iskander AS, Kumar S, Varma NR, et al. Differentiation of glioma and radiation injury in rats using in vitro produce magnetically labeled cytotoxic T-cells and MRI. PLoS One. 2010;5(2):e9365. https://doi.org/10.1371/journal.pone.0009365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Bannas P, Graumann O, Balcerak P, Peldschus K, Kaul MG, Hohenberg H, et al. Quantitative magnetic resonance imaging of enzyme activity on the cell surface: in vitro and in vivo monitoring of ADP-ribosyltransferase 2 on T cells. Mol Imaging. 2010;9(4):211–22. https://doi.org/10.2310/7290.2010.00017.

    Article  CAS  PubMed  Google Scholar 

  194. Liu L, Ye Q, Wu Y, Hsieh WY, Chen CL, Shen HH, et al. Tracking T-cells in vivo with a new nano-sized MRI contrast agent. Nanomedicine. 2012;8(8):1345–54. https://doi.org/10.1016/j.nano.2012.02.017.

    Article  CAS  PubMed  Google Scholar 

  195. Bouchlaka MN, Ludwig KD, Gordon JW, Kutz MP, Bednarz BP, Fain SB, et al. (19)F-MRI for monitoring human NK cells in vivo. Oncoimmunology. 2016;5(5):e1143996. https://doi.org/10.1080/2162402X.2016.1143996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Gonzales C, Yoshihara HA, Dilek N, Leignadier J, Irving M, Mieville P, et al. In-vivo detection and tracking of T cells in various organs in a melanoma tumor model by 19F-fluorine MRS/MRI. PLoS One. 2016;11(10):e0164557. https://doi.org/10.1371/journal.pone.0164557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Daldrup-Link HE, Meier R, Rudelius M, Piontek G, Piert M, Metz S, et al. In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging. Eur Radiol. 2005;15(1):4–13.

    PubMed  Google Scholar 

  198. Meir R, Shamalov K, Betzer O, Motiei M, Horovitz-Fried M, Yehuda R, et al. Nanomedicine for cancer immunotherapy: tracking cancer-specific T-cells in vivo with gold nanoparticles and CT imaging. ACS Nano. 2015;9(6):6363–72.

    CAS  PubMed  Google Scholar 

  199. Deguine J, Breart B, Lemaître F, Di Santo JP, Bousso P. Intravital imaging reveals distinct dynamics for natural killer and CD8+ T cells during tumor regression. Immunity. 2010;33(4):632–44.

    CAS  PubMed  Google Scholar 

  200. Xu W-L, Li S-l, Ming W, Wen J-y, Jie H, Zhang H-z, et al. Tracking in vivo migration and distribution of antigen-specific cytotoxic T lymphocytes by 5,6-carboxyfluorescein diacetate succinimidyl ester staining during cancer immunotherapy. Chin Med J. 2013;126(16):3019–25.

    CAS  PubMed  Google Scholar 

  201. Fisher B, Packard BS, Read EJ, Carrasquillo JA, Carter CS, Topalian SL, et al. Tumor localization of adoptively transferred indium-111 labeled tumor infiltrating lymphocytes in patients with metastatic melanoma. J Clin Oncol. 1989;7(2):250–61.

    CAS  PubMed  Google Scholar 

  202. Griffith KD, Read EJ, Carrasquillo JA, Carter CS, Yang JC, Fisher B, et al. In vivo distribution of adoptively transferred indium-111-labeled tumor infiltrating lymphocytes and peripheral blood lymphocytes in patients with metastatic melanoma. J Natl Cancer Inst. 1989;81(22):1709–17.

    CAS  PubMed  Google Scholar 

  203. Pockaj BA, Sherry RM, Wei JP, Yannelli JR, Carter CS, Leitman SF, et al. Localization of 111Indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive immunotherapy. Augmentation with cyclophosphamide and correlation with response. Cancer. 1994;73(6):1731–7.

    CAS  PubMed  Google Scholar 

  204. Wallace PK, Palmer LD, Perry-Lalley D, Bolton ES, Alexander RB, Horan PK, et al. Mechanisms of adoptive immunotherapy: improved methods for in vivo tracking of tumor-infiltrating lymphocytes and lymphokine-activated killer cells. Cancer Res. 1993;53(10):2358–67.

    CAS  PubMed  Google Scholar 

  205. Botti C, Negri DR, Seregni E, Ramakrishna V, Arienti F, Maffioli L, et al. Comparison of three different methods for radiolabelling human activated T lymphocytes. Eur J Nucl Med. 1997;24(5):497–504.

    CAS  PubMed  Google Scholar 

  206. Pittet MJ, Grimm J, Berger CR, Tamura T, Wojtkiewicz G, Nahrendorf M, et al. In vivo imaging of T cell delivery to tumors after adoptive transfer therapy. Proc Natl Acad Sci U S A. 2007;104(30):12457–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Agger R, Petersen MS, Petersen CC, Hansen SB, Stødkilde-Jørgensen H, Skands U, et al. T cell homing to tumors detected by 3D-coordinated positron emission tomography and magnetic resonance imaging. J Immunother. 2007;30(1):29–39.

    PubMed  Google Scholar 

  208. Parente-Pereira AC, Burnet J, Ellison D, Foster J, Davies DM, van der Stegen S, et al. Trafficking of CAR-engineered human T cells following regional or systemic adoptive transfer in SCID beige mice. J Clin Immunol. 2011;31(4):710–8.

    CAS  PubMed  Google Scholar 

  209. Bhatnagar P, Alauddin M, Bankson JA, Kirui D, Seifi P, Huls H, et al. Tumor lysing genetically engineered T cells loaded with multi-modal imaging agents. Sci Rep. 2014;4:4502.

    PubMed  PubMed Central  Google Scholar 

  210. Man F, Lim L, Volpe A, Gabizon A, Shmeeda H, Draper B, et al. In vivo PET tracking of (89)Zr-labeled Vgamma9Vdelta2 T cells to mouse xenograft breast tumors activated with liposomal alendronate. Mol Ther. 2019;27(1):219–29. https://doi.org/10.1016/j.ymthe.2018.10.006.

    Article  CAS  PubMed  Google Scholar 

  211. Herschman HR. PET reporter genes for noninvasive imaging of gene therapy, cell tracking and transgenic analysis. Crit Rev Oncol Hematol. 2004;51(3):191–204. https://doi.org/10.1016/j.critrevonc.2004.04.006.

    Article  PubMed  Google Scholar 

  212. Serganova I, Ponomarev V, Blasberg R. Human reporter genes: potential use in clinical studies. Nucl Med Biol. 2007;34(7):791–807. https://doi.org/10.1016/j.nucmedbio.2007.05.009.

    Article  CAS  PubMed  Google Scholar 

  213. Yaghoubi SS, Campbell DO, Radu CG, Czernin J. Positron emission tomography reporter genes and reporter probes: gene and cell therapy applications. Theranostics. 2012;2(4):374.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Brader P, Serganova I, Blasberg RG. Noninvasive molecular imaging using reporter genes. J Nucl Med. 2013;54(2):167–72. https://doi.org/10.2967/jnumed.111.099788.

    Article  CAS  PubMed  Google Scholar 

  215. Herschman HR. Noninvasive imaging of reporter gene expression in living subjects. Adv Cancer Res. 2004;92:30–80.

    Google Scholar 

  216. Gambhir SS, Bauer E, Black ME, Liang Q, Kokoris MS, Barrio JR, et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci U S A. 2000;97(6):2785–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Doubrovin M, Ponomarev V, Beresten T, Balatoni J, Bornmann W, Finn R, et al. Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci U S A. 2001;98(16):9300–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Jacobs A, Tjuvajev JG, Dubrovin M, Akhurst T, Balatoni J, Beattie B, et al. Positron emission tomography-based imaging of transgene expression mediated by replication-conditional, oncolytic herpes simplex virus type 1 mutant vectors in vivo. Cancer Res. 2001;61(7):2983–95.

    CAS  PubMed  Google Scholar 

  219. Liang Q, Gotts J, Satyamurthy N, Barrio J, Phelps ME, Gambhir SS, et al. Noninvasive, repetitive, quantitative measurement of gene expression from a bicistronic message by positron emission tomography, following gene transfer with adenovirus. Mol Ther. 2002;6(1):73–82.

    CAS  PubMed  Google Scholar 

  220. Tjuvajev JG, Doubrovin M, Akhurst T, Cai S, Balatoni J, Alauddin MM, et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med. 2002;43(8):1072–83.

    PubMed  Google Scholar 

  221. Min JJ, Iyer M, Gambhir SS. Comparison of [18F]FHBG and [14C]FIAU for imaging of HSV1-tk reporter gene expression: adenoviral infection vs stable transfection. Eur J Nucl Med Mol Imaging. 2003;30(11):1547–60. https://doi.org/10.1007/s00259-003-1238-6.

    Article  CAS  PubMed  Google Scholar 

  222. Ponomarev V, Doubrovin M, Serganova I, Vider J, Shavrin A, Beresten T, et al. A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nucl Med Mol Imaging. 2004;31(5):740–51.

    CAS  PubMed  Google Scholar 

  223. Ponomarev V, Doubrovin M, Shavrin A, Serganova I, Beresten T, Ageyeva L, et al. A human-derived reporter gene for noninvasive imaging in humans: mitochondrial thymidine kinase type 2. J Nucl Med. 2007;48(5):819–26. https://doi.org/10.2967/jnumed.106.036962.

    Article  CAS  PubMed  Google Scholar 

  224. Niu G, Gaut AW, Ponto LLB, Hichwa RD, Madsen MT, Graham MM, et al. Multimodality noninvasive imaging of gene transfer using the human sodium iodide symporter. J Nucl Med. 2004;45(3):445–9.

    CAS  PubMed  Google Scholar 

  225. Ray P, De A, Min J-J, Tsien RY, Gambhir SS. Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res. 2004;64(4):1323–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Chin FT, Namavari M, Levi J, Subbarayan M, Ray P, Chen X, et al. Semiautomated radiosynthesis and biological evaluation of [18F]FEAU: a novel PET imaging agent for HSV1-tk/sr39tk reporter gene expression. Mol Imaging Biol. 2008;10(2):82–91. https://doi.org/10.1007/s11307-007-0122-3.

    Article  PubMed  Google Scholar 

  227. Cho SY, Ravasi L, Szajek LP, Seidel J, Green MV, Fine HA, et al. Evaluation of 76Br-FBAU as a PET reporter probe for HSV1-tk gene expression imaging using mouse models of human glioma. J Nucl Med. 2005;46(11):1923–30.

    CAS  PubMed  Google Scholar 

  228. Yaghoubi SS, Barrio JR, Namavari M, Satyamurthy N, Phelps ME, Herschman HR, et al. Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Ther. 2005;12(3):329.

    CAS  PubMed  Google Scholar 

  229. Soghomonyan S, Hajitou A, Rangel R, Trepel M, Pasqualini R, Arap W, et al. Molecular PET imaging of HSV1-tk reporter gene expression using [18F]FEAU. Nat Protoc. 2007;2(2):416–23. https://doi.org/10.1038/nprot.2007.49.

    Article  CAS  PubMed  Google Scholar 

  230. Barton KN, Stricker H, Brown SL, Elshaikh M, Aref I, Lu M, et al. Phase I study of noninvasive imaging of adenovirus-mediated gene expression in the human prostate. Mol Ther. 2008;16(10):1761–9. https://doi.org/10.1038/mt.2008.172.

    Article  CAS  PubMed  Google Scholar 

  231. Miyagawa T, Gogiberidze G, Serganova I, Cai S, Balatoni JA, Thaler HT, et al. Imaging of HSV-tk Reporter gene expression: comparison between [18F]FEAU, [18F]FFEAU, and other imaging probes. J Nucl Med. 2008;49(4):637–48. https://doi.org/10.2967/jnumed.107.046227.

    Article  CAS  PubMed  Google Scholar 

  232. Chan P-C, Wu C-Y, Chang W-Y, Chang W-T, Alauddin M, Liu R-S, et al. Evaluation of F-18-labeled 5-iodocytidine (18F-FIAC) as a new potential positron emission tomography probe for herpes simplex virus type 1 thymidine kinase imaging. Nucl Med Biol. 2011;38(7):987–95.

    CAS  PubMed  Google Scholar 

  233. Niers JM, Chen JW, Lewandrowski G, Kerami M, Garanger E, Wojtkiewicz G, et al. Single reporter for targeted multimodal in vivo imaging. J Am Chem Soc. 2012;134(11):5149–56. https://doi.org/10.1021/ja209868g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Lee WW, Moon DH, Park SY, Jin J, Kim SJ, Lee H. Imaging of adenovirus-mediated expression of human sodium iodide symporter gene by 99mTcO4 scintigraphy in mice. Nucl Med Biol. 2004;31(1):31–40.

    CAS  PubMed  Google Scholar 

  235. Bettegowda C, Foss CA, Cheong I, Wang Y, Diaz L, Agrawal N, et al. Imaging bacterial infections with radiolabeled 1-(2′-deoxy-2′-fluoro-β-D-arabinofuranosyl)-5-iodouracil. Proc Natl Acad Sci U S A. 2005;102(4):1145–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Sun H, Mangner TJ, Collins JM, Muzik O, Douglas K, Shields AF. Imaging DNA synthesis in vivo with 18F-FMAU and PET. J Nucl Med. 2005;46(2):292–6.

    CAS  PubMed  Google Scholar 

  237. Le LQ, Kabarowski JH, Wong S, Nguyen K, Gambhir SS, Witte ON. Positron emission tomography imaging analysis of G2A as a negative modifier of lymphoid leukemogenesis initiated by the BCR-ABL oncogene. Cancer Cell. 2002;1(4):381–91.

    CAS  PubMed  Google Scholar 

  238. Park J-J, Lee T-S, Son J-J, Chun K-S, Song I-H, Park Y-S, et al. Comparison of cell-labeling methods with 124I-FIAU and 64Cu-PTSM for cell tracking using chronic myelogenous leukemia cells expressing HSV1-tk and firefly luciferase. Cancer Biother Radiopharm. 2012;27(10):719–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Mayer-Kuckuk P, Doubrovin M, Bidaut L, Budak-Alpdogan T, Cai S, Hubbard V, et al. Molecular imaging reveals skeletal engraftment sites of transplanted bone marrow cells. Cell Transplant. 2006;15(1):75–82.

    PubMed  Google Scholar 

  240. McCracken MN, Gschweng EH, Nair-Gill E, McLaughlin J, Cooper AR, Riedinger M, et al. Long-term in vivo monitoring of mouse and human hematopoietic stem cell engraftment with a human positron emission tomography reporter gene. Proc Natl Acad Sci U S A. 2013;110(5):1857–62. https://doi.org/10.1073/pnas.1221840110.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Lee HW, Yoon SY, Singh TD, Choi YJ, Lee HJ, Park JY, et al. Tracking of dendritic cell migration into lymph nodes using molecular imaging with sodium iodide symporter and enhanced firefly luciferase genes. Sci Rep. 2015;5:9865. https://doi.org/10.1038/srep09865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Lee SB, Lee HW, Lee H, Jeon YH, Lee SW, Ahn BC, et al. Tracking dendritic cell migration into lymph nodes by using a novel PET probe (18)F-tetrafluoroborate for sodium/iodide symporter. EJNMMI Res. 2017;7(1):32. https://doi.org/10.1186/s13550-017-0280-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Ponomarev V, Doubrovin M, Lyddane C, Beresten T, Balatoni J, Bornman W, et al. Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia (New York, NY). 2001;3(6):480.

    CAS  Google Scholar 

  244. Koehne G, Doubrovin M, Doubrovina E, Zanzonico P, Gallardo HF, Ivanova A, et al. Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol. 2003;21(4):405.

    CAS  PubMed  Google Scholar 

  245. Zanzonico P, Koehne G, Gallardo HF, Doubrovin M, Doubrovina E, Finn R, et al. [131I]FIAU labeling of genetically transduced, tumor-reactive lymphocytes: cell-level dosimetry and dose-dependent toxicity. Eur J Nucl Med Mol Imaging. 2006;33(9):988–97. https://doi.org/10.1007/s00259-005-0057-3.

    Article  CAS  PubMed  Google Scholar 

  246. Dubey P, Su H, Adonai N, Du S, Rosato A, Braun J, et al. Quantitative imaging of the T cell antitumor response by positron-emission tomography. Proc Natl Acad Sci U S A. 2003;100(3):1232–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Su H, Forbes A, Gambhir SS, Braun J. Quantitation of cell number by a positron emission tomography reporter gene strategy. Mol Imaging Biol. 2004;6(3):139–48.

    PubMed  Google Scholar 

  248. Shu CJ, Guo S, Kim YJ, Shelly SM, Nijagal A, Ray P, et al. Visualization of a primary anti-tumor immune response by positron emission tomography. Proc Natl Acad Sci U S A. 2005;102(48):17412–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Shu CJ, Radu CG, Shelly SM, Vo DD, Prins R, Ribas A, et al. Quantitative PET reporter gene imaging of CD8+ T cells specific for a melanoma-expressed self-antigen. Int Immunol. 2009;21(2):155–65. https://doi.org/10.1093/intimm/dxn133.

    Article  CAS  PubMed  Google Scholar 

  250. Su H, Chang DS, Gambhir SS, Braun J. Monitoring the antitumor response of naive and memory CD8 T cells in RAG1−/− mice by positron-emission tomography. J Immunol. 2006;176(7):4459–67. https://doi.org/10.4049/jimmunol.176.7.4459.

    Article  CAS  PubMed  Google Scholar 

  251. Yaghoubi SS, Jensen MC, Satyamurthy N, Budhiraja S, Paik D, Czernin J, et al. Noninvasive detection of therapeutic cytolytic T cells with 18 F–FHBG PET in a patient with glioma. Nat Rev Clin Oncol. 2009;6(1):53.

    CAS  Google Scholar 

  252. Keu KV, Witney TH, Yaghoubi S, Rosenberg J, Kurien A, Magnusson R, et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med. 2017;9(373):eaag2196.

    PubMed  PubMed Central  Google Scholar 

  253. Dobrenkov K, Olszewska M, Likar Y, Shenker L, Gunset G, Cai S, et al. Monitoring the efficacy of adoptively transferred prostate cancer-targeted human T lymphocytes with PET and bioluminescence imaging. J Nucl Med. 2008;49(7):1162–70. https://doi.org/10.2967/jnumed.107.047324.

    Article  PubMed  Google Scholar 

  254. Dotti G, Tian M, Savoldo B, Najjar A, Cooper LJ, Jackson J, et al. Repetitive noninvasive monitoring of HSV1-tk-expressing T cells intravenously infused into nonhuman primates using positron emission tomography and computed tomography with 18F-FEAU. Mol Imaging. 2009;8(4):230–7.

    PubMed  Google Scholar 

  255. Najjar AM, Manuri PR, Olivares S, Flores L II, Mi T, Huls H, et al. Imaging of sleeping beauty-modified CD19-specific T cells expressing HSV1-thymidine kinase by positron emission tomography. Mol Imaging Biol. 2016;18(6):838–48. https://doi.org/10.1007/s11307-016-0971-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Vedvyas Y, Shevlin E, Zaman M, Min IM, Amor-Coarasa A, Park S, et al. Longitudinal PET imaging demonstrates biphasic CAR T cell responses in survivors. JCI Insight. 2016;1(19):e90064. https://doi.org/10.1172/jci.insight.90064.

    Article  PubMed  PubMed Central  Google Scholar 

  257. Park S, Shevlin E, Vedvyas Y, Zaman M, Park S, Hsu YS, et al. Micromolar affinity CAR T cells to ICAM-1 achieves rapid tumor elimination while avoiding systemic toxicity. Sci Rep. 2017;7(1):14366. https://doi.org/10.1038/s41598-017-14749-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Mall S, Yusufi N, Wagner R, Klar R, Bianchi H, Steiger K, et al. Immuno-PET imaging of engineered human T cells in tumors. Cancer Res. 2016;76(14):4113–23. https://doi.org/10.1158/0008-5472.CAN-15-2784.

    Article  CAS  PubMed  Google Scholar 

  259. Yusufi N, Mall S, Bianchi HO, Steiger K, Reder S, Klar R, et al. In-depth characterization of a TCR-specific tracer for sensitive detection of tumor-directed transgenic T cells by immuno-PET. Theranostics. 2017;7(9):2402–16. https://doi.org/10.7150/thno.17994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Yusufi N, Mall S, de Oliveira Bianchi H, Steiger K, Reder S, Klar R, et al. In-depth characterization of a TCR-specific tracer for sensitive detection of tumor-directed transgenic T cells by immuno-PET. Theranostics. 2017;7(9):2402.

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Krebs S, Ahad A, Carter LM, Eyquem J, Brand C, Bell M, et al. Antibody with infinite affinity for in vivo tracking of genetically engineered lymphocytes. J Nucl Med. 2018;59(12):1894–900. https://doi.org/10.2967/jnumed.118.208041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Bruno R, Giannasio P, Ronga G, Baudin E, Travagli J, Russo D, et al. Sodium iodide symporter expression and radioiodine distribution in extrathyroidal tissues. J Endocrinol Investig. 2004;27(11):1010–4.

    CAS  Google Scholar 

  263. Sharp SE, Trout AT, Weiss BD, Gelfand MJ. MIBG in neuroblastoma diagnostic imaging and therapy. Radiographics. 2016;36(1):258–78.

    PubMed  Google Scholar 

  264. Moroz MA, Serganova I, Zanzonico P, Ageyeva L, Beresten T, Dyomina E, et al. Imaging hNET reporter gene expression with 124I-MIBG. J Nucl Med. 2007;48(5):827–36.

    CAS  PubMed  Google Scholar 

  265. Doubrovin MM, Doubrovina ES, Zanzonico P, Sadelain M, Larson SM, O’Reilly RJ. In vivo imaging and quantitation of adoptively transferred human antigen-specific T cells transduced to express a human norepinephrine transporter gene. Cancer Res. 2007;67(24):11959–69. https://doi.org/10.1158/0008-5472.CAN-07-1250.

    Article  CAS  PubMed  Google Scholar 

  266. Radu CG, Shu CJ, Nair-Gill E, Shelly SM, Barrio JR, Satyamurthy N, et al. Molecular imaging of lymphoid organs and immune activation by positron emission tomography with a new [18F]-labeled 2′-deoxycytidine analog. Nat Med. 2008;14(7):783–8. https://doi.org/10.1038/nm1724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Schwarzenberg J, Radu CG, Benz M, Fueger B, Tran AQ, Phelps ME, et al. Human biodistribution and radiation dosimetry of novel PET probes targeting the deoxyribonucleoside salvage pathway. Eur J Nucl Med Mol Imaging. 2011;38(4):711–21. https://doi.org/10.1007/s00259-010-1666-z.

    Article  CAS  PubMed  Google Scholar 

  268. Antonios JP, Soto H, Everson RG, Moughon DL, Wang AC, Orpilla J, et al. Detection of immune responses after immunotherapy in glioblastoma using PET and MRI. Proc Natl Acad Sci U S A. 2017;114(38):10220–5. https://doi.org/10.1073/pnas.1706689114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Shu CJ, Campbell DO, Lee JT, Tran AQ, Wengrod JC, Witte ON, et al. Novel PET probes specific for deoxycytidine kinase. J Nucl Med. 2010;51(7):1092–8. https://doi.org/10.2967/jnumed.109.073361.

    Article  CAS  PubMed  Google Scholar 

  270. Kim W, Le TM, Wei L, Poddar S, Bazzy J, Wang X, et al. [18F]CFA as a clinically translatable probe for PET imaging of deoxycytidine kinase activity. Proc Natl Acad Sci U S A. 2016;113(15):4027–32. https://doi.org/10.1073/pnas.1524212113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Franc BL, Goth S, MacKenzie J, Li X, Blecha J, Lam T, et al. In vivo PET imaging of the activated immune environment in a small animal model of inflammatory arthritis. Mol Imaging. 2017;16:1536012117712638. https://doi.org/10.1177/1536012117712638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Namavari M, Chang YF, Kusler B, Yaghoubi S, Mitchell BS, Gambhir SS. Synthesis of 2′-deoxy-2′-[18F]fluoro-9-beta-D-arabinofuranosylguanine: a novel agent for imaging T-cell activation with PET. Mol Imaging Biol. 2011;13(5):812–8. https://doi.org/10.1007/s11307-010-0414-x.

    Article  PubMed  Google Scholar 

  273. Levi J, Lam T, Goth SR, Yaghoubi S, Bates J, Ren G, et al. Imaging of activated T cells as an early predictor of immune response to anti-PD-1 therapy. Cancer Res. 2019;79(13):3455–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  274. McCracken MN, Vatakis DN, Dixit D, McLaughlin J, Zack JA, Witte ON. Noninvasive detection of tumor-infiltrating T cells by PET reporter imaging. J Clin Invest. 2015;125(5):1815–26.

    PubMed  PubMed Central  Google Scholar 

  275. Ribas A, Benz MR, Allen-Auerbach MS, Radu C, Chmielowski B, Seja E, et al. Imaging of CTLA4 blockade-induced cell replication with (18)F-FLT PET in patients with advanced melanoma treated with tremelimumab. J Nucl Med. 2010;51(3):340–6. https://doi.org/10.2967/jnumed.109.070946.

    Article  CAS  PubMed  Google Scholar 

  276. Aarntzen EH, Srinivas M, De Wilt JH, Jacobs JF, Lesterhuis WJ, Windhorst AD, et al. Early identification of antigen-specific immune responses in vivo by [18F]-labeled 3′-fluoro-3′-deoxy-thymidine ([18F] FLT) PET imaging. Proc Natl Acad Sci U S A. 2011;108(45):18396–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Scarpelli M, Zahm C, Perlman S, McNeel DG, Jeraj R, Liu G. FLT PET/CT imaging of metastatic prostate cancer patients treated with pTVG-HP DNA vaccine and pembrolizumab. J Immunother Cancer. 2019;7(1):23.

    PubMed  PubMed Central  Google Scholar 

  278. Abbs IC, Pratt JR, Dallman MJ, Sacks SH. Analysis of activated T cell infiltrates in rat renal allografts by gamma camera imaging after injection of 123iodine-interleukin 2. Transpl Immunol. 1993;1(1):45–51.

    CAS  PubMed  Google Scholar 

  279. Annovazzi A, Biancone L, Caviglia R, Chianelli M, Capriotti G, Mather SJ, et al. 99mTc-interleukin-2 and (99m)Tc-HMPAO granulocyte scintigraphy in patients with inactive Crohn’s disease. Eur J Nucl Med Mol Imaging. 2003;30(3):374–82. https://doi.org/10.1007/s00259-002-1069-x.

    Article  CAS  PubMed  Google Scholar 

  280. Annovazzi A, D’Alessandria C, Bonanno E, Mather SJ, Cornelissen B, van de Wiele C, et al. Synthesis of 99mTc-HYNIC-interleukin-12, a new specific radiopharmaceutical for imaging T lymphocytes. Eur J Nucl Med Mol Imaging. 2006;33(4):474–82. https://doi.org/10.1007/s00259-005-0001-6.

    Article  CAS  PubMed  Google Scholar 

  281. Gross MD, Shapiro B, Fig LM, Steventon R, Skinner RW, Hay RV. Imaging of human infection with 131I-labeled recombinant human interleukin-8. J Nucl Med. 2001;42(11):1656–9.

    CAS  PubMed  Google Scholar 

  282. Glaudemans AW, Bonanno E, Galli F, Zeebregts CJ, de Vries EF, Koole M, et al. In vivo and in vitro evidence that (9)(9)mTc-HYNIC-interleukin-2 is able to detect T lymphocytes in vulnerable atherosclerotic plaques of the carotid artery. Eur J Nucl Med Mol Imaging. 2014;41(9):1710–9. https://doi.org/10.1007/s00259-014-2764-0.

    Article  CAS  PubMed  Google Scholar 

  283. Di Gialleonardo V, Signore A, Willemsen AT, Sijbesma JW, Dierckx RA, de Vries EF. Pharmacokinetic modelling of N-(4-[(18)F]fluorobenzoyl)interleukin-2 binding to activated lymphocytes in an xenograft model of inflammation. Eur J Nucl Med Mol Imaging. 2012;39(10):1551–60. https://doi.org/10.1007/s00259-012-2176-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Di Gialleonardo V, Signore A, Glaudemans AW, Dierckx RA, De Vries EF. N-(4-18F-fluorobenzoyl)interleukin-2 for PET of human-activated T lymphocytes. J Nucl Med. 2012;53(5):679–86. https://doi.org/10.2967/jnumed.111.091306.

    Article  CAS  PubMed  Google Scholar 

  285. Signore A, Annovazzi A, Barone R, Bonanno E, D’Alessandria C, Chianelli M, et al. 99mTc-interleukin-2 scintigraphy as a potential tool for evaluating tumor-infiltrating lymphocytes in melanoma lesions: a validation study. J Nucl Med. 2004;45(10):1647–52.

    PubMed  Google Scholar 

  286. Loose D, Signore A, Staelens L, Bulcke KV, Vermeersch H, Dierckx RA, et al. (123)I-Interleukin-2 uptake in squamous cell carcinoma of the head and neck carcinoma. Eur J Nucl Med Mol Imaging. 2008;35(2):281–6. https://doi.org/10.1007/s00259-007-0609-9.

    Article  CAS  PubMed  Google Scholar 

  287. Markovic SN, Galli F, Suman VJ, Nevala WK, Paulsen AM, Hung JC, et al. Non-invasive visualization of tumor infiltrating lymphocytes in patients with metastatic melanoma undergoing immune checkpoint inhibitor therapy: a pilot study. Oncotarget. 2018;9(54):30268.

    PubMed  PubMed Central  Google Scholar 

  288. Hartimath SV, Manuelli V, Zijlma R, Signore A, Nayak TK, Freimoser-Grundschober A, et al. Pharmacokinetic properties of radiolabeled mutant Interleukin-2v: a PET imaging study. Oncotarget. 2018;9(6):7162.

    PubMed  PubMed Central  Google Scholar 

  289. Klein C, Waldhauer I, Nicolini VG, Freimoser-Grundschober A, Nayak T, Vugts DJ, et al. Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. Oncoimmunology. 2017;6(3):e1277306. https://doi.org/10.1080/2162402X.2016.1277306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Walther M, Gebhardt P, Grosse-Gehling P, Wurbach L, Irmler I, Preusche S, et al. Implementation of 89Zr production and in vivo imaging of B-cells in mice with 89Zr-labeled anti-B-cell antibodies by small animal PET/CT. Appl Radiat Isot. 2011;69(6):852–7. https://doi.org/10.1016/j.apradiso.2011.02.040.

    Article  CAS  PubMed  Google Scholar 

  291. Olafsen T, Sirk SJ, Betting DJ, Kenanova VE, Bauer KB, Ladno W, et al. ImmunoPET imaging of B-cell lymphoma using 124I-anti-CD20 scFv dimers (diabodies). Protein Eng Des Sel. 2010;23(4):243–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Olafsen T, Betting D, Kenanova VE, Salazar FB, Clarke P, Said J, et al. Recombinant anti-CD20 antibody fragments for small-animal PET imaging of B-cell lymphomas. J Nucl Med. 2009;50(9):1500–8.

    CAS  PubMed  Google Scholar 

  293. Natarajan A, Gambhir SS. Radiation dosimetry study of [(89)Zr]rituximab tracer for clinical translation of B cell NHL imaging using positron emission tomography. Mol Imaging Biol. 2015;17(4):539–47. https://doi.org/10.1007/s11307-014-0810-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Natarajan A, Habte F, Gambhir SS. Development of a novel long-lived immunoPET tracer for monitoring lymphoma therapy in a humanized transgenic mouse model. Bioconjug Chem. 2012;23(6):1221–9. https://doi.org/10.1021/bc300039r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Natarajan A, Hackel BJ, Gambhir SS. A novel engineered anti-CD20 tracer enables early time PET imaging in a humanized transgenic mouse model of B-cell non-Hodgkins lymphoma. Clin Cancer Res. 2013;19(24):6820–9.

    CAS  PubMed  Google Scholar 

  296. Zettlitz KA, Tavaré R, Knowles SM, Steward KK, Timmerman JM, Wu AM. ImmunoPET of malignant and normal B cells with 89Zr-and 124I-labeled obinutuzumab antibody fragments reveals differential CD20 internalization in vivo. Clin Cancer Res. 2017;23(23):7242–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Rashidian M, Keliher EJ, Bilate AM, Duarte JN, Wojtkiewicz GR, Jacobsen JT, et al. Noninvasive imaging of immune responses. Proc Natl Acad Sci U S A. 2015;112(19):6146–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  298. Movahedi K, Schoonooghe S, Laoui D, Houbracken I, Waelput W, Breckpot K, et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 2012;72(16):4165–77. https://doi.org/10.1158/0008-5472.CAN-11-2994.

    Article  CAS  PubMed  Google Scholar 

  299. Blykers A, Schoonooghe S, Xavier C, D’Hoe K, Laoui D, D’Huyvetter M, et al. PET imaging of macrophage mannose receptor-expressing macrophages in tumor stroma using 18F-radiolabeled camelid single-domain antibody fragments. J Nucl Med. 2015;56(8):1265–71. https://doi.org/10.2967/jnumed.115.156828.

    Article  CAS  PubMed  Google Scholar 

  300. Seo JH, Jeon YH, Lee YJ, Yoon GS, Won DI, Ha JH, et al. Trafficking macrophage migration using reporter gene imaging with human sodium iodide symporter in animal models of inflammation. J Nucl Med. 2010;51(10):1637–43. https://doi.org/10.2967/jnumed.110.077891.

    Article  PubMed  Google Scholar 

  301. Freise AC, Zettlitz KA, Salazar FB, Lu X, Tavare R, Wu AM. ImmunoPET imaging of murine CD4(+) T cells using anti-CD4 Cys-Diabody: effects of protein dose on T cell function and imaging. Mol Imaging Biol. 2017;19(4):599–609. https://doi.org/10.1007/s11307-016-1032-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Tavare R, McCracken MN, Zettlitz KA, Knowles SM, Salazar FB, Olafsen T, et al. Engineered antibody fragments for immuno-PET imaging of endogenous CD8+ T cells in vivo. Proc Natl Acad Sci U S A. 2014;111(3):1108–13. https://doi.org/10.1073/pnas.1316922111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Kanwar B, Gao DW, Hwang AB, Grenert JP, Williams SP, Franc B, et al. In vivo imaging of mucosal CD4+ T cells using single photon emission computed tomography in a murine model of colitis. J Immunol Methods. 2008;329(1–2):21–30. https://doi.org/10.1016/j.jim.2007.09.008.

    Article  CAS  PubMed  Google Scholar 

  304. Freise AC, Zettlitz KA, Salazar FB, Tavare R, Tsai WK, Chatziioannou AF, et al. Immuno-PET in inflammatory bowel disease: imaging CD4-positive T cells in a murine model of colitis. J Nucl Med. 2018;59(6):980–5. https://doi.org/10.2967/jnumed.117.199075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Di Mascio M, Srinivasula S, Kim I, Duralde G, St Claire A, DeGrange P, et al. Total body CD4+ T cell dynamics in treated and untreated SIV infection revealed by in vivo imaging. JCI Insight. 2018;3(13):e97880. https://doi.org/10.1172/jci.insight.97880.

    Article  PubMed Central  Google Scholar 

  306. Ronald JA, Kim BS, Gowrishankar G, Namavari M, Alam IS, D’Souza A, et al. A PET imaging strategy to visualize activated T cells in acute graft-versus-host disease elicited by allogenic hematopoietic cell transplant. Cancer Res. 2017;77(11):2893–902. https://doi.org/10.1158/0008-5472.CAN-16-2953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Tavare R, McCracken MN, Zettlitz KA, Salazar FB, Olafsen T, Witte ON, et al. Immuno-PET of murine T cell reconstitution postadoptive stem cell transplantation using anti-CD4 and anti-CD8 Cys-Diabodies. J Nucl Med. 2015;56(8):1258–64. https://doi.org/10.2967/jnumed.114.153338.

    Article  CAS  PubMed  Google Scholar 

  308. Heskamp S, Hobo W, Molkenboer-Kuenen JD, Olive D, Oyen WJ, Dolstra H, et al. Noninvasive imaging of tumor PD-L1 expression using radiolabeled anti-PD-L1 antibodies. Cancer Res. 2015;75(14):2928–36. https://doi.org/10.1158/0008-5472.CAN-14-3477.

    Article  CAS  PubMed  Google Scholar 

  309. Maute RL, Gordon SR, Mayer AT, McCracken MN, Natarajan A, Ring NG, et al. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc Natl Acad Sci U S A. 2015;112(47):E6506–14. https://doi.org/10.1073/pnas.1519623112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Chatterjee S, Lesniak WG, Gabrielson M, Lisok A, Wharram B, Sysa-Shah P, et al. A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors. Oncotarget. 2016;7(9):10215.

    PubMed  PubMed Central  Google Scholar 

  311. Lesniak WG, Chatterjee S, Gabrielson M, Lisok A, Wharram B, Pomper MG, et al. PD-L1 detection in tumors using [(64)Cu]Atezolizumab with PET. Bioconjug Chem. 2016;27(9):2103–10. https://doi.org/10.1021/acs.bioconjchem.6b00348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Josefsson A, Nedrow JR, Park S, Banerjee SR, Rittenbach A, Jammes F, et al. Imaging, biodistribution, and dosimetry of radionuclide-labeled PD-L1 antibody in an immunocompetent mouse model of breast cancer. Cancer Res. 2016;76(2):472–9. https://doi.org/10.1158/0008-5472.CAN-15-2141.

    Article  CAS  PubMed  Google Scholar 

  313. Mayer AT, Natarajan A, Gordon SR, Maute RL, McCracken MN, Ring AM, et al. Practical immuno-PET radiotracer design considerations for human immune checkpoint imaging. J Nucl Med. 2017;58(4):538–46. https://doi.org/10.2967/jnumed.116.177659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Nedrow JR, Josefsson A, Park S, Ranka S, Roy S, Sgouros G. Imaging of programmed cell death ligand 1: impact of protein concentration on distribution of anti-PD-L1 SPECT agents in an immunocompetent murine model of melanoma. J Nucl Med. 2017;58(10):1560–6. https://doi.org/10.2967/jnumed.117.193268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Chatterjee S, Lesniak WG, Nimmagadda S. Noninvasive imaging of immune checkpoint ligand PD-L1 in tumors and metastases for guiding immunotherapy. Mol Imaging. 2017;16:1536012117718459.

    PubMed  PubMed Central  Google Scholar 

  316. Kikuchi M, Clump DA, Srivastava RM, Sun L, Zeng D, Diaz-Perez JA, et al. Preclinical immunoPET/CT imaging using Zr-89-labeled anti-PD-L1 monoclonal antibody for assessing radiation-induced PD-L1 upregulation in head and neck cancer and melanoma. Oncoimmunology. 2017;6(7):e1329071.

    PubMed  PubMed Central  Google Scholar 

  317. Truillet C, Oh HLJ, Yeo SP, Lee CY, Huynh LT, Wei J, et al. Imaging PD-L1 expression with ImmunoPET. Bioconjug Chem. 2018;29(1):96–103. https://doi.org/10.1021/acs.bioconjchem.7b00631.

    Article  CAS  PubMed  Google Scholar 

  318. Ehlerding EB, England CG, Majewski RL, Valdovinos HF, Jiang D, Liu G, et al. ImmunoPET imaging of CTLA-4 expression in mouse models of non-small cell lung cancer. Mol Pharm. 2017;14(5):1782–9. https://doi.org/10.1021/acs.molpharmaceut.7b00056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Natarajan A, Mayer AT, Xu L, Reeves RE, Gano J, Gambhir SS. Novel radiotracer for ImmunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes. Bioconjug Chem. 2015;26(10):2062–9. https://doi.org/10.1021/acs.bioconjchem.5b00318.

    Article  CAS  PubMed  Google Scholar 

  320. Hettich M, Braun F, Bartholoma MD, Schirmbeck R, Niedermann G. High-resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers. Theranostics. 2016;6(10):1629–40. https://doi.org/10.7150/thno.15253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. England CG, Ehlerding EB, Hernandez R, Rekoske BT, Graves SA, Sun H, et al. Preclinical pharmacokinetics and biodistribution studies of 89Zr-labeled pembrolizumab. J Nucl Med. 2017;58(1):162–8. https://doi.org/10.2967/jnumed.116.177857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Natarajan A, Mayer AT, Reeves RE, Nagamine CM, Gambhir SS. Development of novel ImmunoPET tracers to image human PD-1 checkpoint expression on tumor-infiltrating lymphocytes in a humanized mouse model. Mol Imaging Biol. 2017;19(6):903–14. https://doi.org/10.1007/s11307-017-1060-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Natarajan A, Patel CB, Habte F, Gambhir SS. Dosimetry prediction for clinical translation of (64)Cu-pembrolizumab ImmunoPET targeting human PD-1 expression. Sci Rep. 2018;8(1):633. https://doi.org/10.1038/s41598-017-19123-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. England CG, Jiang D, Ehlerding EB, Rekoske BT, Ellison PA, Hernandez R, et al. (89)Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer. Eur J Nucl Med Mol Imaging. 2018;45(1):110–20. https://doi.org/10.1007/s00259-017-3803-4.

    Article  CAS  PubMed  Google Scholar 

  325. Du Y, Liang X, Li Y, Sun T, Jin Z, Xue H, et al. Nuclear and fluorescent labeled PD-1-liposome-DOX-(64)Cu/IRDye800CW allows improved breast tumor targeted imaging and therapy. Mol Pharm. 2017;14(11):3978–86. https://doi.org/10.1021/acs.molpharmaceut.7b00649.

    Article  CAS  PubMed  Google Scholar 

  326. Higashikawa K, Yagi K, Watanabe K, Kamino S, Ueda M, Hiromura M, et al. 64Cu-DOTA-anti-CTLA-4 mAb enabled PET visualization of CTLA-4 on the T-cell infiltrating tumor tissues. PLoS One. 2014;9(11):e109866. https://doi.org/10.1371/journal.pone.0109866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Higashikawa K, Yagi K, Watanabe K, Kamino S, Ueda M, Hiromura M, et al. 64 Cu-DOTA-anti-CTLA-4 mAb enabled PET visualization of CTLA-4 on the T-cell infiltrating tumor tissues. PLoS One. 2014;9(11):e109866.

    PubMed  PubMed Central  Google Scholar 

  328. Malviya G, D’Alessandria C, Bonanno E, Vexler V, Massari R, Trotta C, et al. Radiolabeled humanized anti-CD3 monoclonal antibody visilizumab for imaging human T-lymphocytes. J Nucl Med. 2009;50(10):1683–91.

    CAS  PubMed  Google Scholar 

  329. Larimer BM, Wehrenberg-Klee E, Caraballo A, Mahmood U. Quantitative CD3 PET imaging predicts tumor growth response to anti-CTLA-4 therapy. J Nucl Med. 2016;57(10):1607–11. https://doi.org/10.2967/jnumed.116.173930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Beckford Vera DR, Smith CC, Bixby LM, Glatt DM, Dunn SS, Saito R, et al. Immuno-PET imaging of tumor-infiltrating lymphocytes using zirconium-89 radiolabeled anti-CD3 antibody in immune-competent mice bearing syngeneic tumors. PLoS One. 2018;13(3):e0193832. https://doi.org/10.1371/journal.pone.0193832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Tavare R, Escuin-Ordinas H, Mok S, McCracken MN, Zettlitz KA, Salazar FB, et al. An effective Immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy. Cancer Res. 2016;76(1):73–82. https://doi.org/10.1158/0008-5472.CAN-15-1707.

    Article  CAS  PubMed  Google Scholar 

  332. Rashidian M, Ingram JR, Dougan M, Dongre A, Whang KA, LeGall C, et al. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J Exp Med. 2017;214(8):2243–55. https://doi.org/10.1084/jem.20161950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Alam IS, Mayer AT, Sagiv-Barfi I, Wang K, Vermesh O, Czerwinski DK, et al. Imaging activated T cells predicts response to cancer vaccines. J Clin Investig. 2018;128(6):2569–80.

    PubMed  PubMed Central  Google Scholar 

  334. Matsui K, Wang Z, McCarthy TJ, Allen PM, Reichert DE. Quantitation and visualization of tumor-specific T cells in the secondary lymphoid organs during and after tumor elimination by PET. Nucl Med Biol. 2004;31(8):1021–31. https://doi.org/10.1016/j.nucmedbio.2004.06.002.

    Article  CAS  PubMed  Google Scholar 

  335. Larimer BM, Wehrenberg-Klee E, Dubois F, Mehta A, Kalomeris T, Flaherty K, et al. Granzyme B PET imaging as a predictive biomarker of immunotherapy response. Cancer Res. 2017;77(9):2318–27. https://doi.org/10.1158/0008-5472.CAN-16-3346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Bénard .

Editor information

Editors and Affiliations

Ethics declarations

The authors report no conflict of interest with the material presented in this study. Dr. François Bénard is co-founder, director, and shareholder of Alpha-9 Theranostics, a radiopharmaceutical company. No other potential conflicts of interest relevant to this article exist.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roxin, Á., Bénard, F. (2022). Radioimaging of Activated T Cells in Preclinical and Clinical Cancer Investigations. In: Harsini, S., Alavi, A., Rezaei, N. (eds) Nuclear Medicine and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-81261-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81261-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81260-7

  • Online ISBN: 978-3-030-81261-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics