Skip to main content

Mechanisms Underlying Tumor-Associated Macrophages (TAMs)-Facilitated Metastasis

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology

Abstract

Metastasis is responsible for more than 90% of cancer deaths, but remains the least understood stage of tumor progression. The tumor microenvironment contains multiple cells, including nonmalignant and malignant populations. Non-cancer populations are leukocyte infiltration, stromal cells, and vasculature expansion. The dynamic and heterogeneous interactions between cancer cells and tumor microenvironment determine a range of opposite functions of macrophages even within the same type of tumor. Tumor and immune cells secrete growth factors, cytokines, and metabolites that promote TAM pro-tumor polarization. TAMs are primarily considered as pro-inflammatory macrophages producing inflammatory markers such as IL-6 and TNF-α. Also, TAMs can produce reactive oxygen species (ROS) and nitric oxide (NO) that can produce nitrosoperoxycarbonate that results in further inflammation and creates a mutagenic environment for epithelial cells. TAMs are an essential factor in cell-ECM interaction and tumor migration. TAMs are directly involved in the intravasation step by accompanying the tumor cell, producing proteases, and combining TAM-produced EGF and cell-produced CSF-1. Homeostasis and growth of the tumor microenvironment (TME) is regulated by intimate interference in and across all cellular compartments, including malignant cells, endothelial, stromal, and stromal cells. When they begin to proliferate uncontrollably, cancer cells consume large amounts of glucose for bioenergetic, biosynthetic, and antioxidant purposes, often involving the dramatic release of lactate into the environment. TME are capable of secreting high levels of colony-stimulating factor 1 (CSF1). CSF1 and lactate promote M1-type tumor-associated phagocytosis (TAM) re-maximalization into an M2-type immunosuppressive state, characterized by the release of nutritional factors, metabolic modulators, and immunosuppressive molecules that promote disease progression, including.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Achyut B, Shankar A, Iskander A, Ara R, Angara K, Zeng P, Knight RA, Scicli AG, Arbab AS (2015) Bone marrow derived myeloid cells orchestrate antiangiogenic resistance in glioblastoma through coordinated molecular networks. Cancer Lett 369:416–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams S, Kozhaya L, Martiniuk F, Meng TC, Chiriboga L, Liebes L, Hochman T, Shuman N, Axelrod D, Speyer J, Novik Y, Tiersten A, Goldberg JD, Formenti SC, Bhardwaj N, Unutmaz D, Demaria S (2012) Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer. Clin Cancer Res 18:6748–6757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ai Y, Liu S, Luo H, Wu S, Wei H, Tang Z, Li X, Zou C (2021) lncRNA DCST1-AS1 facilitates Oral squamous cell carcinoma by promoting M2 macrophage polarization through activating NF-κB signaling. J Immunol Res 2021:5524231

    Article  PubMed  PubMed Central  Google Scholar 

  • Allavena P, Mantovani A (2012) Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol 167:195–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66:1–9

    Article  PubMed  Google Scholar 

  • Almholt K, Lund LR, Rygaard J, Nielsen BS, Danø K, Rømer J, Johnsen M (2005) Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice. Int J Cancer 113:525–532

    Article  CAS  PubMed  Google Scholar 

  • Alvey C, Discher DE (2017) Engineering macrophages to eat cancer: from “marker of self” CD47 and phagocytosis to differentiation. J Leukoc Biol 102:31–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An N, Yang J, Wang H, Sun S, Wu H, Li L, Li M (2021) Mechanism of mesenchymal stem cells in spinal cord injury repair through macrophage polarization. Cell Biosci 11:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anfray C, Ummarino A, Andón FT, Allavena P (2020) Current strategies to target tumor-associated-macrophages to improve anti-tumor immune responses. Cell 9:46

    Article  CAS  Google Scholar 

  • Anselmo AC, Zhang M, Kumar S, Vogus DR, Menegatti S, Helgeson ME, Mitragotri S (2015) Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 9:3169–3177

    Article  CAS  PubMed  Google Scholar 

  • Arango Duque G, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491

    Article  PubMed  PubMed Central  Google Scholar 

  • Arlauckas SP, Garris CS, Kohler RH, Kitaoka M, Cuccarese MF, Yang KS, Miller MA, Carlson JC, Freeman GJ, Anthony RM (2017) In vivo imaging reveals a tumor-associated macrophage–mediated resistance pathway in anti–PD-1 therapy. Sci Transl Med 9:eaal3604

    Article  PubMed  PubMed Central  Google Scholar 

  • Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:666–670

    Article  CAS  PubMed  Google Scholar 

  • Ayob AZ, Ramasamy TS (2018) Cancer stem cells as key drivers of tumour progression. J Biomed Sci 25:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Bain CC, Scott CL, Uronen-Hansson H, Gudjonsson S, Jansson O, Grip O, Guilliams M, Malissen B, Agace WW, Mowat AM (2013) Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol 6:498–510

    Article  CAS  PubMed  Google Scholar 

  • Banerjee P, Zhang R, Ivan C, Galletti G, Clise-Dwyer K, Barbaglio F, Scarfò L, Aracil M, Klein C, Wierda W (2019) Trabectedin reveals a strategy of immunomodulation in chronic lymphocytic leukemia. Cancer Immunol Res 7:2036–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkan D, Green JE, Chambers AF (2010) Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer 46:1181–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker TH, Baneyx G, Cardó-Vila M, Workman GA, Weaver M, Menon PM, Dedhar S, Rempel SA, Arap W, Pasqualini R, Vogel V, Sage EH (2005) SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity. J Biol Chem 280:36483–36493

    Article  CAS  PubMed  Google Scholar 

  • Barron L, Wynn TA (2011) Macrophage activation governs schistosomiasis-induced inflammation and fibrosis. Eur J Immunol 41:2509–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basel MT, Balivada S, Wang H, Shrestha TB, Seo GM, Pyle M, Abayaweera G, Dani R, Koper OB, Tamura M, Chikan V, Bossmann SH, Troyer DL (2012) Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int J Nanomedicine 7:297–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batoon L, Mccauley LK (2021) Cross talk between macrophages and cancer cells in the bone metastatic environment. Front Endocrinol 12:763846

    Article  Google Scholar 

  • Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL, Torigian DA, O’dwyer PJ, Vonderheide RH (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331:1612–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181:3733–3739

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya P, Budnick I, Singh M, Thiruppathi M, Alharshawi K, Elshabrawy H, Holterman MJ, Prabhakar BS (2015) Dual role of GM-CSF as a pro-inflammatory and a regulatory cytokine: implications for immune therapy. J Interf Cytokine Res 35:585–599

    Article  CAS  Google Scholar 

  • Bian Z, Gong Y, Huang T, Lee CZ, Bian L, Bai Z, Shi H, Zeng Y, Liu C, He J (2020) Deciphering human macrophage development at single-cell resolution. Nature 582:571–576

    Article  CAS  PubMed  Google Scholar 

  • Billiau A, Matthys P (2009) Interferon-gamma: a historical perspective. Cytokine Growth Factor Rev 20:97–113

    Article  CAS  PubMed  Google Scholar 

  • Biswas SK (2015) Metabolic reprogramming of immune cells in cancer progression. Immunity 43:435–449

    Article  CAS  PubMed  Google Scholar 

  • Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T, Bentires-Alj M (2014) Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature 515:130–133

    Article  CAS  PubMed  Google Scholar 

  • Borgoni S, Iannello A, Cutrupi S, Allavena P, D’incalci M, Novelli F, Cappello P (2018) Depletion of tumor-associated macrophages switches the epigenetic profile of pancreatic cancer infiltrating T cells and restores their anti-tumor phenotype. Onco Targets Ther 7:e1393596

    Google Scholar 

  • Brekken RA, Puolakkainen P, Graves DC, Workman G, Lubkin SR, Sage EH (2003) Enhanced growth of tumors in Sparc null mice is associated with changes in the ECM. J Clin Invest 111:487–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buscher K, Ehinger E, Gupta P, Pramod AB, Wolf D, Tweet G, Pan C, Mills CD, Lusis AJ, Ley K (2017) Natural variation of macrophage activation as disease-relevant phenotype predictive of inflammation and cancer survival. Nat Commun 8:16041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byeon Y, Lee JW, Choi WS, Won JE, Kim GH, Kim MG, Wi TI, Lee JM, Kang TH, Jung ID, Cho YJ, Ahn HJ, Shin BC, Lee YJ, Sood AK, Han HD, Park YM (2018) CD44-targeting PLGA nanoparticles incorporating paclitaxel and FAK siRNA overcome Chemoresistance in epithelial ovarian cancer. Cancer Res 78:6247–6256

    Article  CAS  PubMed  Google Scholar 

  • Camargo JA, Passos GR, Ferrari KL, Billis A, Saad MJA, Reis LO (2018) Intravesical immunomodulatory Imiquimod enhances bacillus Calmette-Guérin downregulation of nonmuscle-invasive bladder cancer. Clin Genitourin Cancer 16:e587–e593

    Article  PubMed  Google Scholar 

  • Candido JB, Morton JP, Bailey P, Campbell AD, Karim SA, Jamieson T, Lapienyte L, Gopinathan A, Clark W, Mcghee EJ (2018) CSF1R+ macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype. Cell Rep 23:1448–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao J, Liu J, Xu R, Zhu X, Zhao X, Qian BZ (2017) Prognostic role of tumour-associated macrophages and macrophage scavenger receptor 1 in prostate cancer: a systematic review and meta-analysis. Oncotarget 8:83261–83269

    Article  PubMed  PubMed Central  Google Scholar 

  • Carminati L, Pinessi D, Borsotti P, Minoli L, Giavazzi R, D’incalci M, Belotti D, Taraboletti G (2019) Antimetastatic and antiangiogenic activity of trabectedin in cutaneous melanoma. Carcinogenesis 40:303–312

    Article  CAS  PubMed  Google Scholar 

  • Cassetta L, Pollard JW (2018) Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov 17:887–904

    Article  CAS  PubMed  Google Scholar 

  • Cassetta L, Pollard JW (2020) Tumor-associated macrophages. Curr Biol 30:R246–R248

    Article  CAS  PubMed  Google Scholar 

  • Cersosimo F, Lonardi S, Bernardini G, Telfer B, Mandelli GE, Santucci A, Vermi W, Giurisato E (2020) Tumor-associated macrophages in osteosarcoma: from mechanisms to therapy. Int J Mol Sci 21:5207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang J, Li H, Zhu Z, Mei P, Hu W, Xiong X, Tao J (2021) microRNA-21-5p from M2 macrophage-derived extracellular vesicles promotes the differentiation and activity of pancreatic cancer stem cells by mediating KLF3. Cell Biol Toxicol 38(4):577–590

    Article  PubMed  PubMed Central  Google Scholar 

  • Chanmee T, Ontong P, Konno K, Itano N (2014) Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 6:1670–1690

    Article  PubMed  Google Scholar 

  • Chen Y, Zhang X (2017) Pivotal regulators of tissue homeostasis and cancer: macrophages. Exp Hematol Oncol 6:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Zhang XH, Massagué J (2011) Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20:538–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MG, Xu ML, Yu H, Fletcher CD, Freeman GJ, Shipp MA (2013) PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res 19:3462–3473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhang S, Wang Q, Zhang X (2017) Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol Oncol 10:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen C, He W, Huang J, Wang B, Li H, Cai Q, Su F, Bi J, Liu H, Zhang B, Jiang N, Zhong G, Zhao Y, Dong W, Lin T (2018a) LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment. Nat Commun 9:3826

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen HM, Van Der Touw W, Wang YS, Kang K, Mai S, Zhang J, Alsina-Beauchamp D, Duty JA, Mungamuri SK, Zhang B, Moran T, Flavell R, Aaronson S, Hu HM, Arase H, Ramanathan S, Flores R, Pan PY, Chen SH (2018b) Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity. J Clin Invest 128:5647–5662

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Zhou J, Li X, Wang X, Lin Y, Wang X (2018c) Exosomes derived from hypoxic epithelial ovarian cancer cells deliver microRNAs to macrophages and elicit a tumor-promoted phenotype. Cancer Lett 435:80–91

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z (2019) Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 26:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Cherfils-Vicini J, Platonova S, Gillard M, Laurans L, Validire P, Caliandro R, Magdeleinat P, Mami-Chouaib F, Dieu-Nosjean MC, Fridman WH, Damotte D, Sautès-Fridman C, Cremer I (2010) Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance. J Clin Invest 120:1285–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Kim H-Y, Ju EJ, Jung J, Park J, Chung H-K, Lee JS, Lee JS, Park HJ, Song SY (2012) Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials 33:4195–4203

    Article  CAS  PubMed  Google Scholar 

  • Chow A, Lucas D, Hidalgo A, Méndez-Ferrer S, Hashimoto D, Scheiermann C, Battista M, Leboeuf M, Prophete C, Van Rooijen N, Tanaka M, Merad M, Frenette PS (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208:261–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow LQM, Morishima C, Eaton KD, Baik CS, Goulart BH, Anderson LN, Manjarrez KL, Dietsch GN, Bryan JK, Hershberg RM, Disis ML, Martins RG (2017) Phase Ib trial of the toll-like receptor 8 agonist, Motolimod (VTX-2337), combined with Cetuximab in patients with recurrent or metastatic SCCHN. Clin Cancer Res 23:2442–2450

    Article  CAS  PubMed  Google Scholar 

  • Colotta F, Peri G, Villa A, Mantovani A (1984) Rapid killing of actinomycin D-treated tumor cells by human mononuclear cells. I. Effectors belong to the monocyte-macrophage lineage. J Immunol 132:936–944

    Article  CAS  PubMed  Google Scholar 

  • Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    Article  CAS  PubMed  Google Scholar 

  • Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930

    Article  CAS  PubMed  Google Scholar 

  • Cox TR, Rumney RMH, Schoof EM, Perryman L, Høye AM, Agrawal A, Bird D, Latif NA, Forrest H, Evans HR, Huggins ID, Lang G, Linding R, Gartland A, Erler JT (2015) The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522:106–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton HJ, Pradeep S, Mcguire M, Hailemichael Y, Shaolin M, Lyons Y, Armaiz-Pena GN, Previs RA, Hansen JM, Rupaimoole R (2017) Macrophages facilitate resistance to anti-VEGF therapy by altered VEGFR expression. Clin Cancer Res 23:7034–7046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Henau O, Rausch M, Winkler D, Campesato LF, Liu C, Cymerman DH, Budhu S, Ghosh A, Pink M, Tchaicha J (2016) Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature 539:443–447

    Article  PubMed  PubMed Central  Google Scholar 

  • De Sousa JR, De Sousa RP, Aarão TL, Dias LB Jr, Carneiro FR, Fuzii HT, Quaresma JA (2016) In situ expression of M2 macrophage subpopulation in leprosy skin lesions. Acta Trop 157:108–114

    Article  PubMed  Google Scholar 

  • Denardo DG, Ruffell B (2019) Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol 19:369–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1:54–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desnues B, Lepidi H, Raoult D, Mege JL (2005) Whipple disease: intestinal infiltrating cells exhibit a transcriptional pattern of M2/alternatively activated macrophages. J Infect Dis 192:1642–1646

    Article  CAS  PubMed  Google Scholar 

  • Di Caro G, Cortese N, Castino GF, Grizzi F, Gavazzi F, Ridolfi C, Capretti G, Mineri R, Todoric J, Zerbi A (2016) Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy. Gut 65:1710–1720

    Article  PubMed  Google Scholar 

  • Donadon M, Torzilli G, Cortese N, Soldani C, Di Tommaso L, Franceschini B, Carriero R, Barbagallo M, Rigamonti A, Anselmo A, Colombo FS, Maggi G, Lleo A, Cibella J, Peano C, Kunderfranco P, Roncalli M, Mantovani A, Marchesi F (2020) Macrophage morphology correlates with single-cell diversity and prognosis in colorectal liver metastasis. J Exp Med 217:e20191847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duchman KR, Gao Y, Miller BJ (2015) Prognostic factors for survival in patients with Ewing’s sarcoma using the surveillance, epidemiology, and end results (SEER) program database. Cancer Epidemiol 39:189–195

    Article  PubMed  Google Scholar 

  • Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R, Iredale JP (2005) Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 115:56–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edin S, Wikberg ML, Oldenborg PA, Palmqvist R (2013) Macrophages: good guys in colorectal cancer. Onco Targets Ther 2:e23038

    Google Scholar 

  • Edwards JP, Zhang X, Frauwirth KA, Mosser DM (2006) Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80:1298–1307

    Article  CAS  PubMed  Google Scholar 

  • El-Arabey AA, Denizli M, Kanlikilicer P, Bayraktar R, Ivan C, Rashed M, Kabil N, Ozpolat B, Calin GA, Salama SA, Abd-Allah AR, Sood AK, Lopez-Berestein G (2020) GATA3 as a master regulator for interactions of tumor-associated macrophages with high-grade serous ovarian carcinoma. Cell Signal 68:109539

    Article  CAS  PubMed  Google Scholar 

  • Erwig LP, Henson PM (2008) Clearance of apoptotic cells by phagocytes. Cell Death Differ 15:243–250

    Article  CAS  PubMed  Google Scholar 

  • Esposito M, Guise T, Kang Y (2018) The biology of bone metastasis. Cold Spring Harb Perspect Med 8:a031252

    Article  PubMed  PubMed Central  Google Scholar 

  • Etzerodt A, Tsalkitzi K, Maniecki M, Damsky W, Delfini M, Baudoin E, Moulin M, Bosenberg M, Graversen JH, Auphan-Anezin N (2019) Specific targeting of CD163+ TAMs mobilizes inflammatory monocytes and promotes T cell–mediated tumor regression. J Exp Med 216:2394–2411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan QM, Jing YY, Yu GF, Kou XR, Ye F, Gao L, Li R, Zhao QD, Yang Y, Lu ZH, Wei LX (2014) Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett 352:160–168

    Article  CAS  PubMed  Google Scholar 

  • Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW, Ruhrberg C (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fidler IJ, Kripke ML (2015) The challenge of targeting metastasis. Cancer Metastasis Rev 34:635–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fond AM, Ravichandran KS (2016) Clearance of dying cells by phagocytes: mechanisms and implications for disease pathogenesis. Adv Exp Med Biol 930:25–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank A-C, Ebersberger S, Fink AF, Lampe S, Weigert A, Schmid T, Ebersberger I, Syed SN, Brüne B (2019) Apoptotic tumor cell-derived microRNA-375 uses CD36 to alter the tumor-associated macrophage phenotype. Nat Commun 10:1135

    Article  PubMed  PubMed Central  Google Scholar 

  • Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG, Li MO (2014) The cellular and molecular origin of tumor-associated macrophages. Science 344:921–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frezzetti D, Gallo M, Maiello MR, D’alessio A, Esposito C, Chicchinelli N, Normanno N, De Luca A (2017) VEGF as a potential target in lung cancer. Expert Opin Ther Targets 21:959–966

    Article  CAS  PubMed  Google Scholar 

  • Fridlender ZG, Jassar A, Mishalian I, Wang LC, Kapoor V, Cheng G, Sun J, Singhal S, Levy L, Albelda SM (2013) Using macrophage activation to augment immunotherapy of established tumours. Br J Cancer 108:1288–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu XT, Dai Z, Song K, Zhang ZJ, Zhou ZJ, Zhou SL, Zhao YM, Xiao YS, Sun QM, Ding ZB, Fan J (2015) Macrophage-secreted IL-8 induces epithelial-mesenchymal transition in hepatocellular carcinoma cells by activating the JAK2/STAT3/Snail pathway. Int J Oncol 46:587–596

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara N, Kobayashi K (2005) Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 4:281–286

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Ward JF, Pettaway CA, Shi LZ, Subudhi SK, Vence LM, Zhao H, Chen J, Chen H, Efstathiou E (2017) VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med 23:551–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Liu H, Shi Y, Yin L, Zhu Y, Liu R (2019) Identification of cancer stem cell molecular markers and effects of hsa-miR-21-3p on Stemness in esophageal squamous cell carcinoma. Cancers (Basel) 11:518

    Article  CAS  PubMed  Google Scholar 

  • Gelderblom H, Hogendoorn PC, Dijkstra SD, Van Rijswijk CS, Krol AD, Taminiau AH, Bovée JV (2008) The clinical approach towards chondrosarcoma. Oncologist 13:320–329

    Article  PubMed  Google Scholar 

  • Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M, Pasqualini F (2013) Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23:249–262

    Article  CAS  PubMed  Google Scholar 

  • Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392–404

    Article  CAS  PubMed  Google Scholar 

  • Gocheva V, Wang H-W, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T, Joyce JA (2010) IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 24:241–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Roca C, Italiano A, Le Tourneau C, Cassier P, Toulmonde M, D’angelo S, Campone M, Weber K, Loirat D, Cannarile M (2019) Phase I study of emactuzumab single agent or in combination with paclitaxel in patients with advanced/metastatic solid tumors reveals depletion of immunosuppressive M2-like macrophages. Ann Oncol 30:1381–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  CAS  PubMed  Google Scholar 

  • Gordon S (2007) The macrophage: past, present and future. Eur J Immunol 37(Suppl 1):S9–S17

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604

    Article  CAS  PubMed  Google Scholar 

  • Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, Mccracken MN, Gupta R, Tsai JM, Sinha R, Corey D (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545:495–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, Stender JD, Chun HB, Garner H, Geissmann F, Glass CK (2014) Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley ER, Segall JE, Condeelis JS (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65:5278–5283

    Article  CAS  PubMed  Google Scholar 

  • Goswami KK, Barik S, Banerjee S, Bhowmick AK, Biswas J, Bose A, Baral R (2013) Supraglottic laryngeal tumor microenvironmental factors facilitate STAT3 dependent pro-tumorigenic switch in tumor associated macrophages to render utmost immune evasion. Immunol Lett 156:7–17

    Article  CAS  PubMed  Google Scholar 

  • Graves P, Zeng Y (2012) Biogenesis of mammalian MicroRNAs: a global view. Genomics Proteomics Bioinformatics 10:239–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griess B, Mir S, Datta K, Teoh-Fitzgerald M (2020) Scavenging reactive oxygen species selectively inhibits M2 macrophage polarization and their pro-tumorigenic function in part, via Stat3 suppression. Free Radic Biol Med 147:48–60

    Article  CAS  PubMed  Google Scholar 

  • Griffiths L, Binley K, Iqball S, Kan O, Maxwell P, Ratcliffe P, Lewis C, Harris A, Kingsman S, Naylor S (2000) The macrophage – a novel system to deliver gene therapy to pathological hypoxia. Gene Ther 7:255–262

    Article  CAS  PubMed  Google Scholar 

  • Gu S, Ni T, Wang J, Liu Y, Fan Q, Wang Y, Huang T, Chu Y, Sun X, Wang Y (2018) CD47 blockade inhibits tumor progression through promoting phagocytosis of tumor cells by M2 polarized macrophages in endometrial cancer. J Immunol Res 2018:6156757

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunderson A, Kaneda M, Tsujikawa T, Nguyen A, Affara N, Ruffell B, Gorjestani S, Liudahl S, Truitt M, Olson P (2016) Bruton’s tyrosine kinase (BTK)-dependent immune cell crosstalk drives pancreas cancer. Cancer Discov 6:270–285. https://doi.org/10.1158/2159-8290. CD-15-0827.[Europe Pmc free article][Abstract][CrossRef][Google Scholar]

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Cen H, Tan X, Ke Q (2016a) Meta-analysis of the prognostic and clinical value of tumor-associated macrophages in adult classical Hodgkin lymphoma. BMC Med 14:159

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Q, Jin Z, Yuan Y, Liu R, Xu T, Wei H, Xu X, He S, Chen S, Shi Z, Hou W, Hua B (2016b) New mechanisms of tumor-associated macrophages on promoting tumor progression: recent research advances and potential targets for tumor immunotherapy. J Immunol Res 2016:9720912

    Article  PubMed  PubMed Central  Google Scholar 

  • Han D, Fang Y, Guo Y, Hong W, Tu J, Wei W (2019a) The emerging role of long non-coding Rnas in tumor-associated macrophages. J Cancer 10:6738–6746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Guo W, Ren T, Huang Y, Wang S, Liu K, Zheng B, Yang K, Zhang H, Liang X (2019b) Tumor-associated macrophages promote lung metastasis and induce epithelial-mesenchymal transition in osteosarcoma by activating the COX-2/STAT3 axis. Cancer Lett 440–441:116–125

    Article  PubMed  Google Scholar 

  • Han FY, Liu Y, Kumar V, Xu W, Yang G, Zhao C-X, Woodruff TM, Whittaker AK, Smith MT (2020) Sustained-release ketamine-loaded nanoparticles fabricated by sequential nanoprecipitation. Int J Pharm 581:119291

    Article  CAS  PubMed  Google Scholar 

  • Han C, Zhang C, Wang H, Zhao L (2021) Exosome-mediated communication between tumor cells and tumor-associated macrophages: implications for tumor microenvironment. Onco Targets Ther 10:1887552

    Google Scholar 

  • Handl M, Hermanova M, Hotarkova S, Jarkovsky J, Mudry P, Shatokhina T, Vesela M, Sterba J, Zambo I (2018) Clinicopathological correlation of tumor-associated macrophages in Ewing sarcoma. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 162:54–60

    Article  PubMed  Google Scholar 

  • Hao NB, Lü MH, Fan YH, Cao YL, Zhang ZR, Yang SM (2012) Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012:948098

    Article  PubMed  PubMed Central  Google Scholar 

  • Hapach LA, Mosier JA, Wang W, Reinhart-King CA (2019) Engineered models to parse apart the metastatic cascade. npj Precis Oncol 3:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Harney AS, Karagiannis GS, Pignatelli J, Smith BD, Kadioglu E, Wise SC, Hood MM, Kaufman MD, Leary CB, Lu WP, Al-Ani G, Chen X, Entenberg D, Oktay MH, Wang Y, Chun L, De Palma M, Jones JG, Flynn DL, Condeelis JS (2017) The selective Tie2 inhibitor Rebastinib blocks recruitment and function of Tie2(Hi) macrophages in breast cancer and pancreatic neuroendocrine tumors. Mol Cancer Ther 16:2486–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Q, Liu M, Huang W, Chen X, Zhang B, Zhang T, Wang Y, Liu D, Xie M, Ji X, Sun M, Tian D, Xia L (2021) IL-1β-induced elevation of solute carrier family 7 member 11 promotes hepatocellular carcinoma metastasis through up-regulating programmed death ligand 1 and Colony-stimulating factor 1. Hepatology 74(6):3174–3193

    Article  CAS  PubMed  Google Scholar 

  • Helm O, Held-Feindt J, Grage-Griebenow E, Reiling N, Ungefroren H, Vogel I, Krüger U, Becker T, Ebsen M, Röcken C, Kabelitz D, Schäfer H, Sebens S (2014) Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. Int J Cancer 135:843–861

    Article  CAS  PubMed  Google Scholar 

  • Heusinkveld M, De Vos Van Steenwijk PJ, Goedemans R, Ramwadhdoebe TH, Gorter A, Welters MJ, Van Hall T, Van Der Burg SH (2011) M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells. J Immunol 187:1157–1165

    Article  CAS  PubMed  Google Scholar 

  • Hirayama D, Iida T, Nakase H (2017) The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int J Mol Sci 19:92

    Article  PubMed  PubMed Central  Google Scholar 

  • Houthuijzen JM, Daenen LG, Roodhart JM, Oosterom I, Van Jaarsveld MT, Govaert KM, Smith ME, Sadatmand SJ, Rosing H, Kruse F (2014) Lysophospholipids secreted by splenic macrophages induce chemotherapy resistance via interference with the DNA damage response. Nat Commun 5:1–10

    Article  Google Scholar 

  • Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, Wang D, See W, Costello BA, Quevedo F, Tan W, Nandy D, Bevan GH, Longenbach S, Sun Z, Lu Y, Wang T, Thibodeau SN, Boardman L, Kohli M, Wang L (2015) Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol 67:33–41

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Xu H, Peng G (2018a) TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cell Mol Immunol 15:428–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Li Y, Fu M, Xin HB (2018b) Polarizing macrophages in vitro. Methods Mol Biol 1784:119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, He C, Lin G, Lu L, Xing K, Hua X, Sun S, Mao Y, Song Y, Wang J, Li S (2020) Induced Cd10 expression during monocyte-to-macrophage differentiation identifies a unique subset of macrophages in pancreatic ductal adenocarcinoma. Biochem Biophys Res Commun 524:1064–1071

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Liang X, Ren T, Huang Y, Zhang H, Yu Y, Chen C, Wang W, Niu J, Lou J, Guo W (2021) The role of tumor-associated macrophages in osteosarcoma progression - therapeutic implications. Cell Oncol (Dordr) 44:525–539

    Article  CAS  PubMed  Google Scholar 

  • Huber C, Stingl G (1981) Macrophages in the regulation of immunity. Haematol Blood Transfus 27:31–37

    CAS  PubMed  Google Scholar 

  • Hui Y, Yi X, Hou F, Wibowo D, Zhang F, Zhao D, Gao H, Zhao CX (2019) Role of nanoparticle mechanical properties in cancer drug delivery. ACS Nano 13:7410–7424

    Article  CAS  PubMed  Google Scholar 

  • Hui Y, Yi X, Wibowo D, Yang G, Middelberg APJ, Gao H, Zhao CX (2020) Nanoparticle elasticity regulates phagocytosis and cancer cell uptake. Sci Adv 6:eaaz4316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hume DA (2006) The mononuclear phagocyte system. Curr Opin Immunol 18:49–53

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim T, Farolfi A, Mercatali L, Ricci M, Amadori D (2013) Metastatic bone disease in the era of bone-targeted therapy: clinical impact. Tumori J 99:1–9

    Article  CAS  Google Scholar 

  • Ide H, Hatake K, Terado Y, Tsukino H, Okegawa T, Nutahara K, Higashihara E, Horie S (2008) Serum level of macrophage colony-stimulating factor is increased in prostate cancer patients with bone metastasis. Hum Cell 21:1–6

    Article  PubMed  Google Scholar 

  • Ikehara Y, Niwa T, Biao L, Ikehara SK, Ohashi N, Kobayashi T, Shimizu Y, Kojima N, Nakanishi H (2006) A carbohydrate recognition-based drug delivery and controlled release system using intraperitoneal macrophages as a cellular vehicle. Cancer Res 66:8740–8748

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Mansoor A (2012) Macrophage-targeted nanoparticle delivery systems. Multifunctional nanoparticles for drug delivery applications: imaging, targeting, and delivery 47–83

    Google Scholar 

  • Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung S, Tanay A, Amit I (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:776–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayasingam SD, Citartan M, Thang TH, Mat Zin AA, Ang KC, Ch’ng ES (2019) Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice. Front Oncol 9:1512

    Article  PubMed  Google Scholar 

  • Jeong H, Kim S, Hong BJ, Lee CJ, Kim YE, Bok S, Oh JM, Gwak SH, Yoo MY, Lee MS, Chung SJ, Defrêne J, Tessier P, Pelletier M, Jeon H, Roh TY, Kim B, Kim KH, Ju JH, Kim S, Lee YJ, Kim DW, Kim IH, Kim HJ, Park JW, Lee YS, Lee JS, Cheon GJ, Weissman IL, Chung DH, Jeon YK, Ahn GO (2019) Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Cancer Res 79:795–806

    Article  CAS  PubMed  Google Scholar 

  • Ji Q, Cheng G, Ma N, Huang Y, Lin Y, Zhou Q, Que B, Dong J, Zhou Y, Nie S (2017) Circulating Th1, Th2, and Th17 levels in hypertensive patients. Dis Markers 2017:7146290

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Harris MB, Rothman P (2000) IL-4/IL-13 signaling beyond JAK/STAT. J Allergy Clin Immunol 105:1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Jinushi M, Chiba S, Yoshiyama H, Masutomi K, Kinoshita I, Dosaka-Akita H, Yagita H, Takaoka A, Tahara H (2011) Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci U S A 108:12425–12430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones J, Sinder B, Paige D, Soki F, Koh A, Thiele S, Shiozawa Y, Hofbauer L, Daignault S, Roca H (2019) Trabectedin reduces skeletal prostate cancer tumor size in association with effects on M2 macrophages and efferocytosis. Neoplasia 21:172–184

    Article  CAS  PubMed  Google Scholar 

  • Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    Article  CAS  PubMed  Google Scholar 

  • Kalbasi A, Ribas A (2020) Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol 20:25–39

    Article  CAS  PubMed  Google Scholar 

  • Kalbasi A, Komar C, Tooker GM, Liu M, Lee JW, Gladney WL, Ben-Josef E, Beatty GL (2017) Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma. Clin Cancer Res 23:137–148

    Article  CAS  PubMed  Google Scholar 

  • Kambayashi T, Alexander HR, Fong M, Strassmann G (1995) Potential involvement of IL-10 in suppressing tumor-associated macrophages. Colon-26-derived prostaglandin E2 inhibits TNF-alpha release via a mechanism involving IL-10. J Immunol 154:3383–3390

    Article  CAS  PubMed  Google Scholar 

  • Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S, Woo G, Nguyen AV, Figueiredo CC, Foubert P (2016) PI3KΓ is a molecular switch that controls immune suppression. Nature 539:437–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karagiannis GS, Pastoriza JM, Wang Y, Harney AS, Entenberg D, Pignatelli J, Sharma VP, Xue EA, Cheng E, D’alfonso TM, Jones JG, Anampa J, Rohan TE, Sparano JA, Condeelis JS, Oktay MH (2017) Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci Transl Med 9:eaan0026

    Article  PubMed  PubMed Central  Google Scholar 

  • Karger A, Nandigama R, Stenzinger A, Grimminger F, Pullamsetti SS, Seeger W, Savai R (2021) Hidden treasures: macrophage Long non-coding RNAs in lung cancer progression. Cancers (Basel) 13:4127

    Article  CAS  PubMed  Google Scholar 

  • Kawata M, Koinuma D, Ogami T, Umezawa K, Iwata C, Watabe T, Miyazono K (2012) TGF-β-induced epithelial-mesenchymal transition of A549 lung adenocarcinoma cells is enhanced by pro-inflammatory cytokines derived from RAW 264.7 macrophage cells. J Biochem 151:205–216

    Article  CAS  PubMed  Google Scholar 

  • Keklikoglou I, De Palma M (2014) Cancer: metastasis risk after anti-macrophage therapy. Nature 515:46–47

    Article  CAS  PubMed  Google Scholar 

  • Kell SA, Kachura MA, Renn A, Traquina P, Coffman RL, Campbell JD (2019) Preclinical development of the TLR9 agonist DV281 as an inhaled aerosolized immunotherapeutic for lung cancer: pharmacological profile in mice, non-human primates, and human primary cells. Int Immunopharmacol 66:296–308

    Article  CAS  PubMed  Google Scholar 

  • Kellermann MG, Sobral LM, Da Silva SD, Zecchin KG, Graner E, Lopes MA, Kowalski LP, Coletta RD (2008) Mutual paracrine effects of oral squamous cell carcinoma cells and normal oral fibroblasts: induction of fibroblast to myofibroblast transdifferentiation and modulation of tumor cell proliferation. Oral Oncol 44:509–517

    Article  CAS  PubMed  Google Scholar 

  • Kelly B, O’neill LA (2015) Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 25:771–784

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly C, Jefferies C, Cryan SA (2011) Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv 2011:727241

    Article  PubMed  Google Scholar 

  • Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kielbassa K, Vegna S, Ramirez C, Akkari L (2019) Understanding the origin and diversity of macrophages to tailor their targeting in solid cancers. Front Immunol 10:2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y, Luo JL, Karin M (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YJ, Park SJ, Broxmeyer HE (2011) Phagocytosis, a potential mechanism for myeloid-derived suppressor cell regulation of CD8+ T cell function mediated through programmed cell death-1 and programmed cell death-1 ligand interaction. J Immunol 187:2291–2301

    Article  CAS  PubMed  Google Scholar 

  • Kingwell K (2017) CAR T therapies drive into new terrain. Nat Rev Drug Discov 16:301–304

    Article  CAS  PubMed  Google Scholar 

  • Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, Schmierer M, Gabrusiewicz K, Anderson NR, Petty NE, Cummins KD, Shen F, Shan X, Veliz K, Blouch K, Yashiro-Ohtani Y, Kenderian SS, Kim MY, O’connor RS, Wallace SR, Kozlowski MS, Marchione DM, Shestov M, Garcia BA, June CH, Gill S (2020) Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol 38:947–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper J, Riedemann L, Amoozgar Z, Seano G, Susek K, Yu V, Dalvie N, Amelung RL, Datta M, Song JW (2016) Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci 113:4476–4481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L (2013) Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24:589–602

    Article  CAS  PubMed  Google Scholar 

  • Kogure T, Yan IK, Lin WL, Patel T (2013) Extracellular vesicle-mediated transfer of a novel Long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer. Genes Cancer 4:261–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh YW, Park C, Yoon DH, Suh C, Huh J (2014) CSF-1R expression in tumor-associated macrophages is associated with worse prognosis in classical Hodgkin lymphoma. Am J Clin Pathol 141:573–583

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Donthireddy L, Marvel D, Condamine T, Wang F, Lavilla-Alonso S, Hashimoto A, Vonteddu P, Behera R, Goins MA (2017) Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32:654–668. e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar AT, Knops A, Swendseid B, Martinez-Outschoom U, Harshyne L, Philp N, Rodeck U, Luginbuhl A, Cognetti D, Johnson J, Curry J (2019) Prognostic significance of tumor-associated macrophage content in head and neck squamous cell carcinoma: a meta-analysis. Front Oncol 9:656

    Article  PubMed  PubMed Central  Google Scholar 

  • Kupffer CV (1876) Ueber Sternzellen der leber. Arch Mikrosk Anat 12:353–358

    Article  Google Scholar 

  • Kuwada K, Kagawa S, Yoshida R, Sakamoto S, Ito A, Watanabe M, Ieda T, Kuroda S, Kikuchi S, Tazawa H, Fujiwara T (2018) The epithelial-to-mesenchymal transition induced by tumor-associated macrophages confers chemoresistance in peritoneally disseminated pancreatic cancer. J Exp Clin Cancer Res 37:307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyi C, Roudko V, Sabado R, Saenger Y, Loging W, Mandeli J, Thin TH, Lehrer D, Donovan M, Posner M, Misiukiewicz K, Greenbaum B, Salazar A, Friedlander P, Bhardwaj N (2018) Therapeutic immune modulation against solid cancers with Intratumoral poly-ICLC: a pilot trial. Clin Cancer Res 24:4937–4948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang R, Patel D, Morris JJ, Rutschman RL, Murray PJ (2002) Shaping gene expression in activated and resting primary macrophages by IL-10. J Immunol 169:2253–2263

    Article  CAS  PubMed  Google Scholar 

  • Larionova I, Kazakova E, Gerashchenko T, Kzhyshkowska J (2021) New angiogenic regulators produced by TAMs: perspective for targeting tumor angiogenesis. Cancers (Basel) 13:3253

    Article  CAS  PubMed  Google Scholar 

  • Larson RC, Maus MV (2021) Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer 21:145–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S, Amit I (2014) Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavin Y, Mortha A, Rahman A, Merad M (2015) Regulation of macrophage development and function in peripheral tissues. Nat Rev Immunol 15:731–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leblond MM, Pérès EA, Helaine C, Gérault AN, Moulin D, Anfray C, Divoux D, Petit E, Bernaudin M, Valable S (2017) M2 macrophages are more resistant than M1 macrophages following radiation therapy in the context of glioblastoma. Oncotarget 8:72597

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612

    Article  CAS  PubMed  Google Scholar 

  • Li X, Loberg R, Liao J, Ying C, Snyder LA, Pienta KJ, Mccauley LK (2009) A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone. Cancer Res 69:1685–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Feng S, Ding L, Liu Y, Zhu Q, Qian Z, Gu Y (2016) Nanomedicine engulfed by macrophages for targeted tumor therapy. Int J Nanomedicine 11:4107–4124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Lei Y, Wu M, Li N (2018) Regulation of macrophage activation and polarization by HCC-derived Exosomal lncRNA TUC339. Int J Mol Sci 19:2958

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Xie Y, Wang X, Li F, Li S, Li M, Peng H, Yang L, Liu C, Pang L, Zou H, Zhao J, Qi Y, Cao Y, Hu J (2019) Prognostic impact of tumor-associated macrophage infiltration in esophageal cancer: a meta-analysis. Future Oncol 15:2303–2317

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li L, Li Y, Long Y, Zhao Q, Ouyang Y, Bao W, Gong K (2020) Tumor-associated macrophage infiltration and prognosis in colorectal cancer: systematic review and meta-analysis. Int J Color Dis 35:1203–1210

    Article  Google Scholar 

  • Li D, Yan M, Sun F, Song J, Hu X, Yu S, Tang L, Deng S (2021) miR-498 inhibits autophagy and M2-like polarization of tumor-associated macrophages in esophageal cancer via MDM2/ATF3. Epigenomics 13:1013–1030

    Article  CAS  PubMed  Google Scholar 

  • Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Xu J, Lan H (2019) Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 12:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Linde N, Lederle W, Depner S, Van Rooijen N, Gutschalk CM, Mueller MM (2012) Vascular endothelial growth factor-induced skin carcinogenesis depends on recruitment and alternative activation of macrophages. J Pathol 227:17–28

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Cao X (2015) The origin and function of tumor-associated macrophages. Cell Mol Immunol 12:1–4

    Article  PubMed  Google Scholar 

  • Liu L, Zhang C, Li X, Sun W, Qin S, Qin L, Wang X (2017a) miR-223 promotes colon cancer by directly targeting p120 catenin. Oncotarget 8:63764–63779

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Kwon H, Li Z, Fu YX (2017b) Is CD47 an innate immune checkpoint for tumor evasion? J Hematol Oncol 10:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu F, Qiu H, Xue M, Zhang S, Zhang X, Xu J, Chen J, Yang Y, Xie J (2019) MSC-secreted TGF-β regulates lipopolysaccharide-stimulated macrophage M2-like polarization via the Akt/FoxO1 pathway. Stem Cell Res Ther 10:1–14

    Article  Google Scholar 

  • Liu Y, Yang G, Baby T, Teng J, Chen D, Weitz D, Zhao C-X (2020a) Stable polymer nanoparticles with exceptionally high drug loading by sequential nanoprecipitation. Angew Chem 132. https://doi.org/10.1002/ange.201913539

  • Liu Y, Yang G, Zou D, Hui Y, Nigam K, Middelberg APJ, Zhao C-X (2020b) Formulation of nanoparticles using mixing-induced nanoprecipitation for drug delivery. Ind Eng Chem Res 59:4134–4149

    Article  CAS  Google Scholar 

  • Liu G, Luo Y, Hou P (2021) PRPS2 enhances resistance to cisplatin via facilitating exosomes-mediated macrophage M2 polarization in non-small cell lung cancer. Immunol Investig 51:1–14

    Google Scholar 

  • Long KB, Gladney WL, Tooker GM, Graham K, Fraietta JA, Beatty GL (2016) IFNγ and CCL2 cooperate to redirect tumor-infiltrating monocytes to degrade fibrosis and enhance chemotherapy efficacy in pancreatic carcinoma. Cancer Discov 6:400–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma G, Pan PY, Eisenstein S, Divino CM, Lowell CA, Takai T, Chen SH (2011) Paired immunoglobin-like receptor-B regulates the suppressive function and fate of myeloid-derived suppressor cells. Immunity 34:385–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma R-Y, Zhang H, Li X-F, Zhang C-B, Selli C, Tagliavini G, Lam AD, Prost S, Sims AH, Hu H-Y, Ying T, Wang Z, Ye Z, Pollard JW, Qian B-Z (2020) Monocyte-derived macrophages promote breast cancer bone metastasis outgrowth. J Exp Med 217:e20191820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malfitano AM, Pisanti S, Napolitano F, Di Somma S, Martinelli R, Portella G (2020) Tumor-associated macrophage status in cancer treatment. Cancers (Basel) 12:1987

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Allavena P (2015) The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med 212:435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004a) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Schioppa T, Saccani A, Allavena P, Sica A (2004b) Infiltration of tumours by macrophages and dendritic cells: tumour-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Novartis Found Symp 256:137–145; discussion 146-8, 259-69

    PubMed  Google Scholar 

  • Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23:344–346

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Schioppa T, Porta C, Allavena P, Sica A (2006) Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25:315–322

    Article  PubMed  Google Scholar 

  • Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229:176–185

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14:399–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maolake A, Izumi K, Shigehara K, Natsagdorj A, Iwamoto H, Kadomoto S, Takezawa Y, Machioka K, Narimoto K, Namiki M, Lin WJ, Wufuer G, Mizokami A (2017) Tumor-associated macrophages promote prostate cancer migration through activation of the CCL22-CCR4 axis. Oncotarget 8:9739–9751

    Article  PubMed  Google Scholar 

  • Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, Nguyen KD, Theurich S, Hausen AC, Schmitz J, Brönneke HS, Estevez E, Allen TL, Mesaros A, Partridge L, Febbraio MA, Chawla A, Wunderlich FT, Brüning JC (2014) Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol 15:423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A, Berti A, Politi LS, Gentner B, Brown JL, Naldini L (2011) Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19:512–526

    Article  CAS  PubMed  Google Scholar 

  • Mcallister SS, Weinberg RA (2014) The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol 16:717–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei J, Xiao Z, Guo C, Pu Q, Ma L, Liu C, Lin F, Liao H, You Z, Liu L (2016) Prognostic impact of tumor-associated macrophage infiltration in non-small cell lung cancer: a systemic review and meta-analysis. Oncotarget 7:34217–34228

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng Y, Beckett MA, Liang H, Mauceri HJ, Van Rooijen N, Cohen KS, Weichselbaum RR (2010) Blockade of tumor necrosis factor α signaling in tumor-associated macrophages as a radiosensitizing strategy. Cancer Res 70:1534–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MA, Zheng YR, Gadde S, Pfirschke C, Zope H, Engblom C, Kohler RH, Iwamoto Y, Yang KS, Askevold B, Kolishetti N, Pittet M, Lippard SJ, Farokhzad OC, Weissleder R (2015) Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat Commun 6:8692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills CD, Ley K (2014) M1 and M2 macrophages: the chicken and the egg of immunity. J Innate Immun 6:716–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173

    Article  CAS  PubMed  Google Scholar 

  • Minopoli M, Sarno S, Di Carluccio G, Azzaro R, Costantini S, Fazioli F, Gallo M, Apice G, Cannella L, Rea D, Stoppelli MP, Boraschi D, Budillon A, Scotlandi K, De Chiara A, Carriero MV (2020) Inhibiting monocyte recruitment to prevent the pro-tumoral activity of tumor-associated macrophages in chondrosarcoma. Cell 9:1062

    Article  CAS  Google Scholar 

  • Mizutani K, Sud S, Mcgregor NA, Martinovski G, Rice BT, Craig MJ, Varsos ZS, Roca H, Pienta KJ (2009) The chemokine CCL2 increases prostate tumor growth and bone metastasis through macrophage and osteoclast recruitment. Neoplasia 11:1235–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mok S, Tsoi J, Koya RC, Hu-Lieskovan S, West BL, Bollag G, Graeber TG, Ribas A (2015) Inhibition of colony stimulating factor-1 receptor improves antitumor efficacy of BRAF inhibition. BMC Cancer 15:1–10

    Article  CAS  Google Scholar 

  • Molgora M, Colonna M (2021) Turning enemies into allies-reprogramming tumor-associated macrophages for cancer therapy. Med (N Y) 2:666–681

    CAS  PubMed  Google Scholar 

  • Monk BJ, Brady MF, Aghajanian C, Lankes HA, Rizack T, Leach J, Fowler JM, Higgins R, Hanjani P, Morgan M, Edwards R, Bradley W, Kolevska T, Foukas P, Swisher EM, Anderson KS, Gottardo R, Bryan JK, Newkirk M, Manjarrez KL, Mannel RS, Hershberg RM, Coukos G (2017) A phase 2, randomized, double-blind, placebo- controlled study of chemo-immunotherapy combination using motolimod with pegylated liposomal doxorubicin in recurrent or persistent ovarian cancer: a Gynecologic Oncology Group partners study. Ann Oncol 28:996–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moradi-Chaleshtori M, Hashemi SM, Soudi S, Bandehpour M, Mohammadi-Yeganeh S (2019) Tumor-derived exosomal micrornas and proteins as modulators of macrophage function. J Cell Physiol 234:7970–7982

    Article  CAS  PubMed  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, Mcclanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verástegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  PubMed  Google Scholar 

  • Muller PA, Koscsó B, Rajani GM, Stevanovic K, Berres ML, Hashimoto D, Mortha A, Leboeuf M, Li XM, Mucida D, Stanley ER, Dahan S, Margolis KG, Gershon MD, Merad M, Bogunovic M (2014) Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158:300–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mun SH, Park PSU, Park-Min KH (2020) The M-CSF receptor in osteoclasts and beyond. Exp Mol Med 52:1239–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munder M, Eichmann K, Modolell M (1998) Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol 160:5347–5354

    Article  CAS  PubMed  Google Scholar 

  • Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631

    Article  CAS  PubMed  Google Scholar 

  • Murray PJ (2017) Macrophage polarization. Annu Rev Physiol 79:541–566

    Article  CAS  PubMed  Google Scholar 

  • Murray PJ (2020) Cancer metastasis linked to macrophage size, shape, and metabolism. J Exp Med 217:e20201259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, Van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadella V, Singh S, Jain A, Jain M, Vasquez KM, Sharma A, Tanwar P, Rath GK, Prakash H (2018) Low dose radiation primed iNOS+ M1macrophages modulate angiogenic programming of tumor derived endothelium. Mol Carcinog 57:1664–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakasone ES, Askautrud HA, Kees T, Park J-H, Plaks V, Ewald AJ, Fein M, Rasch MG, Tan Y-X, Qiu J (2012) Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21:488–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen-Lefebvre AT, Horuzsko A (2015) Kupffer cell metabolism and function. J Enzymol Metab 1:101

    PubMed  PubMed Central  Google Scholar 

  • Niess JH, Brand S, Gu X, Landsman L, Jung S, Mccormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, Littman DR, Reinecker HC (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254–258

    Article  CAS  PubMed  Google Scholar 

  • Novak JS, Jaiswal JK, Partridge TA (2018) The macrophage as a Trojan horse for antisense oligonucleotide delivery. Expert Opin Ther Targets 22:463–466

    Article  PubMed  PubMed Central  Google Scholar 

  • Palazon A, Tyrakis PA, Macias D, Veliça P, Rundqvist H, Fitzpatrick S, Vojnovic N, Phan AT, Loman N, Hedenfalk I, Hatschek T, Lövrot J, Foukakis T, Goldrath AW, Bergh J, Johnson RS (2017) An HIF-1α/VEGF-A Axis in cytotoxic T cells regulates tumor progression. Cancer Cell 32:669–683.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Yu Y, Wang X, Zhang T (2020) Tumor-associated macrophages in tumor immunity. Front Immunol 11:583084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang L, Qin J, Han L, Zhao W, Liang J, Xie Z, Yang P, Wang J (2016) Exploiting macrophages as targeted carrier to guide nanoparticles into glioma. Oncotarget 7:37081–37091

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang X, Wang SS, Zhang M, Jiang J, Fan HY, Wu JS, Wang HF, Liang XH, Tang YL (2021) OSCC cell-secreted exosomal CMTM6 induced M2-like macrophages polarization via ERK1/2 signaling pathway. Cancer Immunol Immunother 70:1015–1029

    Article  CAS  PubMed  Google Scholar 

  • Pascual-García M, Bonfill-Teixidor E, Planas-Rigol E, Rubio-Perez C, Iurlaro R, Arias A, Cuartas I, Sala-Hojman A, Escudero L, Martínez-Ricarte F (2019) LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+ T cell tumor-infiltration impairing anti-PD1 therapy. Nat Commun 10:1–11

    Article  Google Scholar 

  • Pathria P, Louis TL, Varner JA (2019) Targeting tumor-associated macrophages in cancer. Trends Immunol 40:310–327

    Article  CAS  PubMed  Google Scholar 

  • Patwardhan PP, Surriga O, Beckman MJ, De Stanchina E, Dematteo RP, Tap WD, Schwartz GK (2014) Sustained inhibition of receptor tyrosine kinases and macrophage depletion by PLX3397 and rapamycin as a potential new approach for the treatment of Mpnsts. Clin Cancer Res 20:3146–3158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun C, Bercovici N, Guérin M, Biton J, Ouakrim H (2018) Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti–PD-1 treatment. Proc Natl Acad Sci 115:E4041–E4050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philipp D, Suhr L, Wahlers T, Choi YH, Paunel-Görgülü A (2018) Preconditioning of bone marrow-derived mesenchymal stem cells highly strengthens their potential to promote IL-6-dependent M2b polarization. Stem Cell Res Ther 9:286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piaggio F, Kondylis V, Pastorino F, Di Paolo D, Perri P, Cossu I, Schorn F, Marinaccio C, Murgia D, Daga A (2016) A novel liposomal clodronate depletes tumor-associated macrophages in primary and metastatic melanoma: anti-angiogenic and anti-tumor effects. J Control Release 223:165–177

    Article  CAS  PubMed  Google Scholar 

  • Pinto AT, Pinto ML, Cardoso AP, Monteiro C, Pinto MT, Maia AF, Castro P, Figueira R, Monteiro A, Marques M (2016) Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities. Sci Rep 6:1–15

    Google Scholar 

  • Pinto ML, Rios E, Durães C, Ribeiro R, Machado JC, Mantovani A, Barbosa MA, Carneiro F, Oliveira MJ (2019) The two faces of tumor-associated macrophages and their clinical significance in colorectal cancer. Front Immunol 10:1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78

    Article  CAS  PubMed  Google Scholar 

  • Pollard JW (2008) Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol 84:623–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9:259–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popivanova BK, Kostadinova FI, Furuichi K, Shamekh MM, Kondo T, Wada T, Egashira K, Mukaida N (2009) Blockade of a chemokine, CCL2, reduces chronic colitis-associated carcinogenesis in mice. Cancer Res 69:7884–7892

    Article  CAS  PubMed  Google Scholar 

  • Porta C, Riboldi E, Ippolito A, Sica A (2015) Molecular and epigenetic basis of macrophage polarized activation. Semin Immunol 27:237–248

    Article  CAS  PubMed  Google Scholar 

  • Prenen H, Mazzone M (2019) Tumor-associated macrophages: a short compendium. Cell Mol Life Sci 76:1447–1458

    Article  CAS  PubMed  Google Scholar 

  • Priceman SJ, Sung JL, Shaposhnik Z, Burton JB, Torres-Collado AX, Moughon DL, Johnson M, Lusis AJ, Cohen DA, Iruela-Arispe ML, Wu L (2010) Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood 115:1461–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prokop S, Heppner FL, Goebel HH, Stenzel W (2011) M2 polarized macrophages and giant cells contribute to myofibrosis in neuromuscular sarcoidosis. Am J Pathol 178:1279–1286

    Article  PubMed  PubMed Central  Google Scholar 

  • Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Q, Ji H, Li D, Zhang H, Zhang Z, Zhang Q (2021) Tumor-associated macrophages increase COX-2 expression promoting endocrine resistance in breast cancer via the PI3K/Akt/mTOR pathway. Neoplasma 68:938–946

    Article  PubMed  Google Scholar 

  • Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quail DF, Bowman RL, Akkari L, Quick ML, Schuhmacher AJ, Huse JT, Holland EC, Sutton JC, Joyce JA (2016) The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352:aad3018

    Article  PubMed  PubMed Central  Google Scholar 

  • Quaranta V, Schmid MC (2019) Macrophage-mediated subversion of anti-tumour immunity. Cell 8:747

    Article  CAS  Google Scholar 

  • Quaranta V, Rainer C, Nielsen SR, Raymant ML, Ahmed MS, Engle DD, Taylor A, Murray T, Campbell F, Palmer DH (2018) Macrophage-derived granulin drives resistance to immune checkpoint inhibition in metastatic pancreatic cancer. Cancer Res 78:4253–4269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quatromoni JG, Eruslanov E (2012) Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am J Transl Res 4:376–389

    PubMed  PubMed Central  Google Scholar 

  • Raes G, Brys L, Dahal BK, Brandt J, Grooten J, Brombacher F, Vanham G, Noël W, Bogaert P, Boonefaes T, Kindt A, Van Den Bergh R, Leenen PJ, De Baetselier P, Ghassabeh GH (2005) Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation. J Leukoc Biol 77:321–327

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan S, Jagannathan N (2014) Tumor associated macrophage: a review on the phenotypes, traits and functions. Iran J Cancer Prev 7:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramesh A, Kumar S, Nandi D, Kulkarni A (2019) CSF1R- and SHP2-inhibitor-loaded nanoparticles enhance cytotoxic activity and phagocytosis in tumor-associated macrophages. Adv Mater 31:e1904364

    Article  PubMed  Google Scholar 

  • Rashidian M, Lafleur MW, Verschoor VL, Dongre A, Zhang Y, Nguyen TH, Kolifrath S, Aref AR, Lau CJ, Paweletz CP (2019) Immuno-PET identifies the myeloid compartment as a key contributor to the outcome of the antitumor response under PD-1 blockade. Proc Natl Acad Sci 116:16971–16980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J (2014) Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol 5:75

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribas A, Medina T, Kummar S, Amin A, Kalbasi A, Drabick JJ, Barve M, Daniels GA, Wong DJ, Schmidt EV, Candia AF, Coffman RL, Leung ACF, Janssen RS (2018) SD-101 in combination with Pembrolizumab in advanced melanoma: results of a phase Ib, multicenter study. Cancer Discov 8:1250–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, Rey-Giraud F, Pradel LP, Feuerhake F, Klaman I (2014) Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25:846–859

    Article  CAS  PubMed  Google Scholar 

  • Rihawi K, Ricci AD, Rizzo A, Brocchi S, Marasco G, Pastore LV, Llimpe FLR, Golfieri R, Renzulli M (2021) Tumor-associated macrophages and inflammatory microenvironment in gastric cancer: novel translational implications. Int J Mol Sci 22:3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roca H, Jones JD, Purica MC, Weidner S, Koh AJ, Kuo R, Wilkinson JE, Wang Y, Daignault-Newton S, Pienta KJ, Morgan TM, Keller ET, Nör JE, Shea LD, Mccauley LK (2018) Apoptosis-induced CXCL5 accelerates inflammation and growth of prostate tumor metastases in bone. J Clin Invest 128:248–266

    Article  PubMed  Google Scholar 

  • Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, Kohler RH, Pittet MJ, Weissleder R (2018) TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng 2:578–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossaint J, Margraf A, Zarbock A (2018) Role of platelets in leukocyte recruitment and resolution of inflammation. Front Immunol 9:2712

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruffell B, Coussens LM (2015) Macrophages and therapeutic resistance in cancer. Cancer Cell 27:462–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmaninejad A, Valilou SF, Soltani A, Ahmadi S, Abarghan YJ, Rosengren RJ, Sahebkar A (2019) Tumor-associated macrophages: role in cancer development and therapeutic implications. Cell Oncol (Dordr) 42:591–608

    Article  PubMed  Google Scholar 

  • Salvagno C, Ciampricotti M, Tuit S, Hau C-S, Van Weverwijk A, Coffelt SB, Kersten K, Vrijland K, Kos K, Ulas T (2019) Therapeutic targeting of macrophages enhances chemotherapy efficacy by unleashing type I interferon response. Nat Cell Biol 21:511–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangaletti S, Di Carlo E, Gariboldi S, Miotti S, Cappetti B, Parenza M, Rumio C, Brekken RA, Chiodoni C, Colombo MP (2008) Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Res 68:9050–9059

    Article  CAS  PubMed  Google Scholar 

  • Schaaf MB, Houbaert D, Meçe O, Agostinis P (2019) Autophagy in endothelial cells and tumor angiogenesis. Cell Death Differ 26:665–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid MC, Avraamides CJ, Dippold HC, Franco I, Foubert P, Ellies LG, Acevedo LM, Manglicmot JR, Song X, Wrasidlo W (2011) Receptor tyrosine kinases and TLR/IL1RS unexpectedly activate myeloid cell PI3kγ, a single convergent point promoting tumor inflammation and progression. Cancer Cell 19:715–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90

    Article  CAS  PubMed  Google Scholar 

  • Scully OJ, Bay BH, Yip G, Yu Y (2012) Breast cancer metastasis. Cancer Genomics Proteomics 9:311–320

    CAS  PubMed  Google Scholar 

  • Sedighzadeh SS, Khoshbin AP, Razi S, Keshavarz-Fathi M, Rezaei N (2021) A narrative review of tumor-associated macrophages in lung cancer: regulation of macrophage polarization and therapeutic implications. Transl Lung Cancer Res 10:1889–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seyfried TN, Huysentruyt LC (2013) On the origin of cancer metastasis. Crit Rev Oncog 18:43–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Shan H, Dou W, Zhang Y, Qi M (2020) Targeted ferritin nanoparticle encapsulating CpG oligodeoxynucleotides induces tumor-associated macrophage M2 phenotype polarization into M1 phenotype and inhibits tumor growth. Nanoscale 12:22268–22280

    Article  CAS  PubMed  Google Scholar 

  • Shand FH, Ueha S, Otsuji M, Koid SS, Shichino S, Tsukui T, Kosugi-Kanaya M, Abe J, Tomura M, Ziogas J, Matsushima K (2014) Tracking of intertissue migration reveals the origins of tumor-infiltrating monocytes. Proc Natl Acad Sci U S A 111:7771–7776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SK, Chintala NK, Vadrevu SK, Patel J, Karbowniczek M, Markiewski MM (2015) Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs. J Immunol 194:5529–5538

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Liu J, Chen S, Ma X, Ying Y, Li J, Wang W, Wang X, Xie L (2021) Prognostic value of tumor-associated macrophages in clear cell renal cell carcinoma: a systematic review and meta-analysis. Front Oncol 11:657318

    Article  PubMed  PubMed Central  Google Scholar 

  • Shih J-Y, Yuan A, Chen JJ-W, Yang P-C (2006) Tumor-associated macrophage: its role in cancer invasion and metastasis. J Cancer Mol 2:101–106

    CAS  Google Scholar 

  • Shiraishi D, Fujiwara Y, Horlad H, Saito Y, Iriki T, Tsuboki J, Cheng P, Nakagata N, Mizuta H, Bekki H (2018) CD163 is required for protumoral activation of macrophages in human and murine sarcoma. Cancer Res 78:3255–3266

    Article  CAS  PubMed  Google Scholar 

  • Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber H-P, Ferrara N (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11B+ Gr1+ myeloid cells. Nat Biotechnol 25:911–920

    Article  CAS  PubMed  Google Scholar 

  • Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117:1155–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42:717–727

    Article  CAS  PubMed  Google Scholar 

  • Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, Rimoldi M, Biswas SK, Allavena P, Mantovani A (2008) Macrophage polarization in tumour progression. Semin Cancer Biol 18:349–355

    Article  CAS  PubMed  Google Scholar 

  • Sieweke MH, Allen JE (2013) Beyond stem cells: self-renewal of differentiated macrophages. Science 342:1242974

    Article  PubMed  Google Scholar 

  • Singh M, Khong H, Dai Z, Huang XF, Wargo JA, Cooper ZA, Vasilakos JP, Hwu P, Overwijk WW (2014) Effective innate and adaptive antimelanoma immunity through localized TLR7/8 activation. J Immunol 193:4722–4731

    Article  CAS  PubMed  Google Scholar 

  • Siveen KS, Kuttan G (2009) Role of macrophages in tumour progression. Immunol Lett 123:97–102

    Article  CAS  PubMed  Google Scholar 

  • Smieszek A, Marcinkowska K, Pielok A, Sikora M, Valihrach L, Marycz K (2020) The role of miR-21 in osteoblasts-osteoclasts coupling in vitro. Cell 9:479

    Article  CAS  Google Scholar 

  • Smith HA, Kang Y (2013) The metastasis-promoting roles of tumor-associated immune cells. J Mol Med (Berl) 91:411–429

    Article  CAS  PubMed  Google Scholar 

  • Smits EL, Ponsaerts P, Berneman ZN, Van Tendeloo VF (2008) The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist 13:859–875

    Article  CAS  PubMed  Google Scholar 

  • Soki FN, Koh AJ, Jones JD, Kim YW, Dai J, Keller ET, Pienta KJ, Atabai K, Roca H, Mccauley LK (2014) Polarization of prostate cancer-associated macrophages is induced by milk fat globule-EGF factor 8 (MFG-E8)-mediated efferocytosis. J Biol Chem 289:24560–24572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Yang P, Li X, Zhu X, Liu M, Duan X, Liu R (2021) Esophageal cancer-derived extracellular vesicle miR-21-5p contributes to EMT of ESCC cells by disorganizing macrophage polarization. Cancers (Basel) 13:4122

    Article  CAS  PubMed  Google Scholar 

  • Stafford JH, Hirai T, Deng L, Chernikova SB, Urata K, West BL, Brown JM (2016) Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization. Neuro-Oncology 18:797–806

    Article  CAS  PubMed  Google Scholar 

  • Stanley ER, Chitu V (2014) CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol 6:a021857

    Article  PubMed  PubMed Central  Google Scholar 

  • Stefater JA 3rd, Lewkowich I, Rao S, Mariggi G, Carpenter AC, Burr AR, Fan J, Ajima R, Molkentin JD, Williams BO, Wills-Karp M, Pollard JW, Yamaguchi T, Ferrara N, Gerhardt H, Lang RA (2011) Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature 474:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strachan DC, Ruffell B, Oei Y, Bissell MJ, Coussens LM, Pryer N, Daniel D (2013) CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+ T cells. Onco Targets Ther 2:e26968

    Google Scholar 

  • Sun J, Zhang L, Wang J, Feng Q, Liu D, Yin Q, Xu D, Wei Y, Ding B, Shi X, Jiang X (2015) Tunable rigidity of (polymeric core)-(lipid shell) nanoparticles for regulated cellular uptake. Adv Mater 27:1402–1407

    Article  CAS  PubMed  Google Scholar 

  • Swierczak A, Cook AD, Lenzo JC, Restall CM, Doherty JP, Anderson RL, Hamilton JA (2014) The promotion of breast cancer metastasis caused by inhibition of CSF-1R/CSF-1 signaling is blocked by targeting the G-CSF receptor. Cancer Immunol Res 2:765–776

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Mo C, Wang Y, Wei D, Xiao H (2013) Anti-tumour strategies aiming to target tumour-associated macrophages. Immunology 138:93–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas DA, Massagué J (2005) TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8:369–380

    Article  CAS  PubMed  Google Scholar 

  • Uchida J, Hamaguchi Y, Oliver JA, Ravetch JV, Poe JC, Haas KM, Tedder TF (2004) The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor–dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 199:1659–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno M, Yamashita T (2014) Bidirectional tuning of microglia in the developing brain: from neurogenesis to neural circuit formation. Curr Opin Neurobiol 27:8–15

    Article  CAS  PubMed  Google Scholar 

  • Van Dalen FJ, Van Stevendaal M, Fennemann FL, Verdoes M, Ilina O (2018) Molecular repolarisation of tumour-associated macrophages. Molecules 24:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Der Touw W, Chen HM, Pan PY, Chen SH (2017) Lilrb receptor-mediated regulation of myeloid cell maturation and function. Cancer Immunol Immunother 66:1079–1087

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL (1972) The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 46:845–852

    PubMed  PubMed Central  Google Scholar 

  • Varga T, Mounier R, Gogolak P, Poliska S, Chazaud B, Nagy L (2013) Tissue LyC6- macrophages are generated in the absence of circulating LyC6- monocytes and Nur77 in a model of muscle regeneration. J Immunol 191:5695–5701

    Article  CAS  PubMed  Google Scholar 

  • Vasiljeva O, Papazoglou A, Krüger A, Brodoefel H, Korovin M, Deussing J, Augustin N, Nielsen BS, Almholt K, Bogyo M, Peters C, Reinheckel T (2006) Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res 66:5242–5250

    Article  CAS  PubMed  Google Scholar 

  • Verreck FA, De Boer T, Langenberg DM, Van Der Zanden L, Ottenhoff TH (2006) Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol 79:285–293

    Article  CAS  PubMed  Google Scholar 

  • Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L (2019) Macrophages and metabolism in the tumor microenvironment. Cell Metab 30:36–50

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Cao Z, Zhang XM, Nakamura M, Sun M, Hartman J, Harris RA, Sun Y, Cao Y (2015) Novel mechanism of macrophage-mediated metastasis revealed in a zebrafish model of tumor development. Cancer Res 75:306–315

    Article  CAS  PubMed  Google Scholar 

  • Wang HF, Liu Y, Wang T, Yang G, Zeng B, Zhao CX (2020) Tumor-microenvironment-on-a-Chip for evaluating nanoparticle-loaded macrophages for drug delivery. ACS Biomater Sci Eng 6:5040–5050

    Article  CAS  PubMed  Google Scholar 

  • Wang HF, Liu Y, Yang G, Zhao CX (2021) Macrophage-mediated cancer drug delivery. Mater Today Sustain 11–12:100055

    Article  Google Scholar 

  • Weigert A, Sekar D, Brüne B (2009) Tumor-associated macrophages as targets for tumor immunotherapy. Immunotherapy 1:83–95

    Article  CAS  PubMed  Google Scholar 

  • Weiskopf K (2017) Cancer immunotherapy targeting the CD47/SIRPα axis. Eur J Cancer 76:100–109

    Article  CAS  PubMed  Google Scholar 

  • Weisser SB, Mclarren KW, Kuroda E, Sly LM (2013) Generation and characterization of murine alternatively activated macrophages. Methods Mol Biol 946:225–239

    Article  CAS  PubMed  Google Scholar 

  • Wenes M, Shang M, Di Matteo M, Goveia J, Martín-Pérez R, Serneels J, Prenen H, Ghesquière B, Carmeliet P, Mazzone M (2016) Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab 24:701–715

    Article  CAS  PubMed  Google Scholar 

  • Wesolowski R, Sharma N, Reebel L, Rodal MB, Peck A, West BL, Marimuthu A, Severson P, Karlin DA, Dowlati A (2019) Phase Ib study of the combination of pexidartinib (PLX3397), a CSF-1R inhibitor, and paclitaxel in patients with advanced solid tumors. Ther Adv Med Oncol 11:1758835919854238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams CB, Yeh ES, Soloff AC (2016) Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. npj Breast Cancer 2:15025

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams JW, Giannarelli C, Rahman A, Randolph GJ, Kovacic JC (2018) Macrophage biology, classification, and phenotype in cardiovascular disease: JACC macrophage in CVD series (part 1). J Am Coll Cardiol 72:2166–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winograd R, Byrne KT, Evans RA, Odorizzi PM, Meyer AR, Bajor DL, Clendenin C, Stanger BZ, Furth EE, Wherry EJ (2015) Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol Res 3:399–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP (2009) Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15:416–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu P, Wu D, Zhao L, Huang L, Chen G, Shen G, Huang J, Chai Y (2016) Inverse role of distinct subsets and distribution of macrophage in lung cancer prognosis: a meta-analysis. Oncotarget 7:40451–40460

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu L, Tang H, Zheng H, Liu X, Liu Y, Tao J, Liang Z, Xia Y, Xu Y, Guo Y, Chen H, Yang J (2019) Multiwalled carbon nanotubes prevent tumor metastasis through switching M2-polarized macrophages to M1 via TLR4 activation. J Biomed Nanotechnol 15:138–150

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Zhang X, Han D, Cao J, Tian J (2020a) Tumour-associated macrophages mediate the invasion and metastasis of bladder cancer cells through CXCL8. PeerJ 8:e8721

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu K, Lin K, Li X, Yuan X, Xu P, Ni P, Xu D (2020b) Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front Immunol 11:1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Gao W, Tang Q, Yu Y, You W, Wu Z, Fan Y, Zhang L, Wu C, Han G, Zuo X, Zhang Y, Chen Z, Ding W, Li X, Lin F, Shen H, Tang J, Zhang Y, Wang X (2021) M2 macrophage-derived exosomes facilitate HCC metastasis by transferring α(M) β(2) integrin to tumor cells. Hepatology 73:1365–1380

    Article  CAS  PubMed  Google Scholar 

  • Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, Graf T, Pollard JW, Segall J, Condeelis J (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64:7022–7029

    Article  CAS  PubMed  Google Scholar 

  • Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao W, Wang X, Wang T, Xing J (2019) MiR-223-3p promotes cell proliferation and metastasis by downregulating SLC4A4 in clear cell renal cell carcinoma. Aging 11:615–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Escamilla J, Mok S, David J, Priceman S, West B, Bollag G, Mcbride W, Wu L (2013) CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res 73:2782–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Wei Y, Tang Z, Liu B, Dong J (2020) Tumor-associated macrophages in lung cancer: friend or foe? (Review). Mol Med Rep 22:4107–4115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colás E, Cordeiro-Da Silva A, Fais S, Falcon-Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Krämer-Albers EM, Laitinen S, Lässer C, Lener T, Ligeti E, Linē A, Lipps G, Llorente A, Lötvall J, Manček-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte-’T Hoen EN, Nyman TA, O’driscoll L, Olivan M, Oliveira C, Pállinger É, Del Portillo HA, Reventós J, Rigau M, Rohde E, Sammar M, Sánchez-Madrid F, Santarém N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van Der Grein SG, Vasconcelos MH, Wauben MH, De Wever O (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066

    Article  PubMed  Google Scholar 

  • Yang L, Zhang Y (2017) Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol 10:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang M, Chen J, Su F, Yu B, Su F, Lin L, Liu Y, Huang J-D, Song E (2011) Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 10:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Wang F, Wang L, Huang L, Wang J, Zhang B, Zhang Y (2015) CD163+ tumor-associated macrophage is a prognostic biomarker and is associated with therapeutic effect on malignant pleural effusion of lung cancer patients. Oncotarget 6:10592–10603

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Zhang M, Peng R, Liu J, Wang F, Li Y, Zhao Q, Liu J (2020) The prognostic and clinicopathological value of tumor-associated macrophages in patients with colorectal cancer: a systematic review and meta-analysis. Int J Color Dis 35:1651–1661

    Article  Google Scholar 

  • Yeo E-J, Cassetta L, Qian B-Z, Lewkowich I, Li J-F, Stefater JA, Smith AN, Wiechmann LS, Wang Y, Pollard JW, Lang RA (2014) Myeloid WNT7b mediates the Angiogenic switch and metastasis in breast cancer. Cancer Res 74:2962–2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin S, Huang J, Li Z, Zhang J, Luo J, Lu C, Xu H, Xu H (2017a) The prognostic and Clinicopathological significance of tumor-associated macrophages in patients with gastric cancer: a meta-analysis. PLoS One 12:e0170042

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Yao S, Hu Y, Feng Y, Li M, Bian Z, Zhang J, Qin Y, Qi X, Zhou L, Fei B, Zou J, Hua D, Huang Z (2017b) The immune-microenvironment confers Chemoresistance of colorectal cancer through macrophage-derived IL6. Clin Cancer Res 23:7375–7387

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Zhang J, Li D, Mao Y, Mo F, Du W, Ma X (2017) Prognostic significance of tumor-associated macrophages in ovarian cancer: a meta-analysis. Gynecol Oncol 147:181–187

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Qian N, Ling S, Li Y, Sun W, Li J, Du R, Zhong G, Liu C, Yu G, Cao D, Liu Z, Wang Y, Qi Z, Yao Y, Wang F, Liu J, Hao S, Jin X, Zhao Y, Xue J, Zhao D, Gao X, Liang S, Li Y, Song J, Yu S, Li Y (2021) Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells. Theranostics 11:1429–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang QW, Liu L, Gong CY, Shi HS, Zeng YH, Wang XZ, Zhao YW, Wei YQ (2012) Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One 7:e50946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Chen Y, Hao L, Hou A, Chen X, Li Y, Wang R, Luo P, Ruan Z, Ou J (2016) Macrophages induce resistance to 5-fluorouracil chemotherapy in colorectal cancer through the release of putrescine. Cancer Lett 381:305–313

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Mai S, Chen HM, Kang K, Li XC, Chen SH, Pan PY (2017) Leukocyte immunoglobulin-like receptors in human diseases: an overview of their distribution, function, and potential application for immunotherapies. J Leukoc Biol 102:351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Huang F, Yao Y, Wang J, Wei J, Wu Q, Xiang S, Xu L (2019a) Interaction of transforming growth factor-β-Smads/microRNA-362-3p/CD82 mediated by M2 macrophages promotes the process of epithelial-mesenchymal transition in hepatocellular carcinoma cells. Cancer Sci 110:2507–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Liu L, Su H, Liu Q, Shen J, Dai H, Zheng W, Lu Y, Zhang W, Bei Y, Shen P (2019b) Chimeric antigen receptor macrophage therapy for breast tumours mediated by targeting the tumour extracellular matrix. Br J Cancer 121:837–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Chen L, Dang WQ, Cao MF, Xiao JF, Lv SQ, Jiang WJ, Yao XH, Lu HM, Miao JY, Wang Y, Yu SC, Ping YF, Liu XD, Cui YH, Zhang X, Bian XW (2020) CCL8 secreted by tumor-associated macrophages promotes invasion and stemness of glioblastoma cells via ERK1/2 signaling. Lab Investig 100:619–629

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Yu Y, Wang J, Han Y, Ren T, Huang Y, Chen C, Huang Q, Wang W, Niu J, Lou J, Guo W (2021a) Macrophages-derived exosomal lncRNA LIFR-AS1 promotes osteosarcoma cell progression via miR-29a/NFIA axis. Cancer Cell Int 21:192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Chang L, Zhang X, Zhou Z, Gao Y (2021b) Meta-analysis of the prognostic and clinical value of tumor-associated macrophages in hepatocellular carcinoma. J Investig Surg 34:297–306

    Article  Google Scholar 

  • Zhao X, Qu J, Sun Y, Wang J, Liu X, Wang F, Zhang H, Wang W, Ma X, Gao X, Zhang S (2017) Prognostic significance of tumor-associated macrophages in breast cancer: a meta-analysis of the literature. Oncotarget 8:30576–30586

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Mi Y, Guan B, Zheng B, Wei P, Gu Y, Zhang Z, Cai S, Xu Y, Li X, He X, Zhong X, Li G, Chen Z, Li D (2020) Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol 13:156

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng P, Li W (2020) Crosstalk between mesenchymal stromal cells and tumor-associated macrophages in gastric cancer. Front Oncol 10:571516

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng P, Chen L, Yuan X, Luo Q, Liu Y, Xie G, Ma Y, Shen L (2017) Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J Exp Clin Cancer Res 36:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng P, Luo Q, Wang W, Li J, Wang T, Wang P, Chen L, Zhang P, Chen H, Liu Y, Dong P, Xie G, Ma Y, Jiang L, Yuan X, Shen L (2018) Tumor-associated macrophages-derived exosomes promote the migration of gastric cancer cells by transfer of functional Apolipoprotein E. Cell Death Dis 9:434

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong L, Liao D, Li J, Liu W, Wang J, Zeng C, Wang X, Cao Z, Zhang R, Li M, Jiang K, Zeng Y-X, Sui J, Kang T (2021) Rab22a-NeoF1 fusion protein promotes osteosarcoma lung metastasis through its secretion into exosomes. Signal Transduct Target Ther 6:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J, Wu L, Sloan AE, Mclendon RE, Li X, Rich JN, Bao S (2015a) Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol 17:170–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Jin W, Jia H, Yan J, Zhang G (2015b) MiR-223 promotes the cisplatin resistance of human gastric cancer cells via regulating cell cycle by targeting FBXW7. J Exp Clin Cancer Res 34:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X-D, Zhang J-B, Zhuang P-Y, Zhu H-G, Zhang W, Xiong Y-Q, Wu W-Z, Wang L, Tang Z-Y, Sun H-C (2008) High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J Clin Oncol 26:2707–2716

    Article  PubMed  Google Scholar 

  • Zhu S, Niu M, O’mary H, Cui Z (2013) Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles. Mol Pharm 10:3525–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J, Wang-Gillam A, Goedegebuure SP, Linehan DC, Denardo DG (2014) CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 74:5057–5069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Zhi Q, Zhou BP, Tao M, Liu J, Li W (2016) The role of tumor associated macrophages in the tumor microenvironment: mechanism and functions. Anti Cancer Agents Med Chem 16:1133–1141

    Article  CAS  Google Scholar 

  • Zhu X, Shen H, Yin X, Yang M, Wei H, Chen Q, Feng F, Liu Y, Xu W, Li Y (2019) Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype. J Exp Clin Cancer Res 38:81

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Rezaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aleebrahim-Dehkordi, E., Deravi, N., Fallahi, M.S., Rezaei, N. (2023). Mechanisms Underlying Tumor-Associated Macrophages (TAMs)-Facilitated Metastasis. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_66-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_66-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics