Skip to main content

Harnessing the ROS for Cancer Treatment

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology

Abstract

Cancer treatment remains one of the toughest challenges. The paradox role of reactive oxygen species (ROS) in different stages of cancer have attracted scientists to investigate the potential cancer therapeutic strategies from redox perspectives. One of these strategies is based on the reduction of ROS in preneoplastic stages of cancer (chemoprevention). Due to the abnormal redox microenvironment in cancer cells, the other strategy is based on elevating the ROS load to selectively kill cancer cells. The former approach includes supplement of exogenous ROS scavengers (antioxidants) or induction of the endogenous antioxidant capacity, while the latter may rely on inhibition of some major antioxidant systems, such as glutathione (GSH) and thioredoxin (Trx) systems, or harnessing some nano-medicine techniques such in photodynamic therapy (PDT) and chemodynamic therapy (CDT). This chapter discusses these redox-based cancer treatment approaches in detail and provides a brief knowledge about the role of redox-sensitive transcription factors in cancer, which may be considered as potential cancer therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ALA:

5-aminolevulinic acid

AP-1:

activator protein 1

ASK1:

apoptosis signal-regulating kinase 1

Bach1:

BTB and CNC homology 1

b-Zip:

Cap’n’collar basic-region leucine Zipper

CAT:

catalase

CDT:

chemodynamic therapy

COX:

Cyclooxygenase

CYP:

cytochrome P450

ETC:

electron transport chain

FDA:

US Food and Drug Administration

FOXO:

forkhead box protein O

GCL:

𝛾-glutamate-cysteine ligase

GCLM:

Glutamate-cysteine ligase catalytic subunit

GGT:

𝛾-glutamyl-transpeptidase

GLUTs:

membrane glucose transporters

Gpx:

glutathione peroxidase

GS:

glutathione synthetase

GSH:

glutathione

HO-1:

heme oxygenase-1

HOMO:

Highest occupied molecular orbital

HSF1:

heat shock factor 1

IKKβ:

IκB kinase-β

JNK:

c-Jun N-terminal kinase

Keap1:

Kelch-like ECH-associated protein

LEDs:

light-emitting diodes

LOX:

lipoxygenase

LUMO:

Lowest unoccupied molecular orbital

Maf:

musculoaponeurotic fibrosarcoma

MAO:

Monoamine oxidase

MMPs:

matrix metalloproteinases

NF-κB:

nuclear factor-kappa B

NOX:

NADPH oxidases

NQO1:

NAD(P)H quinone oxidoreductase 1

Nrf2:

nuclear factor erythroid 2-related factor 2

OS:

oxidative stress

OXPHOS:

oxidative phosphorylation

oxPTMs:

oxidative post-translational modifications

PDT:

photodynamic therapy

PRX:

peroxiredoxin

PS:

photosensitizer

PTEN:

phosphatase and tensin homolog

redox:

oxidation-reduction

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TNF-α:

tumor necrosis factor-alpha

Trx:

thioredoxin

TrxR:

thioredoxin reductase

VEGF:

vascular endothelial growth factor

XO:

Xanthine oxidase

References

  • Albadari N, Deng S, Li W (2019) The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opin Drug Discovery 14:667–682

    Article  CAS  Google Scholar 

  • Allison RR, Sibata CH (2010) Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagn Photodyn Ther 7:61–75

    Article  CAS  Google Scholar 

  • Anderson NM, Simon MC (2019) BACH1 orchestrates lung cancer metastasis. Cell 178:265–267

    Article  CAS  Google Scholar 

  • Atsaves V, Leventaki V, Rassidakis GZ, Claret FX (2019) AP-1 transcription factors as regulators of immune responses in cancer. Cancers 11:1037

    Article  CAS  Google Scholar 

  • Bai F, Zhang B, Hou Y, Yao J, Xu Q, Xu J, Fang J (2019) Xanthohumol analogues as potent Nrf2 activators against oxidative stress mediated damages of PC12 cells. ACS Chem Neurosci 10:2956–2966

    Article  CAS  Google Scholar 

  • Bansal A, Simon MC (2018) Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol 217:2291–2298

    Article  CAS  Google Scholar 

  • Bedard K, Krause K (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  Google Scholar 

  • Blagih J, Buck MD, Vousden KH (2020) p53, cancer and the immune response. J Cell Sci 133:jcs237453

    Article  CAS  Google Scholar 

  • Breunig M, Bauer S, Goepferich A (2008) Polymers and nanoparticles: intelligent tools for intracellular targeting? Eur J Pharm Biopharm 68:112–128

    Article  CAS  Google Scholar 

  • Byun YJ, Kim SK, Kim YM, Chae GT, Jeong SW, Lee SB (2009) Hydrogen peroxide induces autophagic cell death in C6 glioma cells via BNIP3-mediated suppression of the mTOR pathway. Neurosci Lett 461:131–135

    Article  CAS  Google Scholar 

  • Canli O, Nicolas AM, Gupta J, Finkelmeier F, Goncharova O, Pesic M, Neumann T, Horst D, Lower M, Sahin U, Greten FR (2017) Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell 32:869–883

    Article  CAS  Google Scholar 

  • Carpenter RL, Gokmen-Polar Y (2019) HSF1 as a cancer biomarker and therapeutic target. Curr Cancer Drug Targets 19:515–524

    Article  CAS  Google Scholar 

  • Chaiswing L, St Clair WH, St Clair DK (2018) Redox paradox: a novel approach to therapeutics-resistant cancer. Antioxid Redox Signal 29:1237–1272

    Article  CAS  Google Scholar 

  • Chan DA, Sutphin PD, Nguyen P, Turcotte S, Lai EW, Banh A, Reynolds GE, Chi JT, Wu J, Solow-Cordero DE, Bonnet M, Flanagan JU, Bouley DM, Graves EE, Denny WA, Hay MP, Giaccia AJ (2011) Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci Transl Med 3:94ra70

    Article  CAS  Google Scholar 

  • Chen TC (2014) Cytochrome p450 for cancer prevention and therapy. Anti Cancer Agents Med Chem 14:52–53

    Article  CAS  Google Scholar 

  • Chen Y, Johansson E, Fan Y, Shertzer HG, Vasiliou V, Nebert DW, Dalton TP (2009) Early onset senescence occurs when fibroblasts lack the glutamate-cysteine ligase modifier subunit. Free Radic Biol Med 47:410–418

    Article  CAS  Google Scholar 

  • Cheng CF, Ku HC, Lin H (2018) PGC-1alpha as a pivotal factor in lipid and metabolic regulation. Int J Mol Sci 19:3447

    Article  Google Scholar 

  • Cho SY, Kim JS, Eun HS, Kang SH, Lee ES, Kim SH, Sung JK, Lee BS, Jeong HY, Moon HS (2018) Expression of NOX family genes and their clinical significance in colorectal cancer. Dig Dis Sci 63:2332–2340

    Article  CAS  Google Scholar 

  • Cicero AFG, Fogacci F, Cincione RI, Tocci G, Borghi C (2021) Clinical effects of xanthine oxidase inhibitors in hyperuricemic patients. Med Princ Pract 30:122–130

    Article  Google Scholar 

  • Clem BF, O’Neal J, Tapolsky G, Clem AL, Imbert-Fernandez Y, Kerr DA 2nd, Klarer AC, Redman R, Miller DM, Trent JO, Telang S, Chesney J (2013) Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther 12:1461–1470

    Article  CAS  Google Scholar 

  • Clemente SM, Martínez-Costa OH, Monsalve M, Samhan-Arias AK (2020) Targeting lipid peroxidation for cancer treatment. Molecules 25:5144

    Article  CAS  Google Scholar 

  • Cornblatt BS, Ye L, Dinkova-Kostova AT, Erb M, Fahey JW, Singh NK, Chen MS, Stierer T, Garrett-Mayer E, Argani P, Davidson NE, Talalay P, Kensler TW, Visvanathan K (2007) Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis 28:1485–1490

    Article  CAS  Google Scholar 

  • Cruz PM, Mo H, McConathy WJ, Sabnis N, Lacko AG (2013) The role of cholesterol metabolism and cholesterol transport in carcinogenesis: a review of scientific findings, relevant to future cancer therapeutics. Front Pharmacol 4:119

    Article  Google Scholar 

  • Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen A-L, Kensler TW, Dinkova-Kostova AT (2019) Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov 18:295–317

    Article  CAS  Google Scholar 

  • D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43:582–592

    Article  Google Scholar 

  • Desideri E, Ciccarone F, Ciriolo MR (2019) Targeting glutathione metabolism: partner in crime in anticancer therapy. Nutrients 11:1926

    Article  CAS  Google Scholar 

  • Dinkova-Kostova AT, Fahey JW, Kostov RV, Kensler TW (2017) KEAP1 and done? Targeting the NRF2 pathway with Sulforaphane. Trends Food Sci Technol 69:257–269

    Article  CAS  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS III (2012) Ferroptosis: an iron-dependent form of non-apoptotic cell death. Cell 149:1060–1072

    Article  CAS  Google Scholar 

  • Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS, Stockwell BR (2014) Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. elife 3:e02523

    Article  Google Scholar 

  • Do Van B, Gouel F, Jonneaux A, Timmerman K, Gelé P, Pétrault M, Bastide M, Laloux C, Moreau C, Bordet R, Devos D, Devedjian J-C (2016) Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC. Neurobiol Dis 94:169–178

    Article  Google Scholar 

  • Dobson J, de Queiroz GF, Golding JP (2018) Photodynamic therapy and diagnosis: principles and comparative aspects. Vet J 233:8–18

    Article  CAS  Google Scholar 

  • Dolcet X, Llobet D, Pallares J, Matias-Guiu X (2005) NF-kB in development and progression of human cancer. Virchows Arch 446:475–482

    Article  CAS  Google Scholar 

  • Drew DA, Cao Y, Chan AT (2016) Aspirin and colorectal cancer: the promise of precision chemoprevention. Nat Rev Cancer 16:173–186

    Article  CAS  Google Scholar 

  • Duffy MJ, Synnott NC, Crown J (2017) Mutant p53 as a target for cancer treatment. Eur J Cancer 83:258–265

    Article  CAS  Google Scholar 

  • Egner PA, Chen JG, Zarth AT, Ng DK, Wang JB, Kensler KH, Jacobson LP, Muñoz A, Johnson JL, Groopman JD, Fahey JW, Talalay P, Zhu J, Chen TY, Qian GS, Carmella SG, Hecht SS, Kensler TW (2014) Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prev Res (Phila) 7:813–823

    Article  CAS  Google Scholar 

  • Elfaki I, Mir R, Almutairi FM, Duhier FMA (2018) Cytochrome P450: polymorphisms and roles in cancer, diabetes and atherosclerosis. Asian Pac J Cancer Prev 19:2057–2070

    CAS  Google Scholar 

  • Evans JF, Kargman SL (2004) Cancer and cyclooxygenase-2 (COX-2) inhibition. Curr Pharm Des 10:627–634

    Article  CAS  Google Scholar 

  • Fahey JW, Talalay P, Kensler TW (2012) Notes from the field: “green” chemoprevention as frugal medicine. Cancer Prev Res (Phila) 5:179–188

    Article  Google Scholar 

  • Farhan M, Wang H, Gaur U, Little PJ, Xu J, Zheng W (2017) FOXO signaling pathways as therapeutic targets in cancer. Int J Biol Sci 13:815–827

    Article  CAS  Google Scholar 

  • Farhan M, Silva M, Xingan X, Huang Y, Zheng W (2020) Role of FOXO transcription factors in cancer metabolism and angiogenesis. Cell 9:1586

    Article  CAS  Google Scholar 

  • Fitzpatrick FA (2004) Cyclooxygenase enzymes: regulation and function. Curr Pharm Des 10:577–588

    Article  CAS  Google Scholar 

  • Galadari S, Rahman A, Pallichankandy S, Thayyullathil F (2017) Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med 104:144–164

    Article  CAS  Google Scholar 

  • Gallegos A, Gasdaska JR, Taylor CW, Paine-Murrieta GD, Goodman D, Gasdaska PY, Berggren M, Briehl MM, Powis G (1996) Transfection with human thioredoxin increases cell proliferation and a dominant-negative mutant thioredoxin reverses the transformed phenotype of human breast cancer cells. Cancer Res 56:5765–5770

    CAS  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nature reviews. Cancer 4:891–899

    CAS  Google Scholar 

  • Gaur S, Gross ME, Liao CP, Qian B, Shih JC (2019) Effect of monoamine oxidase A (MAOA) inhibitors on androgen-sensitive and castration-resistant prostate cancer cells. Prostate 79:667–677

    Article  CAS  Google Scholar 

  • Gill JG, Piskounova E, Morrison SJ (2016) Cancer, oxidative stress, and metastasis. Cold Spring Harb Symp Quant Biol 81:163–175

    Article  Google Scholar 

  • Glorieux C, Calderon PB (2017) Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol Chem 398:1095–1108

    Article  CAS  Google Scholar 

  • Gold MH (2011) History of photodynamic therapy. In: Gold M (ed) Photodynamic therapy in dermatology. Springer, New York, NY

    Chapter  Google Scholar 

  • Goldin N, Arzoine L, Heyfets A, Israelson A, Zaslavsky Z, Bravman T, Bronner V, Notcovich A, Shoshan-Barmatz V, Flescher E (2008) Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. Oncogene 27:4636–4643

    Article  CAS  Google Scholar 

  • Goncalves RL, Rothschild DE, Quinlan CL, Scott GK, Benz CC, Brand MD (2014) Sources of superoxide/H2O2 during mitochondrial proline oxidation. Redox Biol 2:901–909

    Article  CAS  Google Scholar 

  • Haffo L, Lu J, Bykov VJN, Martin SS, Ren X, Coppo L, Wiman KG, Holmgren A (2018) Inhibition of the glutaredoxin and thioredoxin systems and ribonucleotide reductase by mutant p53-targeting compound APR-246. Sci Rep 8:12671

    Article  Google Scholar 

  • Hampton MB, Vick KA, Skoko JJ, Neumann CA (2018) Peroxiredoxin involvement in the initiation and progression of human cancer. Antioxid Redox Signal 28:591–608

    Article  CAS  Google Scholar 

  • Han X, Zhang J, Shi D, Wu Y, Liu R, Liu T, Xu J, Yao X, Fang J (2019) Targeting thioredoxin reductase by ibrutinib promotes apoptosis of SMMC-7721 cells. J Pharmacol Exp Ther 369:212–222

    Article  CAS  Google Scholar 

  • Hatai T, Matsuzawa A, Inoshita S, Mochida Y, Kuroda T, Sakamaki K, Kuida K, Yonehara S, Ichijo H, Takeda K (2000) Execution of apoptosis signal-regulating kinase 1 (ASK1)-induced apoptosis by the mitochondria-dependent caspase activation. J Biol Chem 275:26576–26581

    Article  CAS  Google Scholar 

  • Hayes JD, McMahon M (2009) NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 34:176–188

    Article  CAS  Google Scholar 

  • Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT (2010) Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal 13:1713–1748

    Article  CAS  Google Scholar 

  • Hayes JD, Dinkova-Kostova AT, Tew KD (2020) Oxidative stress in cancer. Cancer cell 38:167–197

    Article  CAS  Google Scholar 

  • Hoesel B, Schmid JA (2013) The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12:86

    Article  CAS  Google Scholar 

  • Howes M-JR, Houghton PJ (2003) Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacol Biochem Behav 75:513–527

    Article  CAS  Google Scholar 

  • Hrycay EG, Bandiera SM (2015) Involvement of cytochrome P450 in reactive oxygen species formation and cancer. Adv Pharmacol 74:35–84

    Article  CAS  Google Scholar 

  • Hwang I, Lee J, Huh JY, Park J, Lee HB, Ho Y-S, Ha H (2012) Catalase deficiency accelerates diabetic renal injury through peroxisomal dysfunction. Diabetes 61:728–738

    Article  CAS  Google Scholar 

  • Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, McMahon M, Hayes JD, Johansen T (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285:22576–22591

    Article  CAS  Google Scholar 

  • Jia JJ, Geng WS, Wang ZQ, Chen L, Zeng XS (2019) The role of thioredoxin system in cancer: strategy for cancer therapy. Cancer Chemother Pharmacol 84:453–470

    Article  CAS  Google Scholar 

  • Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62

    Article  CAS  Google Scholar 

  • Jiramongkol Y, Lam EW (2020) FOXO transcription factor family in cancer and metastasis. Cancer Metastasis Rev 39:681–709

    Article  CAS  Google Scholar 

  • Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295:C849–C868

    Article  CAS  Google Scholar 

  • Kalinina EV, Gavriliuk LA (2020) Glutathione synthesis in cancer cells. Biochemistry (Moscow) 85:895–907

    Article  CAS  Google Scholar 

  • Kaludercic N, Di Lisa F (2020) Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy. Front Cardiovasc Med 7:12

    Article  CAS  Google Scholar 

  • Kalyanaraman B (2017) Teaching the basics of cancer metabolism: developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox Biol 12:833–842

    Article  CAS  Google Scholar 

  • Kamata T (2009) Roles of Nox1 and other Nox isoforms in cancer development. Cancer Sci 100:1382–1388

    Article  CAS  Google Scholar 

  • Kaminskyy VO, Zhivotovsky B (2014) Free radicals in cross talk between autophagy and apoptosis. Antioxid Redox Signal 21:86–102

    Article  CAS  Google Scholar 

  • Kanapathipillai M (2018) Treating p53 mutant aggregation-associated cancer. Cancers (Basel) 10:154

    Article  Google Scholar 

  • Kim MM, Darafsheh A (2020) Light sources and dosimetry techniques for photodynamic therapy. Photochem Photobiol 96:280–294

    Article  CAS  Google Scholar 

  • Kim JE, You DJ, Lee C, Ahn C, Seong JY, Hwang JI (2010) Suppression of NF-kappaB signaling by KEAP1 regulation of IKKbeta activity through autophagic degradation and inhibition of phosphorylation. Cell Signal 22:1645–1654

    Article  CAS  Google Scholar 

  • Knatko EV, Ibbotson SH, Zhang Y, Higgins M, Fahey JW, Talalay P, Dawe RS, Ferguson J, Huang JTJ, Clarke R, Zheng S, Saito A, Kalra S, Benedict AL, Honda T, Proby CM, Dinkova-Kostova AT (2015) Nrf2 activation protects against solar-simulated ultraviolet radiation in mice and humans. Cancer Prev Res 8:475–486

    Article  CAS  Google Scholar 

  • Koh YC, Ho CT, Pan MH (2020) Recent advances in cancer chemoprevention with phytochemicals. J Food Drug Anal 28:14–37

    Article  CAS  Google Scholar 

  • Konaté MM, Antony S, Doroshow JH (2020) Inhibiting the activity of NADPH oxidase in cancer. Antioxid Redox Signal 33:435–454

    Article  Google Scholar 

  • Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337

    Article  CAS  Google Scholar 

  • Kumar R, Darpan, Sharma S, Singh R (2011) Xanthine oxidase inhibitors: a patent survey. Expert Opin Ther Pat 21:1071–1108

    Article  CAS  Google Scholar 

  • Kwak MK, Kensler TW (2010) Targeting NRF2 signaling for cancer chemoprevention. Toxicol Appl Pharmacol 244:66–76

    Article  CAS  Google Scholar 

  • Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J (2018) Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother 106:1098–1107

    Article  Google Scholar 

  • Lee DF, Kuo HP, Liu M, Chou CK, Xia W, Du Y, Shen J, Chen CT, Huo L, Hsu MC, Li CW, Ding Q, Liao TL, Lai CC, Lin AC, Chang YH, Tsai SF, Li LY, Hung MC (2009) KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol Cell 36:131–140

    Article  CAS  Google Scholar 

  • Lee J, Yesilkanal AE, Wynne JP, Frankenberger C, Liu J, Yan J, Elbaz M, Rabe DC, Rustandy FD, Tiwari P, Grossman EA, Hart PC, Kang C, Sanderson SM, Andrade J, Nomura DK, Bonini MG, Locasale JW, Rosner MR (2019) Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature 568:254–258

    Article  CAS  Google Scholar 

  • Lee HM, Sia APE, Li L, Sathasivam HP, Chan MSA, Rajadurai P, Tsang CM, Tsao SW, Murray PG, Tao Q, Paterson IC, Yap LF (2020) Monoamine oxidase A is down-regulated in EBV-associated nasopharyngeal carcinoma. Sci Rep 10:6115

    Article  CAS  Google Scholar 

  • Li Y, Wang B, Zheng S, He Y (2019) Photodynamic therapy in the treatment of oral leukoplakia: a systematic review. Photodiagn Photodyn Ther 25:17–22

    Article  Google Scholar 

  • Lignitto L, LeBoeuf SE, Homer H, Jiang S, Askenazi M, Karakousi TR, Pass HI, Bhutkar AJ, Tsirigos A, Ueberheide B, Sayin VI, Papagiannakopoulos T, Pagano M (2019) Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell 178:316–329.e318

    Article  CAS  Google Scholar 

  • Lin LS, Song J, Song L, Ke K, Liu Y, Zhou Z, Shen Z, Li J, Yang Z, Tang W, Niu G, Yang HH, Chen X (2018) Simultaneous Fenton-like ion delivery and glutathione depletion by MnO(2) -based nanoagent to enhance chemodynamic therapy. Angew Chem Int Ed Engl 57:4902–4906

    Article  CAS  Google Scholar 

  • Liu Y, Min W (2002) Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner. Circ Res 90:1259–1266

    Article  CAS  Google Scholar 

  • Liu D, Xu Y (2011) p53, oxidative stress, and aging. Antioxid Redox Signal 15:1669–1678

    Article  CAS  Google Scholar 

  • Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, Colvin R, Ding J, Tong L, Wu S, Hines J, Chen X (2012) A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther 11:1672–1682

    Article  CAS  Google Scholar 

  • Liu Y, Ji X, Tong WWL, Askhatova D, Yang T, Cheng H, Wang Y, Shi J (2018) Engineering multifunctional RNAi nanomedicine to concurrently target cancer hallmarks for combinatorial therapy. Angew Chem Int Ed Engl 57:1510–1513

    Article  CAS  Google Scholar 

  • Liu R, Shi D, Zhang J, Li X, Han X, Yao X, Fang J (2019a) Virtual screening-guided discovery of thioredoxin reductase inhibitors. Toxicol Appl Pharmacol 370:106–116

    Article  CAS  Google Scholar 

  • Liu T, Zhang J, Han X, Xu J, Wu Y, Fang J (2019b) Promotion of HeLa cells apoptosis by cynaropicrin involving inhibition of thioredoxin reductase and induction of oxidative stress. Free Radic Biol Med 135:216–226

    Article  CAS  Google Scholar 

  • Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87

    Article  CAS  Google Scholar 

  • Lu MC, Ji JA, Jiang ZY, You QD (2016) The Keap1-Nrf2-ARE pathway as a potential preventive and therapeutic target: an update. Med Res Rev 36:924–963

    Article  CAS  Google Scholar 

  • Lv H, Zhen C, Liu J, Yang P, Hu L, Shang P (2019) Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy. Oxidative Med Cell Longev 2019:3150145

    Article  Google Scholar 

  • Mang TS (2004) Lasers and light sources for PDT: past, present and future. Photodiagn Photodyn Ther 1:43–48

    Article  Google Scholar 

  • Mantovani F, Collavin L, Del Sal G (2019) Mutant p53 as a guardian of the cancer cell. Cell Death Differ 26:199–212

    Article  Google Scholar 

  • Marinho HS, Real C, Cyrne L, Soares H, Antunes F (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2:535–562

    Article  CAS  Google Scholar 

  • Mastrangelopoulou M, Grigalavicius M, Raabe TH, Skarpen E, Juzenas P, Peng Q, Berg K, Theodossiou TA (2020) Predictive biomarkers for 5-ALA-PDT can lead to personalized treatments and overcome tumor-specific resistances. Cancer Rep (Hoboken) e1278

    Google Scholar 

  • Menna C, Olivieri F, Catalano A, Procopio A (2010) Lipoxygenase inhibitors for cancer prevention: promises and risks. Curr Pharm Des 16:725–733

    Article  CAS  Google Scholar 

  • Meuillet EJ, Mahadevan D, Berggren M, Coon A, Powis G (2004) Thioredoxin-1 binds to the C2 domain of PTEN inhibiting PTEN’s lipid phosphatase activity and membrane binding: a mechanism for the functional loss of PTEN’s tumor suppressor activity. Arch Biochem Biophys 429:123–133

    Article  CAS  Google Scholar 

  • Mitchell DA, Marletta MA (2005) Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol 1:154–158

    Article  CAS  Google Scholar 

  • Mohammadi F, Soltani A, Ghahremanloo A, Javid H, Hashemy SI (2019) The thioredoxin system and cancer therapy: a review. Cancer Chemother Pharmacol 84:925–935

    Article  Google Scholar 

  • Moloney JN, Cotter TG (2018) ROS signalling in the biology of cancer. Semin Cell Dev Biol 80:50–64

    Article  CAS  Google Scholar 

  • Moreira L, Castells A (2011) Cyclooxygenase as a target for colorectal cancer chemoprevention. Curr Drug Targets 12:1888–1894

    Article  CAS  Google Scholar 

  • Murtaza G, Khan AK, Rashid R, Muneer S, Hasan SMF, Chen J (2017) FOXO transcriptional factors and Long-term living. Oxidative Med Cell Longev 2017:3494289

    Article  Google Scholar 

  • Nair S, Li W, Kong AN (2007) Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells. Acta Pharmacol Sin 28:459–472

    Article  CAS  Google Scholar 

  • Nam LB, Keum YS (2019) Binding partners of NRF2: functions and regulatory mechanisms. Arch Biochem Biophys 678:108184

    Article  CAS  Google Scholar 

  • Neumann CA, Krause DS, Carman CV, Das S, Dubey DP, Abraham JL, Bronson RT, Fujiwara Y, Orkin SH, Etten RAV (2003) Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424:561–565

    Article  CAS  Google Scholar 

  • Oh SH, Choi SY, Choi HJ, Ryu HM, Kim YJ, Jung HY, Cho JH, Kim CD, Park SH, Kwon TH, Kim YL (2019) The emerging role of xanthine oxidase inhibition for suppression of breast cancer cell migration and metastasis associated with hypercholesterolemia. FASEB J 33:7301–7314

    Article  CAS  Google Scholar 

  • Onorati AV, Dyczynski M, Ojha R, Amaravadi RK (2018) Targeting autophagy in cancer. Cancer 124:3307–3318

    Article  Google Scholar 

  • Orafaie A, Matin MM, Sadeghian H (2018) The importance of 15-lipoxygenase inhibitors in cancer treatment. Cancer Metastasis Rev 37:397–408

    Article  CAS  Google Scholar 

  • Osama A, Awadelkarim S, Ali A (2017) Antioxidant activity, acetylcholinesterase inhibitory potential and phytochemical analysis of Sarcocephalus latifolius Sm. bark used in traditional medicine in Sudan. BMC Complement Altern Med 17:270

    Article  Google Scholar 

  • Osama A, Zhang J, Yao J, Yao X, Fang J (2020) Nrf2: a dark horse in Alzheimer's disease treatment. Ageing Res Rev 64:101206

    Article  CAS  Google Scholar 

  • Peng S, Hou Y, Yao J, Fang J (2019a) Activation of Nrf2 by costunolide provides neuroprotective effect in PC12 cells. Food Funct 10:4143–4152

    Article  CAS  Google Scholar 

  • Peng S, Hou Y, Yao J, Fang J (2019b) Neuroprotection of mangiferin against oxidative damage via arousing Nrf2 signaling pathway in PC12 cells. Biofactors 45:381–392

    Article  CAS  Google Scholar 

  • Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M (2017) Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 38:592–607

    Article  CAS  Google Scholar 

  • Potter JD (2014) The failure of cancer chemoprevention. Carcinogenesis 35:974–982

    Article  CAS  Google Scholar 

  • Qu T, Zhang J, Xu N, Liu B, Li M, Liu A, Li A, Tang H (2019) Diagnostic value analysis of combined detection of Trx, CYFRA21-1 and SCCA in lung cancer. Oncol Lett 17:4293–4298

    CAS  Google Scholar 

  • Ranger GS (2014) Current concepts in colorectal cancer prevention with cyclooxygenase inhibitors. Anticancer Res 34:6277–6282

    CAS  Google Scholar 

  • Roh JL, Jang H, Kim EH, Shin D (2017) Targeting of the glutathione, thioredoxin, and Nrf2 antioxidant systems in head and neck cancer. Antioxid Redox Signal 27:106–114

    Article  CAS  Google Scholar 

  • Rojo de la Vega M, Chapman E, Zhang DD (2018) NRF2 and the hallmarks of cancer. Cancer Cell 34:21–43

    Article  CAS  Google Scholar 

  • Röth D, Krammer PH, Gülow K (2014) Dynamin related protein 1-dependent mitochondrial fission regulates oxidative signalling in T cells. FEBS Lett 588:1749–1754

    Article  Google Scholar 

  • Roy K, Wu Y, Meitzler JL, Juhasz A, Liu H, Jiang G, Lu J, Antony S, Doroshow JH (2015) NADPH oxidases and cancer. Clin Sci (Lond) 128:863–875

    Article  CAS  Google Scholar 

  • Sabharwal SS, Schumacker PT (2014) Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nature reviews. Cancer 14:709–721

    CAS  Google Scholar 

  • Sarcognato S, Jong IEM, Fabris L, Cadamuro M, Guido M (2020) Necroptosis in cholangiocarcinoma. Cell 9:982

    Article  CAS  Google Scholar 

  • Sato M, Matsumoto M, Saiki Y, Alam M, Nishizawa H, Rokugo M, Brydun A, Yamada S, Kaneko MK, Funayama R, Ito M, Kato Y, Nakayama K, Unno M, Igarashi K (2020) BACH1 promotes pancreatic cancer metastasis by repressing epithelial genes and enhancing epithelial-mesenchymal transition. Cancer Res 80:1279–1292

    Article  CAS  Google Scholar 

  • Sausville LN, Williams SM, Pozzi A (2019) Cytochrome P450 epoxygenases and cancer: a genetic and a molecular perspective. Pharmacol Ther 196:183–194

    Article  CAS  Google Scholar 

  • See JA, Shumack S, Murrell DF, Rubel DM, Fernández-Peñas P (2016) Consensus recommendations on the use of daylight photodynamic therapy with methyl aminolevulinate cream for actinic keratoses in Australia. Australas J Dermatol 57:167–174

    Article  Google Scholar 

  • Shafirovich V, Geacintov NE (2017) Removal of oxidatively generated DNA damage by overlapping repair pathways. Free Radic Biol Med 107:53–61

    Article  CAS  Google Scholar 

  • Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20–37

    Article  CAS  Google Scholar 

  • Shih JC (2018) Monoamine oxidase isoenzymes: genes, functions and targets for behavior and cancer therapy. J Neural Transm (Vienna) 125:1553–1566

    Article  CAS  Google Scholar 

  • Shimano H, Sato R (2017) SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat Rev Endocrinol 13:710–730

    Article  CAS  Google Scholar 

  • Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21:363–383

    Article  CAS  Google Scholar 

  • Skoura E, Datseris IE, Platis I, Oikonomopoulos G, Syrigos KN (2012) Role of positron emission tomography in the early prediction of response to chemotherapy in patients with non-small-cell lung cancer. Clin Lung Cancer 13:181–187

    Article  Google Scholar 

  • Song X, Long D (2020) Nrf2 and Ferroptosis: a new research direction for neurodegenerative diseases. Front Neurosci 14:267

    Article  Google Scholar 

  • Sporn MB (1976) Approaches to prevention of epithelial cancer during the preneoplastic period. Cancer Res 36:2699–2702

    CAS  Google Scholar 

  • Sun W, Zhao X, Fan J, Du J, Peng X (2019) Boron dipyrromethene nano-photosensitizers for anticancer phototherapies. Small 15:e1804927

    Article  Google Scholar 

  • Taguchi K, Yamamoto M (2017) The KEAP1-NRF2 system in cancer. Front Oncol 7:85

    Article  Google Scholar 

  • Tang Z, Liu Y, He M, Bu W (2019) Chemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew Chem Int Ed Engl 58:946–956

    Article  CAS  Google Scholar 

  • Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X, Shi S (2020) Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol 13:110

    Article  Google Scholar 

  • Teskey G, Abrahem R, Cao R, Gyurjian K, Islamoglu H, Lucero M, Martinez A, Paredes E, Salaiz O, Robinson B, Venketaraman V (2018) Glutathione as a marker for human disease. Adv Clin Chem 87:141–159

    Article  CAS  Google Scholar 

  • Tom S, Rane A, Katewa AS, Chamoli M, Matsumoto RR, Andersen JK, Chinta SJ (2019) Gedunin inhibits oligomeric Abeta1-42-induced microglia activation via modulation of Nrf2-NF-kappaB signaling. Mol Neurobiol 56:7851–7862

    Article  CAS  Google Scholar 

  • Toyokuni S, Ito F, Yamashita K, Okazaki Y, Akatsuka S (2017) Iron and thiol redox signaling in cancer: an exquisite balance to escape ferroptosis. Free Radic Biol Med 108:610–626

    Article  CAS  Google Scholar 

  • Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro AL, Pronzato MA, Marinari UM, Domenicotti C (2013) Role of glutathione in cancer progression and chemoresistance. Oxidative Med Cell Longev 2013:972913

    Article  Google Scholar 

  • Uzu M, Nonaka M, Miyano K, Sato H, Kurebayashi N, Yanagihara K, Sakurai T, Hisaka A, Uezono Y (2019) A novel strategy for treatment of cancer cachexia targeting xanthine oxidase in the brain. J Pharmacol Sci 140:109–112

    Article  CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  Google Scholar 

  • Vernieri C, Casola S, Foiani M, Pietrantonio F, de Braud F, Longo V (2016) Targeting cancer metabolism: dietary and pharmacologic interventions. Cancer Discov 6:1315–1333

    Article  CAS  Google Scholar 

  • Vizcaíno C, Mansilla S, Portugal J (2015) Sp1 transcription factor: a long-standing target in cancer chemotherapy. Pharmacol Ther 152:111–124

    Article  Google Scholar 

  • Waghela BN, Vaidya FU, Agrawal Y, Santra MK, Mishra V, Pathak C (2021) Molecular insights of NADPH oxidases and its pathological consequences. Cell Biochem Funct 39:218–234

    Article  CAS  Google Scholar 

  • Walczak K, Marciniak S, Rajtar G (2017) Cancer chemoprevention - selected molecular mechanisms. Postepy Hig Med Dosw (Online) 71:149–161

    Article  Google Scholar 

  • Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148:228–243

    Article  CAS  Google Scholar 

  • Wang Y, Yin W, Ke W, Chen W, He C, Ge Z (2018) Multifunctional polymeric micelles with amplified Fenton reaction for tumor ablation. Biomacromolecules 19:1990–1998

    Article  CAS  Google Scholar 

  • Wang K, Jiang J, Lei Y, Zhou S, Wei Y, Huang C (2019) Targeting metabolic-redox circuits for cancer therapy. Trends Biochem Sci 44:401–414

    Article  CAS  Google Scholar 

  • Wang XQ, Wang W, Peng M, Zhang XZ (2021) Free radicals for cancer theranostics. Biomaterials 266:120474

    Article  CAS  Google Scholar 

  • Xiao GG, Wang M, Li N, Loo JA, Nel AE (2003) Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line. J Biol Chem 278:50781–50790

    Article  CAS  Google Scholar 

  • Xie W, Ma W, Liu P, Zhou F (2019) Overview of thioredoxin system and targeted therapies for acute leukemia. Mitochondrion 47:38–46

    Article  CAS  Google Scholar 

  • Xu H, Li C, Mozziconacci O, Zhu R, Xu Y, Tang Y, Chen R, Huang Y, Holzbeierlein JM, Schöneich C, Huang J, Li B (2019) Xanthine oxidase-mediated oxidative stress promotes cancer cell-specific apoptosis. Free Radic Biol Med 139:70–79

    Article  CAS  Google Scholar 

  • Yang Y, Dieter MZ, Chen Y, Shertzer HG, Nebert DW, Dalton TP (2002) Initial characterization of the glutamate-cysteine ligase modifier subunit Gclm(−/−) knockout mouse. Novel model system for a severely compromised oxidative stress response. J Biol Chem 277:49446–49452

    Article  CAS  Google Scholar 

  • Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331

    Article  CAS  Google Scholar 

  • Yao J, Zhang B, Ge C, Peng S, Fang J (2015) Xanthohumol, a polyphenol chalcone present in hops, activating Nrf2 enzymes to confer protection against oxidative damage in PC12 cells. J Agric Food Chem 63:1521–1531

    Article  CAS  Google Scholar 

  • Yao J, Peng S, Xu J, Fang J (2019) Reversing ROS-mediated neurotoxicity by chlorogenic acid involves its direct antioxidant activity and activation of Nrf2-ARE signaling pathway. Biofactors 45:616–626

    CAS  Google Scholar 

  • Yoon I, Li JZ, Shim YK (2013) Advance in photosensitizers and light delivery for photodynamic therapy. Clin Endosc 46:7–23

    Article  Google Scholar 

  • You X, Ma M, Hou G, Hu Y, Shi X (2018) Gene expression and prognosis of NOX family members in gastric cancer. Onco Targets Ther 11:3065–3074

    Article  Google Scholar 

  • Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, Roper J, Chio IIC, Giannopoulou EG, Rago C, Muley A, Asara JM, Paik J, Elemento O, Chen Z, Pappin DJ, Dow LE, Papadopoulos N, Gross SS, Cantley LC (2015) Vitamin C selectively kills <em>KRAS</em> and <em>BRAF</em> mutant colorectal cancer cells by targeting GAPDH. Science 350:1391–1396

    Article  CAS  Google Scholar 

  • Zavattari P, Perra A, Menegon S, Kowalik MA, Petrelli A, Angioni MM, Follenzi A, Quagliata L, Ledda-Columbano GM, Terracciano L, Giordano S, Columbano A (2015) Nrf2, but not β-catenin, mutation represents an early event in rat hepatocarcinogenesis. Hepatology 62:851–862

    Article  CAS  Google Scholar 

  • Zhang C, Bu W, Ni D, Zhang S, Li Q, Yao Z, Zhang J, Yao H, Wang Z, Shi J (2016) Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew Chem Int Ed Engl 55:2101–2106

    Article  CAS  Google Scholar 

  • Zhang J, Li X, Han X, Liu R, Fang J (2017) Targeting the Thioredoxin system for cancer therapy. Trends Pharmacol Sci 38:794–808

    Article  CAS  Google Scholar 

  • Zhang X, Guo J, Wei X, Niu C, Jia M, Li Q, Meng D (2018) Bach1: function, regulation, and involvement in disease. Oxidative Med Cell Longev 2018:1347969

    Article  Google Scholar 

  • Zhang J, Zhang B, Li X, Han X, Liu R, Fang J (2019) Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: an update. Med Res Rev 39:5–39

    Article  CAS  Google Scholar 

  • Zhang J, Duan D, Osama A, Fang J (2021a) Natural molecules targeting thioredoxin system and their therapeutic potential. Antioxid Redox Signal 34:1083–1107

    Article  CAS  Google Scholar 

  • Zhang J, Duan D, Song ZL, Liu T, Hou Y, Fang J (2021b) Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Med Res Rev:1–53

    Google Scholar 

  • Zhao J, Duan L, Wang A, Fei J, Li J (2020) Insight into the efficiency of oxygen introduced photodynamic therapy (PDT) and deep PDT against cancers with various assembled nanocarriers. Wiley Interdiscip Rev Nanomed Nanobiotechnol 12:e1583

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the National Natural Science Foundation of China (22077055 and 82003779), the Natural Science Foundation of Gansu Province (20JR5RA311), and the 111 project are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Osama, A., Zhang, J., Fang, J. (2023). Harnessing the ROS for Cancer Treatment. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_255-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_255-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics