Skip to main content

Immunotherapy in Gastrointestinal Malignancies

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology

Abstract

Gastrointestinal cancers have a high incidence and mortality rate in both sexes. Today, traditional treatments such as surgery, radiotherapy, chemotherapy, and antiangiogenic treatments are used. There has been an increase in overall survival and progression-free survival rates with the introduction of immunotherapies. Immunotherapies increase the treatment response against cancer cells by activating T lymphocytes in the body at the receptor level (acting on PD-1/PDL1 and CTLA-4 receptors). Different tests (PD-1/PD-L1 level, microsatellite instability, tumor mutation burden, and combined positive score) are currently used to determine the effectiveness of immune checkpoint inhibitors on cancer cells. Immunotherapy can be used alone or in combination with chemotherapy in gastrointestinal cancers. The benefits of the combination of a tyrosine kinase inhibitor and immunotherapy on survival and progression-free survival have been observed in clinical trials in tumors with high immune burden, such as hepatocellular cancer, and are at the forefront of chemotherapy in follow-up in current guidelines. In our chapter, we presented the effect mechanism of immunotherapy in gastrointestinal system cancers, treatment response rates, strong clinical research results, and the relationship between microbiota and immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbas G, Krasna M (2017) Overview of esophageal cancer. Ann Cardiothorac Surg 6:131–136

    Article  PubMed  PubMed Central  Google Scholar 

  • Agdashian D et al (2019) The effect of anti-CTLA4 treatment on peripheral and intra- tumoral T cells in patients with hepatocellular carcinoma. Cancer Immunol Immunother 68(4):599–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augustine MM, Fong Y (2014) Epidemiology and risk factors of biliary tract and primary liver tumors. Surg Oncol Clin N Am 23:171–188

    Article  PubMed  Google Scholar 

  • Bassani-Sternberg M, Braunlein E, Klar R et al (2016) Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat Commun 7:13404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bekaii-Saab TS, Valle JW, Borad MJ et al (2019) Trial design for a phase 3 study evaluating pemigatinib (INCB054828) versus gemcitabine plus cisplatin chemotherapy in firstline treatment of patients with cholangiocarcinoma with FGFR2 rearrangement. JCO 37:TPS462

    Article  Google Scholar 

  • Blazquez JL, Benyamine A, Pasero C, Olive D (2018) New insights into the regulation of gammadelta T cells by BTN3A and other BTN/BTNL in tumor immunity. Front Immunol 9:1601

    Article  PubMed  PubMed Central  Google Scholar 

  • Boutros C, Tarhini A, Routier E et al (2016) Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol 13:473–486

    Article  CAS  PubMed  Google Scholar 

  • Carreno BM, Magrini V, Becker-Hapak M et al (2015) Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348(6236):803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang B et al (2019) The correlation and prognostic value of serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed death-ligand 1 (sPD-L1) in patients with hepatocellular carcinoma. Cancer Immunol Immunother 68(3):353–363

    Article  CAS  PubMed  Google Scholar 

  • Chaput N, Lepage P, Coutzac C et al (2017) Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol 28:1368–1379

    Article  CAS  PubMed  Google Scholar 

  • Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10

    Article  PubMed  Google Scholar 

  • Cheng AL, Qin S, Ikeda M et al (2019) IMbrave150: Efficacy and safety results from a Ph III study evaluating atezolizumab (atezo) + bevacizumab (bev) vs sorafenib (sor) as first treatment (tx) for patients (pts) with unresectable hepatocellular carcinoma (HCC). Ann Oncol 30(suppl_9):ix183–ix202. https://doi.org/10.1093/annonc/mdz446

    Article  Google Scholar 

  • Chilakapati SR, Ricciuti J, Zsiros E (2020) Microbiome and cancer immunotherapy. Curr Opin Biotechnol 65:114–117

    Article  CAS  PubMed  Google Scholar 

  • Chung HC, Bang YJ, Fuchs CS, Qin SK, Satoh T, Shitara K, Tabernero J, Van Cutsem E, Alsina M, Cao ZA, Lu J, Bhagia P, Shih CS, Janjigian YY (2021) First-line pembrolizumab/placebo plus trastuzumab and chemotherapy in HER2-positive advanced gastric cancer: KEYNOTE-811. Future Oncol 17(5):491–501. https://doi.org/10.2217/fon-2020-0737. Epub 2020 Nov 10. PMID: 33167735; PMCID: PMC8411394

    Article  CAS  PubMed  Google Scholar 

  • Cohen CJ, Gartner JJ, Horovitz-Fried M et al (2015) Isolation of neoantigenspecific T cells from tumor and peripheral lymphocytes. J Clin Invest 125(10):3981–3991

    Article  PubMed  PubMed Central  Google Scholar 

  • Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 14(2):135–146

    Article  CAS  PubMed  Google Scholar 

  • Cristescu R, Lee J, Nebozhyn M et al (2015) Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 21:449–456

    Article  CAS  PubMed  Google Scholar 

  • Daillère R, Vétizou M, Waldschmitt N et al (2016) Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45:931–943

    Article  PubMed  Google Scholar 

  • DeSantis CE, Lin CC, Mariotto AB et al (2014) Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 64:252–71.8

    Article  PubMed  Google Scholar 

  • Diaz LA, Marabelle A, Delord JP, Shapira-Frommer R, Geva R, Peled N et al (2017) Pembrolizumab therapy for microsatellite instability high (MSI-H) colorectal cancer (CRC) and non-CRC. J Clin Oncol 35(15_suppl):Abstract 3071

    Article  Google Scholar 

  • El-Serag HB, Engels EA, Landgren O et al (2009) Risk of hepatobiliary and pancreatic cancers after hepatitis C virus infection: A population-based study of U.S. veterans. Hepatology 49:116–123

    Article  PubMed  Google Scholar 

  • Fontugne J, Augustin J, Pujals A et al (2017) PD-L1 expression in perihilar and intrahepatic cholangiocarcinoma. Oncotarget 8:24644–24651

    Article  PubMed  PubMed Central  Google Scholar 

  • Frankel AE, Coughlin LA, Kim J et al (2017) Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia 19:848–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M et al (2018) Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 trial. JAMA Oncol 4:e180013

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujiyoshi K, Yamamoto G, Takenoya T et al (2017) Metastatic pattern of stage IV colorectal cancer with high-frequency microsatellite instability as a prognostic factor. Anticancer Res 37:239–247

    Article  CAS  PubMed  Google Scholar 

  • Fukumura D, Kloepper J, Amoozgar Z et al (2018) Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol 15:325–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galle PR, Finn RS, Qin S et al (2020) Patient-reported outcomes (PROs) from the phase III IMbrave150 trial of atezolizumab (atezo) + bevacizumab (bev) vs sorafenib (sor) as first-line treatment (tx) for patients (pts) with unresectable hepatocellular carcinoma (HCC). J Clin Oncol 38(4_suppl):476

    Article  Google Scholar 

  • Gani F, Nagarajan N, Kim Y et al (2016) Program death 1 immune checkpoint and tumor microenvironment: implications for patients with intrahepatic cholangiocarcinoma. Ann Surg Oncol 23:2610–2617

    Article  PubMed  Google Scholar 

  • Goeppert B, Frauenschuh L, Zucknick M et al (2013) Prognostic impact of tumour-infiltrating immune cells on biliary tract cancer. Br J Cancer 109:2665–2674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong J, Raffle AC, Hickok VP, Guan M, Hendifar A, Salgia R (2019) The gut microbiome and response to immune checkpoint inhibitors: preclinical and clinical strategies. Clin Transl Med 8:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan V, Spencer CN, Nezi L et al (2018) Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 359:97–103

    Article  CAS  PubMed  Google Scholar 

  • Grierson P, Lim K-H, Amin M (2017) Immunotherapy in gastrointestinal cancers. J Gastrointest Oncol 8:474–484

    Article  PubMed  PubMed Central  Google Scholar 

  • Grothey A, Tabernero J, Arnold D, De Gramont A, Ducreux MP, O’Dwyer PJ et al (2018) Fluoropyrimidine (FP) + bevacizumab (BEV) + atezolizumab vs FP/BEV in BRAFwt metastastic colorectal cancer (mCRC): Findings from Cohort 2 of MODUL – a multicentre, randomized trial of biomarker-driven maintenance treatment following first-line induction therapy. Ann Oncol 29(Suppl 8):viii714–viii715

    Article  Google Scholar 

  • Guinney J, Dienstmann R, Wang X et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21:1350–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hato T, Zhu AX, Duda DG (2016) Rationally combining anti-VEGF therapy with checkpoint inhibitors in hepatocellular carcinoma. Immunotherapy 8:299–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazama S, Tamada K, Yamaguchi Y et al (2018) Current status of immunotherapy against gastrointestinal cancers and its biomarkers: perspective for precision immunotherapy. Ann Gastroenterol Surg 2:289–303

    Article  PubMed  PubMed Central  Google Scholar 

  • Horst AK, Neumann K, Diehl L, Tiegs G (2016) Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol Immunol 13(3):277–292. https://doi.org/10.1038/cmi.2015.112. Epub 2016 Apr 4. PMID: 27041638; PMCID: PMC4856800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu CH, Lee MS, Ryoo BY, et al (2019) APASL: safety and clinical activity results from atezolizumab (atezo) + bevacizumab (bev) in hepatocellular carcinoma (HCC): updates from a phase 1b study. Presented at: Asian Pacific Association for the Study of the Liver (APASL). https://medically.roche.com/en/search/pdfviewer.cfd683a3-ef40-4777-99f5-402cdc61c904.html. Accessed 9 Mar 2019

  • Humphris JL, Patch AM, Nones K, Bailey PJ, Johns AL, McKay S, et al.; Australian Pancreatic Cancer Genome Initiative (2017) Hypermutation in pancreatic cancer. Gastroenterology 152(1):68–74.e2

    Google Scholar 

  • Ioka T, Ueno M, Oh D-Y et al (2019) Evaluation of safety and tolerability of durvalumab (D) with or without tremelimumab (T) in patients (pts) with biliary tract cancer (BTC). J Clin Oncol 37:387

    Article  Google Scholar 

  • Jain A, Kwong LN, Javle M (2016) Genomic profiling of biliary tract cancers and implications for clinical practice. Curr Treat Options in Oncol 17:58

    Article  Google Scholar 

  • Janjigian YY, Bendell J, Calvo E, Kim JW, Ascierto PA, Sharma P et al (2018) CheckMate-032 study: efficacy and safety of nivolumab and nivolumab plus ipilimumab in patients with metastatic esophagogastric cancer. J Clin Oncol 36(28):2836–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jemal A, Ward EM, Johnson CJ et al (2017) Annual report to the nation on the status of cancer, 1975–2014, featuring survival. J Natl Cancer Inst 109. https://doi.org/10.1093/jnci/djx030

  • Jenne CN, Kubes P (2013) Immune surveillance by the liver. Nat Immunol 14(10):996–1006. https://doi.org/10.1038/ni.2691. Epub 2013 Sep 18. PMID: 24048121

    Article  CAS  PubMed  Google Scholar 

  • Jiang H et al (2019) Gammadelta T cells in hepatocellular carcinoma patients present cytotoxic activity but are reduced in potency due to IL-2 and IL-21 pathways. Int Immunopharmacol 70:167–173

    Article  CAS  PubMed  Google Scholar 

  • Jindal A, Thadi A, Shailubhai K (2019) Hepatocellular carcinoma: etiology and current and future drugs. J Clin Exp Hepatol 9(2):221–232

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson CH, Spilker ME, Goetz L, Peterson SN, Siuzdak G (2016) Metabolite and microbiome interplay in cancer immunotherapy. Cancer Res 76:6146–6152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang YK, Boku N, Satoh T, Ryu MH, Chao Y, Kato K et al (2017) Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2) a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390(10111):2461–2471

    Article  CAS  PubMed  Google Scholar 

  • Kaseb A, Pestana RC, Vence LM et al (2019) Randomized, open-label, perioperative phase II study evaluating nivolumab alone versus nivolumab plus ipilimumab in patients with resectable HCC. J Clin Oncol 37(4_suppl):185

    Article  Google Scholar 

  • Kato K, Cho BC, Takahashi M et al (2019) Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 20:1506–1517

    Article  CAS  PubMed  Google Scholar 

  • Kawazoe A, Kuwata T, Kuboki Y et al (2017) Clinicopathological features of programmed death ligand 1 expression with tumour-infiltrating lymphocyte, mismatch repair, and Epstein-Barr virus status in a large cohort of gastric cancer patients. Gastric Cancer 20:407–415

    Article  CAS  PubMed  Google Scholar 

  • Kim ES, Kim JE, Patel MA et al (2016) Immune checkpoint modulators: an emerging antiglioma armamentarium. J Immunol Res 2016:4683607

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim ST, Cristescu R, Bass AJ et al (2018) Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med 24:1449–1458

    Article  CAS  PubMed  Google Scholar 

  • Kitano A, Ono M, Yoshida M, Noguchi E, Shimomura A, Shimoi T et al (2017) Tumour-infiltrating lymphocytes are correlated with higher expression levels of PD-1 and PD-L1 in early breast cancer. ESMO Open 2:e000150. https://doi.org/10.1136/esmoopen-2016-000150

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulangara K, Hanks DA, Waldroup S, Peltz L, Shah S, Roach C et al (2017) Development of the combined positive score (CPS) for the evaluation of PD-L1 in solid tumors with the immunohistochemistry assay PD-L1 IHC 22C3 pharmDx. J Clin Oncol 35(15_suppl):e14589

    Article  Google Scholar 

  • Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268. https://doi.org/10.1038/85330

    Article  CAS  PubMed  Google Scholar 

  • Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee V, Murphy A, Le DT et al (2016) Mismatch repair deficiency and response to immune checkpoint blockade. Oncologist 21:1200–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Deng Y, Chu Q, Zhang P (2019) Gut microbiome and cancer immunotherapy. Cancer Lett 447:41–47

    Article  CAS  PubMed  Google Scholar 

  • Liao H, Chen W, Dai Y, Richardson JJ, Guo J, Yuan K, Zeng Y, Xie K (2019) Expression of programmed cell death-ligands in hepatocellular carcinoma: correlation with immune microenvironment and survival outcomes. Front Oncol 9:883. https://doi.org/10.3389/fonc.2019.00883. PMID: 31572677; PMCID: PMC6749030

    Article  PubMed  PubMed Central  Google Scholar 

  • Liaw Y-F, Sung JJY, Chow WC, et al; Cirrhosis Asian Lamivudine Multicentre Study Group (2004) Lamivudine for patients with chronic hepatitis B and advanced liver disease. N Engl J Med 351:1521–1531

    Google Scholar 

  • Lim YJ, Koh J, Kim K et al (2015) High ratio of programmed cell death protein 1 (PD-1)(+)/CD8(+) tumor-infiltrating lymphocytes identifies a poor prognostic subset of extrahepatic bile duct cancer undergoing surgery plus adjuvant chemoradiotherapy. Radiother Oncol 117:165–170

    Article  CAS  PubMed  Google Scholar 

  • Llosa NJ, Cruise M, Tam A et al (2015) The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 5:43–51

    Article  CAS  PubMed  Google Scholar 

  • Lower SS, McGurk MP, Clark AG, Barbash DA (2018) Satellite DNA evolution: old ideas, new approaches. Curr Opin Genet Dev 49:70–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowery MA, Abou-Alfa GK, Burris HA et al (2017) Phase I study of AG-120, an IDH1 mutant enzyme inhibitor: results from the cholangiocarcinoma dose escalation and expansion cohorts. JCO 35:4015

    Article  Google Scholar 

  • Lynch HT, Snyder CL, Shaw TG et al (2015) Milestones of Lynch syndrome: 1895-2015. Nat Rev Cancer 15:181–194

    Article  CAS  PubMed  Google Scholar 

  • Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord JP et al (2020) Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/ mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol 38(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Marks EI, Yee NS (2015) Immunotherapeutic approaches in biliary tract carcinoma: current status and emerging strategies. World J Gastrointest Oncol 7:338–346

    Article  PubMed  PubMed Central  Google Scholar 

  • Matson V, Fessler J, Bao R et al (2018) The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science 359:104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matson V, Chervin CS, Gajewski TF (2021) Cancer and the microbiome—influence of the commensal microbiota on cancer, immune responses, and immunotherapy. Gastroenterology 160(2):600–613

    Article  CAS  PubMed  Google Scholar 

  • Matsushita H, Vesely MD, Koboldt DC et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482(7385):400–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merla A, Liu KG, Rajdev L (2015) Targeted therapy in biliary tract cancers. Curr Treat Options in Oncol 16:48

    Article  Google Scholar 

  • Moehler M, Shitara K, Garrido M, Salman P, Shen L, Wyrwicz L, Yamaguchi K, Skoczylas T, Bragagnoli AC, Liu T et al (2020) LBA6_PR Nivolumab (nivo) plus chemotherapy (chemo) versus chemo as first-line (1L) treatment for advanced gastric cancer/gastroesophageal junction cancer (GC/GEJC)/esophageal adenocarcinoma (EAC): first results of the CheckMate 649 study. Ann Oncol 31:S1191

    Article  Google Scholar 

  • Nakakubo Y, Miyamoto M, Cho Y et al (2003) Clinical significance of immune cell infiltration within gallbladder cancer. Br J Cancer 89:1736–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano S, Eso Y, Okada H et al (2020) Recent advances in immunotherapy for hepatocellular carcinoma. Cancers (Basel) 12:775

    Article  CAS  PubMed  Google Scholar 

  • Neesse A, Algul H, Tuveson DA, Gress TM (2015) Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut 64:1476–1484

    Article  CAS  PubMed  Google Scholar 

  • Ogura T, Kakuta M, Yatsuoka T et al (2014) Clinicopathological characteristics and prognostic impact of colorectal cancers with NRAS mutations. Oncol Rep 32:50–56

    Article  CAS  PubMed  Google Scholar 

  • Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 19:813–824

    Article  CAS  PubMed  Google Scholar 

  • Oshikiri T, Miyamoto M, Shichinohe T et al (2003) Prognostic value of intratumoral CD8+ T lymphocyte in extrahepatic bile duct carcinoma as essential immune response. J Surg Oncol 84:224–228

    Article  PubMed  Google Scholar 

  • Ott PA, Hu Z, Keskin DB et al (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547(7662):217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overman MJ, Kopetz ES, McDermott R, Leach J, Lonardi S, Lenz HJ et al (2016) Nivolumab ± ipilimumab in treatment (tx) of patients (pts) with metastastic colorectal cancer (mCRC) with and without high microsatellite instability (MSIH): CheckMate-142 interim results. J Clin Oncol 34(15_suppl):Abstract 3501

    Article  Google Scholar 

  • Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA et al (2017) Nivolumab in patients with metastatic DNA mismatch repair- deficient or microsatellite instabilityhigh colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 18(9):1182–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overman MJ, Lonardi S, Wong KY, Lenz HJ, Gelsomino F, Aglietta M et al (2018) Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol 36(8):773–779

    Article  CAS  PubMed  Google Scholar 

  • Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. https://doi.org/10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polom K, Marano L, Marrelli D et al (2018) Metaanalysis of microsatellite instability in relation to clinicopathological characteristics and overall survival in gastric cancer. Br J Surg 105:159–167

    Article  CAS  PubMed  Google Scholar 

  • Puccini A, Battaglin F, Iaia ML et al (2020) Overcoming resistance to anti-PD1 and anti-PD-L1 treatment in gastrointestinal malignancies. J Immunother Cancer 8:e000404

    Article  PubMed  PubMed Central  Google Scholar 

  • Pushalkar S, Hundeyin M, Daley D et al (2018) The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov 8:403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi OS, Zheng Y, Nakamura K et al (2011) Transendocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332:600–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezasoltani S, Yadegar A, Asadzadeh Aghdaei H, Reza Zali M (2021) Modulatory effects of gut microbiome in cancer immunotherapy: a novel paradigm for blockade of immune checkpoint inhibitors. Cancer Med 10(3):1141–1154

    Article  CAS  PubMed  Google Scholar 

  • Riaz N, Morris L, Havel JJ et al (2016) The role of neoantigens in response to immune checkpoint blockade. Int Immunol 28(8):411–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotte A (2019) Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res 38:255

    Article  PubMed  PubMed Central  Google Scholar 

  • Routy B, Le Chatelier E, Derosa L et al (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:91–97

    Article  CAS  PubMed  Google Scholar 

  • Roviello G, Iannone LF, Bersanelli M, Mini E, Catalano M (2021) The gut microbiome and efficacy of cancer immunotherapy. Pharmacol Ther 231:107973

    Article  PubMed  Google Scholar 

  • Ruiz de Galarreta M, Bresnahan E, Molina-Sánchez P, Lindblad KE, Maier B, Sia D, Puigvehi M, Miguela V, Casanova-Acebes M, Dhainaut M, Villacorta-Martin C, Singhi AD, Moghe A, von Felden J, Tal Grinspan L, Wang S, Kamphorst AO, Monga SP, Brown BD, Villanueva A, Llovet JM, Merad M, Lujambio A (2019) β-Catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov 9(8):1124–1141. https://doi.org/10.1158/2159-8290.CD-19-0074. Epub 2019 Jun 11. PMID: 31186238; PMCID: PMC6677618

    Article  CAS  PubMed  Google Scholar 

  • Sabbatino F, Villani V, Yearley JH et al (2016) PD-L1 and HLA class I antigen expression and clinical course of the disease in intrahepatic cholangiocarcinoma. Clin Cancer Res 22:470–478

    Article  CAS  PubMed  Google Scholar 

  • Saleh RA, Elkord E (2019) Treg-mediated acquired resistance to immune checkpoint inhibitors. Cancer Lett 457:168–179

    Article  CAS  PubMed  Google Scholar 

  • Schulze K, Nault J-C, Villanueva A (2016) Genetic profiling of hepatocellular carcinoma using next-generation sequencing. J Hepatol 65:1031–1042

    Article  CAS  PubMed  Google Scholar 

  • Seth S, Ager A, Arends MJ et al (2018) Lynch syndrome - cancer pathways, heterogeneity and immune escape. J Pathol 246:129–133

    Article  PubMed  Google Scholar 

  • Shah MA, Adenis A, Enzinger PC et al (2019) Pembrolizumab versus chemotherapy as secondline therapy for advanced esophageal cancer: phase 3 KEYNOTE-181 study. J Clin Oncol 37:4010

    Article  Google Scholar 

  • Shen J, Ju Z, Zhao W et al (2018) ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med 24:556–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shindo Y, Yoshimura K, Kuramasu A, Watanabe Y, Ito H, Kondo T et al (2015) Combination immunotherapy with 4-1BB activation and PD-1 blockade enhances antitumor efficacy in a mouse model of subcutaneous tumor. Anticancer Res 35:129–136

    CAS  PubMed  Google Scholar 

  • Shitara K, Ozguroglu M, Bang YJ, Di Bartolomeo M, Mandala M, Ryu MH et al (2018) Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet 392:123–133

    Article  CAS  PubMed  Google Scholar 

  • Shui L, Yang X, Li J, Yi C, Sun Q, Zhu H (2020) Gut microbiome as a potential factor for modulating resistance to cancer immunotherapy. Front Immunol 10:2989

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivan A, Corrales L, Hubert N et al (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science 350:1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder A, Chan TA (2015) Immunogenic peptide discovery in cancer genomes. Curr Opin Genet Dev 30:7–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein A, Binder M, Al Batran SE, Hinke A, Waberer L, Goekkurt E et al (2018) Avelumab and cetuximab in combination with FOLFOX in patients with previously untreated metastatic colorectal cancer (mCRC): results of the safety run-in phase of the phase II AVETUX trial (AIO-KRK-0216). J Clin Oncol 36(15_suppl):3561

    Article  Google Scholar 

  • Suleiman Y, Coppola D, Zibadi S et al (2015) Prognostic value of tumor-infiltrating lymphocytes (TILs) and expression of PD-L1 in cholangiocarcinoma. JCO 33:294

    Article  Google Scholar 

  • Tabernero J, Cutsem EV, Bang Y-J et al (2019) Pembrolizumab with or without chemotherapy versus chemotherapy for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma: the phase III KEYNOTE-062 study. J Clin Oncol 37:LBA4007

    Article  Google Scholar 

  • Takagi S (2004) Dendritic cells, T-cell infiltration, and grp94 expression in cholangiocellular carcinoma. Hum Pathol 35:881–886

    Article  CAS  PubMed  Google Scholar 

  • Terawaki S, Chikuma S, Shibayama S, Hayashi T, Yoshida T, Okazaki T et al (2011) IFN-α directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity. J Immunol 186:2772–2779. https://doi.org/10.4049/jimmunol.1003208

    Article  CAS  PubMed  Google Scholar 

  • The Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513:202–209

    Article  Google Scholar 

  • Thierry A, Kai-Keen S, Won KT et al (2020) Pembrolizumab versus chemotherapy for microsatellite instability-high/mismatch repair deficient metastatic colorectal cancer: the phase 3 KEYNOTE-177 study. J Clin Oncol 38(suppl):abstr LBA4

    Google Scholar 

  • Torphy RJ, Zhu Y, Schulick RD (2018) Immunotherapy for pancreatic cancer: barriers and breakthroughs. Ann Gastroenterol Surg 2:274–281

    Article  PubMed  PubMed Central  Google Scholar 

  • Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno M, Chung HC, Nagrial A et al (2018) Pembrolizumab for advanced biliary adenocarcinoma: Results from the multicohort, phase II KEYNOTE-158 study. Ann Oncol 29(suppl_8):VIII210

    Article  Google Scholar 

  • Ueno M, Ikeda M, Morizane C et al (2019) Nivolumab alone or in combination with cisplatin plus gemcitabine in Japanese patients with unresectable or recurrent biliary tract cancer: a non-randomised, multicentre, open-label, phase 1 study. Lancet Gastroenterol Hepatol 4:611–621

    Article  PubMed  Google Scholar 

  • Veigl ML, Kasturi L, Olechnowicz J, Ma AH, Lutterbaugh JD, Periyasamy S et al (1998) Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci U S A 95:8698–8702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vétizou M, Pitt JM, Daillère R et al (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350:1079–1084

    Article  PubMed  PubMed Central  Google Scholar 

  • von Bernstorff W, Voss M, Freichel S, Schmid A, Vogel I, Johnk C et al (2001) Systemic and local immunosuppression in pancreatic cancer patients. Clin Cancer Res 7:925s–932s

    Google Scholar 

  • Voron T, Colussi O, Marcheteau E et al (2015) VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 212:139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y et al (2002) Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 169:5538–5545. https://doi.org/10.4049/jimmunol.169.10.5538

    Article  CAS  PubMed  Google Scholar 

  • Yarchoan M, Xing N, Luan L, Xu H, Sharma R, Popovic A, Pawlik TM, Kim AK, Zhu Q, Jaffee EM et al (2017) Characterization of the immune microenvironment in hepatocellular carcinoma. Clin Cancer Res 23:7333–7339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yau T, Kang YK, Kim TY, El-Khoueiry AB, Santoro A, Sangro B et al (2019) Nivolumab (NIVO) + ipilimumab (IPI) combination therapy in patients (pts) with advanced hepatocellular carcinoma (aHCC): results from CheckMate 040. J Clin Oncol 37(15_suppl):4012. https://doi.org/10.1200/JCO.2019.37.15_suppl.4012

    Article  Google Scholar 

  • Ye Y, Zhou L, Xie X et al (2009) Interaction of B7-H1 on intrahepatic cholangiocarcinoma cells with PD-1 on tumor-infiltrating T cells as a mechanism of immune evasion. J Surg Oncol 100:500–504

    Article  PubMed  Google Scholar 

  • Zehir A, Benayed R, Shah RH et al (2017) Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 23:703–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zongyi Y, Xiaowu L (2020) Immunotherapy for hepatocellular carcinoma. Cancer Lett 470:8–17. https://doi.org/10.1016/j.canlet.2019.12.002. Epub 2019 Dec 4. PMID: 31811905

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Uğraklı, M., Karaağaç, M., Artaç, M. (2023). Immunotherapy in Gastrointestinal Malignancies. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_218-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_218-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics