Skip to main content

Harmonic Fractal-Like Features Related to Epi-Chains of Genomes of Higher and Lower Organisms

  • Conference paper
  • First Online:
Advances in Intelligent Systems, Computer Science and Digital Economics II (CSDEIS 2020)

Abstract

The paper is devoted to a new class of fractal-like and symmetric features revealed in long DNA sequences in eukaryotic and prokaryotic genomes in addition to known data about fractal-like features in molecular genetic systems. This new class was discovered due to the oligomer sums method described. This method can be applied for comparative analysis of numerical peculiarities of any complete genomic DNA nucleotide sequences and its special sparse shortened sequences termed as DNA epi-chains. An application of the method discovered so-called hyperbolic rules of oligomer cooperative organization in genomes. The article presents some results regarding the DNA sequence of the first human chromosome, which show a practical identity of the hyperbolic rules in the complete DNA sequence and its epi-chains of the orders 2, 3, 100. Similar results hold for all human chromosomes and many other eukaryotic and prokaryotic genomes. The results support the fundamental ideas by P. Jordan and E. Schrödinger about quantum biology and living organisms as quantum entities. The described fractal-like features of long DNA sequences show the existence of new classes of symmetric relations in genetic systems and allow developing new model approaches to genetically inherit biological structures and some new methods in biotechnologies and problems of artificial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Losa, G.A., Merlini, D., Nonnenmacher, T.F., Weibel, E.R. (eds.): Fractals in biology and medicine mathematics and biosciences in interaction. MBI, Birkhäuser Basel, Basel (2002). https://doi.org/10.1007/978-3-0348-8119-7

    Book  Google Scholar 

  2. Buldyrev, S.V., Goldberger, A.L., Havlin, S., Peng, C.-K., Stanley, H.E.: Fractals in biology and medicine: from DNA to the heartbeat. In: Bunde, A., Havlin, S. (eds.) Fractals in Science, pp. 49–88. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-642-77953-4_3

    Chapter  Google Scholar 

  3. Dokukin, M.E., Guz, N.V., Woodworth, C.D., Sokolov, I.: Emergence of fractal geometry on the surface of human cervical epithelial cells during progression towards cancer. New J. Phys. 17, 033019 (2015).

    Google Scholar 

  4. Baish, J.W., Jain, R.K.: Fractals and cancer. Cancer Res. 60, 3683–3688 (2000).

    Google Scholar 

  5. Petoukhov, S.V., He, M.: Symmetrical analysis techniques for genetic systems and bioinformatics: advanced patterns and applications. IGI Global, USA (2009)

    Google Scholar 

  6. Jeffrey, H.J.: Chaos game representation of gene structure. Nucl. Acids Res. 18(8), 2l163–2170 (1990).

    Google Scholar 

  7. Peng, C.K., et al.: Long-range correlations in nucleotide sequences. Nature 356, 168–170 (1992)

    Article  Google Scholar 

  8. Peng, C.K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Sclortino, F., Simons, M., Stanley, H.E.: Fractal landscape analysis of DNA walks. Physica A. 191(1–4), 25–29 (1992).

    Google Scholar 

  9. Pellionis, A.J.: The principle of recursive genome function. Cerebellum 7, 348–359 (2008). https://doi.org/10.1007/s12311-008-0035-y

  10. Pellionisz, A.J., Graham, R., Pellionisz, P.A., Perez J.C.: Recursive genome function of the cerebellum: geometric unification of neuroscience and genomics, In: Manto, M. Gruol, D. L., Schmahmann, J. D., Koibuchi, N., Rossi, F. (eds.) Handbook of the Cerebellum and Cerebellar Disorders, pp. 1381–1423 (2012).

    Google Scholar 

  11. Perez, J.C.: Codon populations in single-stranded whole human genome DNA are fractal and fine-tuned by the golden ratio 1.618. Interdiscip. Sci. Comput. Life Sci. 2, 228–240 (2010). https://doi.org/10.1007/s12539-010-0022-0

  12. Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoszy, T., Telling, A., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., Sandstrom, R., Bernstein, B., Bender, M.A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L.A., Lander, E.S., Dekker, J.: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 326(5950), 289–293 (2009). https://doi.org/10.1126/science.1181369

  13. Petoukhov, S.V.: Hyperbolic rules of the oligomer cooperative organization of eukaryotic and prokaryotic genomes. Preprints, 2020050471, 95 (2020), (doi:https://doi.org/10.20944/preprints202005.0471.v2), https://www.preprints.org/manuscript/202005.0471/v2

  14. Petoukhov, S.V.: Genomes symmetries and algebraic harmony in living bodies. Symm. Cult. Sci. 31(2), 222–223 (2020). https://doi.org/10.26830/symmetry_2020_2_222

  15. Petoukhov, S.: Nucleotide epi-chains and new nucleotide probability rules in long DNA sequences. Preprints 2019040011, 41 (2019). https://www.preprints.org/manuscript/201904.0011/v2

  16. Khan, R., Debnath, R.: Human distraction detection from video stream using artificial emotional intelligence. IJIGSP 12(2), 19–29 (2020)

    Article  Google Scholar 

  17. Erwin, D.R.N.: Improving retinal image quality using the contrast stretching, histogram equalization, and CLAHE methods with median filters. IJIGSP12(2), 30–41 (2020).

    Google Scholar 

  18. Niaz, M., Shuaib, M., Khalid, H., Khalilur, R., Shahjahan, A.: Design and development of an intelligent home with automated environmental control. IJIGSP, 12(4), 1–14 (2020).

    Google Scholar 

  19. Arora, N., Ashok, A., Tiwari, S.: Efficient Image retrieval through hybrid feature set and neural network IJIGSP 11(1), 44-53 (2019)

    Google Scholar 

  20. Basavaraj, S.A., Naveen, N.M., Surendra, P.: Automated paddy variety recognition from color-related plant agro-morphological characteristics. IJIGSP, 11(1), 12–22 (2019).

    Google Scholar 

  21. Mahtab, A., Akhand, M.A.H., Hafizur Rahman, M.M.: Recognizing bangla handwritten numeral utilizing deep long short term memory. IJIGSP, 11(1), 23–32 (2019)

    Google Scholar 

  22. Petoukhov, S.V.: The rules of long DNA-sequences and tetra-groups of oligonucleotides. Version 6 (22 May 2020), arXiv:1709.04943v6.

  23. Petoukhov, S.V., Petukhova, E.S., Svirin, V.I.: Symmetries of DNA alphabets and quantum informational formalisms. Symm. Cult. Sci. 30(2), 161–179 (2019). https://doi.org/10.26830/symmetry_2019_2_161.

  24. McFadden, J., Al-Khalili, J.: The origins of quantum biology. Proc. Royal Soc. A, 474(2220), 1–13 (2018). https://doi.org/10.1098/rspa.2018.0674.

Download references

Acknowledgments

The authors are grateful to their colleagues M. He, Z. Hu, I. Stepanyan, V. Svirin, and G. Tolokonnikov for research assistance.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petoukhov, S.V., Verevkin, V.V. (2021). Harmonic Fractal-Like Features Related to Epi-Chains of Genomes of Higher and Lower Organisms. In: Hu, Z., Petoukhov, S., He, M. (eds) Advances in Intelligent Systems, Computer Science and Digital Economics II. CSDEIS 2020. Advances in Intelligent Systems and Computing, vol 1402. Springer, Cham. https://doi.org/10.1007/978-3-030-80478-7_18

Download citation

Publish with us

Policies and ethics