Skip to main content

A Brief Survey of Deep Learning Approaches for Learning Analytics on MOOCs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12677))

Abstract

Massive Open Online Course (MOOC) systems have become prevalent in recent years and draw more attention, a.o., due to the coronavirus pandemic’s impact. However, there is a well-known higher chance of dropout from MOOCs than from conventional off-line courses. Researchers have implemented extensive methods to explore the reasons behind learner attrition or lack of interest to apply timely interventions. The recent success of neural networks has revolutionised extensive Learning Analytics (LA) tasks. More recently, the associated deep learning techniques are increasingly deployed to address the dropout prediction problem. This survey gives a timely and succinct overview of deep learning techniques for MOOCs’ learning analytics. We mainly analyse the trends of feature processing and the model design in dropout prediction, respectively. Moreover, the recent incremental improvements over existing deep learning techniques and the commonly used public data sets have been presented. Finally, the paper proposes three future research directions in the field: knowledge graphs with learning analytics, comprehensive social network analysis, composite behavioural analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adamopoulos, P.: What makes a great MOOC? An interdisciplinary analysis of student retention in online courses. In: International Conference on Information Systems (2013)

    Google Scholar 

  2. Akshay, A., Andreas, P.: The stanford MOOCPosts data set. https://datastage.stanford.edu/StanfordMoocPosts/. Accessed 28 Jan 2021

  3. Al-Shabandar, R., Hussain, A., Laws, A., Keight, R., Lunn, J., Radi, N.: Machine learning approaches to predict learning outcomes in massive open online courses. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 713–720. IEEE (2017)

    Google Scholar 

  4. Alamri, A., Sun, Z., Cristea, A.I., Senthilnathan, G., Shi, L., Stewart, C.: Is MOOC learning different for dropouts? A visually-driven, multi-granularity explanatory ML approach. In: Kumar, V., Troussas, C. (eds.) ITS 2020. LNCS, vol. 12149, pp. 353–363. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49663-0_42

    Chapter  Google Scholar 

  5. Ardchir, S., Talhaoui, M.A., Jihal, H., Azzouazi, M.: Predicting MOOC dropout based on learner’s activity. Int. J. Eng. Technol. 7(4.32), 124–126 (2018)

    Google Scholar 

  6. Cazarez, R.L.U., Martin, C.L.: Neural networks for predicting student performance in online education. IEEE Lat. Am. Trans. 16(7), 2053–2060 (2018)

    Article  Google Scholar 

  7. Chaplot, D.S., Rhim, E., Kim, J.: Predicting student attrition in MOOCs using sentiment analysis and neural networks. In: AIED Workshops, vol. 53, pp. 54–57 (2015)

    Google Scholar 

  8. Cristea, A.I., Alamri, A., Kayama, M., Stewart, C., Alsheri, M., Shi, L.: Earliest predictor of dropout in MOOCs: a longitudinal study of futurelearn courses. In: Information Systems Development: Designing Digitalization. Association for Information Systems (2018)

    Google Scholar 

  9. Crossley, S., Paquette, L., Dascalu, M., McNamara, D.S., Baker, R.S.: Combining click-stream data with NLP tools to better understand MOOC completion. In: Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, pp. 6–14 (2016)

    Google Scholar 

  10. Dalipi, F., Imran, A.S., Kastrati, Z.: MOOC dropout prediction using machine learning techniques: review and research challenges. In: 2018 IEEE Global Engineering Education Conference (EDUCON), pp. 1007–1014. IEEE (2018)

    Google Scholar 

  11. Dang, F., Tang, J., Li, S.: MOOC-KG: a MOOC knowledge graph for cross-platform online learning resources. In: 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), pp. 1–8. IEEE (2019)

    Google Scholar 

  12. Dietze, S., Taibi, D., d’Aquin, M.: Facilitating scientometrics in learning analytics and educational data mining-the LAK dataset. Semant. Web 8(3), 395–403 (2017)

    Article  Google Scholar 

  13. Dmoshinskaia, N.: Dropout prediction in MOOCs: using sentiment analysis of users’ comments to predict engagement. Master’s thesis, University of Twente (2016)

    Google Scholar 

  14. Fei, M., Yeung, D.Y.: Temporal models for predicting student dropout in massive open online courses. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 256–263. IEEE (2015)

    Google Scholar 

  15. Fotso, J.E.M., Batchakui, B., Nkambou, R., Okereke, G.: Algorithms for the development of deep learning models for classification and prediction of behaviour in MOOCs. In: IEEE Learning With MOOCS (LWMOOCS), pp. 180–184. IEEE (2020)

    Google Scholar 

  16. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323. JMLR Workshop and Conference Proceedings (2011)

    Google Scholar 

  17. Guo, B., Zhang, R., Xu, G., Shi, C., Yang, L.: Predicting students performance in educational data mining. In: 2015 International Symposium on Educational Technology (ISET), pp. 125–128. IEEE (2015)

    Google Scholar 

  18. Guo, S.X., Sun, X., Wang, S.X., Gao, Y., Feng, J.: Attention-based character-word hybrid neural networks with semantic and structural information for identifying of urgent posts in MOOC discussion forums. IEEE Access 7, 120522–120532 (2019)

    Article  Google Scholar 

  19. Rahmani Hanzaki, M., Demmans Epp, C.: The effect of personality and course attributes on academic performance in MOOCs. In: Pammer-Schindler, V., Pérez-Sanagustín, M., Drachsler, H., Elferink, R., Scheffel, M. (eds.) EC-TEL 2018. LNCS, vol. 11082, pp. 497–509. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98572-5_38

    Chapter  Google Scholar 

  20. He, Y., et al.: Online at-risk student identification using RNN-GRU joint neural networks. Information 11(10), 474 (2020)

    Article  Google Scholar 

  21. Hone, K.S., El Said, G.R.: Exploring the factors affecting MOOC retention: a survey study. Comput. Educ. 98, 157–168 (2016)

    Article  Google Scholar 

  22. Jordan, K.: Massive open online course completion rates revisited: assessment, length and attrition. Int. Rev. Res. Open Distrib. Learn. 16(3), 341–358 (2015)

    Google Scholar 

  23. Kang, T., Wei, Z., Huang, J., Yao, Z.: MOOC student success prediction using knowledge distillation. In: 2020 International Conference on Computer Information and Big Data Applications (CIBDA), pp. 363–367. IEEE (2020)

    Google Scholar 

  24. Karimi, H., Derr, T., Huang, J., Tang, J.: Online academic course performance prediction using relational graph convolutional neural network. In: Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020), pp. 444–450 (2020)

    Google Scholar 

  25. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  26. Kőrösi, G., Farkas, R.: MOOC performance prediction by deep learning from raw clickstream data. In: Singh, M., Gupta, P.K., Tyagi, V., Flusser, J., Ören, T., Valentino, G. (eds.) ICACDS 2020. CCIS, vol. 1244, pp. 474–485. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6634-9_43

    Chapter  Google Scholar 

  27. Kumar, S., Zhang, X., Leskovec, J.: Predicting dynamic embedding trajectory in temporal interaction networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1269–1278 (2019)

    Google Scholar 

  28. Kuzilek, J., Hlosta, M., Zdrahal, Z.: Open university learning analytics dataset. Sci. Data 4(1), 1–8 (2017)

    Article  Google Scholar 

  29. Lang, C., Siemens, G., Wise, A., Gasevic, D.: Handbook of Learning Analytics. SOLAR, Society for Learning Analytics and Research, New York (2017)

    Book  Google Scholar 

  30. Li, H., Wei, H., Wang, Y., Song, Y., Qu, H.: Peer-inspired student performance prediction in interactive online question pools with graph neural network. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 2589–2596 (2020)

    Google Scholar 

  31. Li, W., Gao, M., Li, H., Xiong, Q., Wen, J., Wu, Z.: Dropout prediction in moocs using behavior features and multi-view semi-supervised learning. In: 2016 international joint conference on neural networks (IJCNN). pp. 3130–3137. IEEE (2016)

    Google Scholar 

  32. Liu, B., Xing, W., Zeng, Y., Wu, Y.: Quantifying the influence of achievement emotions for student learning in MOOCs. J. Educ. Comput. Res. 59(3), 429–452 (2021)

    Google Scholar 

  33. Liu, L., et al.: Prerequisite relation learning for course concepts based on hyperbolic deep representation. IEEE Access 8, 49079–49089 (2020)

    Article  Google Scholar 

  34. HarvardX-MITx: HarvardX-MITx person-course academic year 2013 de-identified dataset, version 2.0. Harvard Dataverse (2014)

    Google Scholar 

  35. Morris, N.P., Swinnerton, B., Hotchkiss, S.: Can demographic information predict MOOC learner outcomes? In: Experience Track: Proceedings of the European MOOC Stakeholder, Leeds (2015)

    Google Scholar 

  36. Mulyani, E., Hidayah, I., Fauziati, S.: Dropout prediction optimization through smote and ensemble learning. In: 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), pp. 516–521. IEEE (2019)

    Google Scholar 

  37. Pekrun, R., Lichtenfeld, S., Marsh, H.W., Murayama, K., Goetz, T.: Achievement emotions and academic performance: longitudinal models of reciprocal effects. Child Dev. 88(5), 1653–1670 (2017)

    Article  Google Scholar 

  38. Pulikottil, S.C., Gupta, M.: ONet-a temporal meta embedding network for MOOC dropout prediction. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 5209–5217. IEEE (2020)

    Google Scholar 

  39. Qiu, L., Liu, Y., Hu, Q., Liu, Y.: Student dropout prediction in massive open online courses by convolutional neural networks. Soft. Comput. 23(20), 10287–10301 (2019)

    Article  Google Scholar 

  40. Raga, R.C., Raga, J.D.: Early prediction of student performance in blended learning courses using deep neural networks. In: 2019 International Symposium on Educational Technology (ISET), pp. 39–43. IEEE (2019)

    Google Scholar 

  41. Romero, C., Ventura, S.: Educational data mining and learning analytics: an updated survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 10(3), e1355 (2020)

    Article  Google Scholar 

  42. Rossi, L.A., Gnawali, O.: Language independent analysis and classification of discussion threads in Coursera MOOC forums. In: Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014), pp. 654–661. IEEE (2014)

    Google Scholar 

  43. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  44. Sun, D., Mao, Y., Du, J., Xu, P., Zheng, Q., Sun, H.: Deep learning for dropout prediction in MOOCs. In: 2019 Eighth International Conference on Educational Innovation through Technology (EITT), pp. 87–90. IEEE (2019)

    Google Scholar 

  45. Tang, J.K.T., Xie, H., Wong, T.-L.: A big data framework for early identification of dropout students in MOOC. In: Lam, J., Ng, K.K., Cheung, S.K.S., Wong, T.L., Li, K.C., Wang, F.L. (eds.) ICTE 2015. CCIS, vol. 559, pp. 127–132. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48978-9_12

    Chapter  Google Scholar 

  46. Tang, S., Peterson, J., Pardos, Z.: Predictive modeling of student behavior using granular large scale action data from a MOOC. In: Handbook of Learning Analytics and Educational Data Mining (2017)

    Google Scholar 

  47. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)

  48. Viberg, O., Hatakka, M., Bälter, O., Mavroudi, A.: The current landscape of learning analytics in higher education. Comput. Hum. Behav. 89, 98–110 (2018)

    Article  Google Scholar 

  49. Wang, H., et al.: Exploring high-order user preference on the knowledge graph for recommender systems. ACM Trans. Inf. Syst. (TOIS) 37(3), 1–26 (2019)

    Article  Google Scholar 

  50. Wang, L., Wang, H.: Learning behavior analysis and dropout rate prediction based on MOOCs data. In: 2019 10th International Conference on Information Technology in Medicine and Education (ITME), pp. 419–423. IEEE (2019)

    Google Scholar 

  51. Wang, W., Yu, H., Miao, C.: Deep model for dropout prediction in MOOCs. In: Proceedings of the 2nd International Conference on Crowd Science and Engineering, pp. 26–32 (2017)

    Google Scholar 

  52. Wei, X., Lin, H., Yang, L., Yu, Y.: A convolution-LSTM-based deep neural network for cross-domain MOOC forum post classification. Information 8(3), 92 (2017)

    Article  Google Scholar 

  53. Wen, Y., Tian, Y., Wen, B., Zhou, Q., Cai, G., Liu, S.: Consideration of the local correlation of learning behaviors to predict dropouts from MOOCs. Tsinghua Sci. Technol. 25(3), 336–347 (2019)

    Article  Google Scholar 

  54. Whitehill, J., Mohan, K., Seaton, D., Rosen, Y., Tingley, D.: Delving deeper into MOOC student dropout prediction. arXiv preprint arXiv:1702.06404 (2017)

  55. Xing, W., Chen, X., Stein, J., Marcinkowski, M.: Temporal predication of dropouts in MOOCs: reaching the low hanging fruit through stacking generalization. Comput. Hum. Behav. 58, 119–129 (2016)

    Article  Google Scholar 

  56. Xing, W., Du, D.: Dropout prediction in MOOCs: using deep learning for personalized intervention. J. Educ. Comput. Res. 57(3), 547–570 (2019)

    Article  Google Scholar 

  57. Xiong, F., Zou, K., Liu, Z., Wang, H.: Predicting learning status in MOOCs using LSTM. In: Proceedings of the ACM Turing Celebration Conference-China, pp. 1–5 (2019)

    Google Scholar 

  58. Xu, Z., Ou, Z., Su, Q., Yu, J., Quan, X., Lin, Z.: Embedding dynamic attributed networks by modeling the evolution processes. arXiv preprint arXiv:2010.14047 (2020)

  59. Yang, D., Wen, M., Howley, I., Kraut, R., Rose, C.: Exploring the effect of confusion in discussion forums of massive open online courses. In: Proceedings of the Second (2015) ACM Conference on Learning@ Scale, pp. 121–130 (2015)

    Google Scholar 

  60. Yin, S., Lei, L., Wang, H., Chen, W.: Power of attention in MOOC dropout prediction. IEEE Access 8, 202993–203002 (2020)

    Article  Google Scholar 

  61. Yu, C.H., Wu, J., Liu, A.C.: Predicting learning outcomes with MOOC clickstreams. Educ. Sci. 9(2), 104 (2019)

    Article  Google Scholar 

  62. Zaporozhko, V.V., Parfenov, D.I., Shardakov, V.M.: Development approach of formation of individual educational trajectories based on neural network prediction of student learning outcomes. In: Hu, Z., Petoukhov, S., He, M. (eds.) AIMEE 2019. AISC, vol. 1126, pp. 305–314. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39162-1_28

    Chapter  Google Scholar 

  63. Zhang, K., Xu, J., Min, M.R., Jiang, G., Pelechrinis, K., Zhang, H.: Automated it system failure prediction: a deep learning approach. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 1291–1300. IEEE (2016)

    Google Scholar 

  64. Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: a survey. IEEE Trans. Knowl. Data Eng. (2020)

    Google Scholar 

  65. Zheng, Y., Gao, Z., Wang, Y., Fu, Q.: MOOC dropout prediction using FWTS-CNN model based on fused feature weighting and time series. IEEE Access 8, 225324–225335 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongtian Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Z., Harit, A., Yu, J., Cristea, A.I., Shi, L. (2021). A Brief Survey of Deep Learning Approaches for Learning Analytics on MOOCs. In: Cristea, A.I., Troussas, C. (eds) Intelligent Tutoring Systems. ITS 2021. Lecture Notes in Computer Science(), vol 12677. Springer, Cham. https://doi.org/10.1007/978-3-030-80421-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80421-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80420-6

  • Online ISBN: 978-3-030-80421-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics