Skip to main content

Nanomaterials in Electrochemical Biosensors and Their Applications

  • Chapter
  • First Online:
Emerging Nanomaterials for Advanced Technologies

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Nanotechnology is a revolutionary breakthrough in the field of science and technology. Today the smart use of nanomaterials in different sectors such as medicine, agriculture, food, information technology etc., have enhanced performance and productivity. In the last two decades, nanomaterials have aroused much interest in fabrications of biosensor electrodes for disease diagnosis and various biological applications. Nanomaterials such as quantum dots, gold nanoparticles, carbon nanostructures, and polymers nanostructures are promising candidates in biosensor fabrication due to their high bioreceptor capacity at a reduced volume and immobilization property. Moreover, the high selectivity and sensitivity of these devices have added potential advantage towards monitoring biological contaminants, and chemical and physical hazards in the food and agricultural products. This chapter focuses on the role of nanomaterials in biosensor construction and detection of various biomolecules. In context, it covers various types and processing of nanomaterials and their position in the fabrication of different biosensors, especially for disease diagnosis and detection of biological pathogens. Finally, it details the challenges and future developments required for fabrication of the nanomaterials-based biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdolahad M, Taghinejad M, Taghinejad H, Janmaleki M, Mohajerzadeh S (2012) A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells. Lab Chip 12:1183–1190

    Google Scholar 

  • Absalan G, Akhond M, Bananejad A, Ershadifar H (2015) Highly sensitive determination of nitrite using a carbon ionic liquid electrode modified with Fe3O4 magnetic nanoparticle. J Iran Chem Soc 12:1293–1301

    Google Scholar 

  • Andreescu S, Luck LA (2008) Studies of the binding and signaling of surface-immobilized periplasmic glucose receptors on gold nanoparticles: a glucose biosensor application. Anal Biochem 375:282

    Google Scholar 

  • Anusha JR, Kim HJ, Fleming AT, Das SJ, Yu KH, Kim BC, Raj CJ (2014) Simple fabrication of ZnO/Pt/chitosan electrode for enzymatic glucose biosensor. Sens Actuators B Chem 202:827–833

    Google Scholar 

  • Anusha JR, Raj CJ, Cho BB, Fleming AT, Yu KH, Kim BC (2015) Amperometric glucose biosensor based on glucose oxidase immobilized over chitosan nanoparticles from gladius of Uroteuthis duvauceli. Sens Actuators B Chem 215:536–543

    Google Scholar 

  • Anusha JR, Kim BC, Yu KH, Raj CJ (2019) Electrochemical biosensing of mosquito-borne viral disease, dengue: A review. Biosens Bioelectron 142:111511

    Google Scholar 

  • Arun RC (2017) DNA Nanobiosensors: An Outlook on Signal Readout Strategies. J Nanomater 2820619:1–9

    Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. Journal of Nanoparticles, Article ID 689419, https://doi.org/10.1155/2014/689419

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612. https://doi.org/10.1021/acs.langmuir.5b03081

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

  • Baek SH, Roh J, Park CY, Kim MW, Shi R, Kailasa SK, Park TJ (2020) Cu-nanoflower decorated gold nanoparticles-graphene oxide nanofiber as electrochemical biosensor for glucose detection. Mater Sci Eng C 107:110273

    Google Scholar 

  • Baj-Rossi C, De Micheli G, Carrara S (2014) Electrochemical biochip for applications to wireless and batteryless monitoring of free-moving mice. Conf Proc IEEE Eng Med Biol Soc 2014:2020–2023

    Google Scholar 

  • Bareket L, Rephaeli A, Berkovitch G, Nudelman A, Rishpon J (2010) Carbon nanotubes based electrochemical biosensor for detection of formaldehyde released from a cancer cell line treated with formaldehyde-releasing anticancer prodrugs. Bioelectrochemistry 77:94–99

    Google Scholar 

  • Behera BK, Prasad R, Behera S (2020) Bioprinting. In: Behera BK, Prasad R, Behera S (eds) Competitive Strategies in Life Sciences, Springer 137–156

    Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Google Scholar 

  • Bracamonte MV, Melchionna M, Giuliani A, Nasi L, Tavagnacco C, Prato M, Fornasiero P (2017) H2O2 sensing enhancement by mutual integration of single walled carbon nanohorns with metal oxide catalysts: the CeO2 case. Sens Actuators B Chem 239:923–932

    Google Scholar 

  • Chang L, He X, Chen L, Zhang Y (2017) A fluorescent sensing for glycoproteins based on the FRET between quantum dots and Au nanoparticles. Sens Actuators B Chem 250:17–23

    Google Scholar 

  • Chausali N, Jyoti Saxena J, Prasad R (2021) Recent trends in nanotechnology applications of bio-based packaging. Journal of Agriculture and Food Research, https://doi.org/10.1016/j.jafr.2021.100257

  • Choi YE, Kwak JW, Park JW (2010) Nanotechnology for early cancer detection. Sensors 10:428

    Google Scholar 

  • Clancy AJ, Bayazit MK, Hodge SA, Skipper NT, Howard CA, Shaffer MS (2018) Charged Carbon Nanomaterials: Redox Chemistries of Fullerenes, Carbon Nanotubes, and Graphenes. Chem Rev 118:7363–7408

    Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Google Scholar 

  • Cui L, Shen J, Ai S, Wang X, Zhang CY (2020) In-situ synthesis of covalent organic polymer thin film integrates with palladium nanoparticles for the construction of a cathodic photoelectrochemical cytosensor. Biosens Bioelectron 168:112545

    Google Scholar 

  • Deng C, Pi X, Qian P, Chen X, Wu W, Xiang J (2017) High-Performance Ratiometric Electrochemical Method Based on the Combination of Signal Probe and Inner Reference Probe in One Hairpin-Structured DNA. Anal Chem 89:966–973

    Google Scholar 

  • Dey RS, Bera RK, Raj CR (2013) Nanomaterial-based functional scaffolds for amperometricsensing of bioanalytes. Anal Bioanal Chem 405:3431–3448

    Google Scholar 

  • Drexler KE (2004) Nanotechnology: From Feynman to Funding. B Sci Technol Soc 24:21–27

    Google Scholar 

  • Dungchai W, Siangprohb W, Chaicumpac W, Tongtawed P, Chailapakula O (2008) Salmonella typhi determination using voltammetric amplification of nanoparticles: a highly sensitive strategy for metalloimmunoassay based on a copper-enhanced gold label. Talanta 77:727–732

    Google Scholar 

  • Fang B, Wang G, Zhang W, Li M, Kan X (2005) Fabrication of Fe3O4 nanoparticles modified electrode and its application for voltammetric sensing of dopamine. Electroanalysis 17:744–748

    Google Scholar 

  • Fatima B, Hussain D, Bashir S, Hussain HT, Aslam R, Nawaz R, Rashid HN, Bashir N, Majeed S, Ashiq MN, Najam-Ul-Haq M (2020) Catalase immobilized antimonene quantum dots used as an electrochemical biosensor for quantitative determination of H2O2 from CA-125 diagnosed ovarian cancer samples. Mater Sci Eng C 117:111296

    Google Scholar 

  • Feng L, Chen Y, Ren J, Qu X (2011) A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32:2930–2937

    Google Scholar 

  • Feng QM, Pan JB, Zhang HR, Xu JJ, Chen HY (2014) Disposable paper-based bipolar electrode for sensitive electrochemiluminescence detection of a cancer biomarker. Chem Commun 50:10949–10951

    Google Scholar 

  • Gerwen PV, Laureyn W, Laureys W, Huyberechts G, Beeck MOD, Baert K, Suls J, Sansen W, Jacobs P, Hermans L, Mertens R (1998) Nanoscaled interdigitated electrode arrays for biochemical sensors. Sens Actuators B Chem B 49:73–80

    Google Scholar 

  • Hong P, Li W, Li J (2012) Applications of aptasensors in clinical diagnostics. Sensors 12:1181–1193

    Google Scholar 

  • Huang J, Luo X, Lee I, Hu Y, Cui XT, Yun M (2011) Rapid real-time electrical detection of proteins using single conducting polymer nanowire-based microfluidic aptasensor. Biosens Bioelectron 30:306–309

    Google Scholar 

  • Jou AF, Lu CH, Ou YC, Wang SS, Hsu SL, Willner I, Ho JA (2015) Diagnosing the miR-141 prostate cancer biomarker using nucleic acid-functionalized CdSe/ZnS QDs and telomerase. Chem Sci 6:659–665

    Google Scholar 

  • Kargozar S, Mozafari M (2018) Nanotechnology and Nanomedicine: Start small, think big. Mater Today: Proceedings 5(7):15492–15500

    Google Scholar 

  • Karn B, Masciangioli T, Zhang WX, Masciangioli TM (2004) Nanotechnology and the environment. American Chemical Society

    Book  Google Scholar 

  • Kaushik A, Solanki PR, Ansari AA, Sumana G, Ahmad S, Malhotra BD (2009) Iron oxide-chitosan nanobiocomposite for urea sensor. Sens Actuators B Chem 138:572–580

    Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Application of nanomaterials in agricultural production and crop protection. Crop Prot 35:64–70

    Google Scholar 

  • Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS (2019) A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 9:8778–8881

    Google Scholar 

  • Kumar S, Umar M, Saifi A, Kumar S, Augustine S, Srivastava S, Malhotra BD (2019) Electrochemical paper based cancer biosensor using iron oxide nanoparticles decorated PEDOT:PSS. Anal Chim Acta 1056:135–145

    Google Scholar 

  • Lang XY, Fu HY, Hou C, Han GF, Yang P, Liu YB, Jiang Q (2013) Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat Commun 4:2169

    Google Scholar 

  • Lee M, Zine N, Baraket A, Zabala M, Campabadal F, Caruso R, Trivella MG, Renault NJ, Errachid A (2012) A Novel Biosensor Based on Hafnium Oxide: Application for Early Stage Detection of Human Interleukin-10. Sensors Actuators B Chem 175:201–207

    Google Scholar 

  • Lee S, Oh J, Kim D, Piao Y (2016) A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions. Talanta 160:528–536

    Google Scholar 

  • Li B, Zhou Y, Wu W, Liu M, Mei S, Zhou Y, Jing T (2015) Highly selective and sensitive determination of dopamine by the novel molecularly imprinted poly(nicotinamide)/CuO nanoparticles modified electrode. Biosens Bioelectron 67:121–128

    Google Scholar 

  • Lia Y-Y, Schluesenerb HJ, Xua S (2010) Gold nanoparticle-based biosensors. Gold Bull 43:29–41

    Google Scholar 

  • Lin HY, Huang CH, Lu SH, Kuo IT, Chau LK (2014) Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens Bioelectron 51:371–378

    Google Scholar 

  • Liu G, Lin Y (2006) Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal Chem 78:835–843

    Google Scholar 

  • Liu D, Rahman MM, Ge C, Kim J, Lee JJ (2017) Highly stable and conductive PEDOT:PSS/graphene nanocomposites for biosensor applications in aqueous medium. New J Chem 41:15458–15465

    Google Scholar 

  • Luo J, Ma Q, Wei W, Zhu Y, Liu R, Liu X (2016) Synthesis of Water-Dispersible Molecularly Imprinted Electroactive Nanoparticles for the Sensitive and Selective Paracetamol Detection. ACS Appl Mater Interfaces 8:21028–21038

    Google Scholar 

  • Ma F, Li C, Zhang J (2018) Development of quantum dot-based biosensors: principles and applications. J Mater Chem B 6:6173–6180

    Google Scholar 

  • Majd SM, Salimi A, Astinchap B (2016) Manganese Oxide Nanoparticles/Reduced Graphene Oxide as Novel Electrochemical Platform for Immobilization of FAD and its Application as Highly Sensitive Persulfate Sensor. Electroanalysis 28:493–502

    Google Scholar 

  • Mathew J, Joy J, George SC (2019) Potential applications of nanotechnology in transportation: A review. J King Saud Uni-Sci 31(4):586–594

    Google Scholar 

  • Mobed A, Hasanzadeh M, Shadjou N, Hassanpour S, Saadati A, Agazadeh M (2020) Immobilization of ssDNA on the surface of silver nanoparticles-graphene quantum dots modified by gold nanoparticles towards biosensing of microorganism. Microchem J 152:104286

    Google Scholar 

  • Mufamadi MS, Sekhejane PR (2017) Nanomaterial-based biosensors in agriculture application and accessibility in rural smallholding farms: food security. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer, Singapore

    Google Scholar 

  • Napi MLM, Sultan SM, Ismail R, How KW, Ahmad MK (2019) Electrochemical-Based Biosensors on Different Zinc Oxide Nanostructures: A Review. Materials 12:2985

    Google Scholar 

  • Oke AE, Aigbavboa CO, Semenya K (2017) Energy Savings and Sustainable Construction: Examining the Advantages of Nanotechnology. Energy Procedia 142:3839–3843

    Google Scholar 

  • Omar NAS, Fen YW, Abdullah J, Kamil YM, Daniyal WMEMMD, Sadrolhosseini AR, Mahdi MA (2020) Sensitive Detection of Dengue Virus Type 2 E-Proteins Signals Using Self-Assembled Monolayers/Reduced Graphene Oxide-PAMAM Dendrimer Thin Film-SPR Optical Sensor. Sci Rep 10:2374

    Google Scholar 

  • Ozcelikay G, Kurbanoglu S, Yarman A, Scheller FW, Ozkan SA (2020) Au-Pt nanoparticles based molecularly imprinted nanosensor for electrochemical detection of the lipopeptide antibiotic drug Daptomycin. Sens Actuators B Chem 320:128285

    Google Scholar 

  • Ozin GA, Arsenault AC, Cademartiri L (2009) Nanochemistry: A chemical approach to nanomaterials, 2nd edn. Royal Society of Chemistry

    Google Scholar 

  • Pak SC, Penrose W, Hesketh PJ (2001) An ultrathin platinum film sensor to measure biomolecular binding. Biosens Bioelectron 16:371–379

    Google Scholar 

  • Pandit S, Dasgupta D, Dewan N, Prince A (2016) Nanotechnology based biosensors and its application. Pharma Innov 5(6):18–25

    Google Scholar 

  • Parikha M (2016) Biosensors and their applications – A review. J Oral Biol Craniofacial Res 6:153–159

    Google Scholar 

  • Petryayeva E, Algar WR (2013) Proteolytic assays on quantum-dot-modified paper substrates using simple optical readout platforms. Anal Chem 85:8817–8825

    Google Scholar 

  • Phan TTV, Huynh T-C, Manivasagan P, Mondal S, Oh J (2020) An Up-To-Date Review on Biomedical Applications of Palladium Nanoparticles. Nanomaterials 10:66

    Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961, 2014, https://doi.org/10.1155/2014/963961

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2017) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Natural Polymers for Drug Delivery (eds. Kharkwal H and Janaswamy S), CAB International, UK 53–70

    Google Scholar 

  • Prasad R, Kumar M, Kumar V (2017a) Nanotechnology: An Agriculture paradigm. Springer Nature Singapore Pte Ltd. (ISBN: 978-981-10-4573-8)

    Google Scholar 

  • Prasad R, Kumar V, Kumar M (2017b) Nanotechnology: Food and Environmental Paradigm. Springer Nature Singapore Pte Ltd. (ISBN 978-981-10-4678-0)

    Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017c) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

  • Ramos AP, Cruz MAE, Tovani CB, Ciancaglini P (2017) Biomedical applications of nanotechnology. Biophys Rev 9:79–89

    Google Scholar 

  • Rocha-Santos TA (2014) Sensors and biosensors based on magnetic nanoparticles. TrAC Trends Anal Chem 62:28–36

    Google Scholar 

  • Sarma H, Joshi S, Prasad R, Jampilek J (2021) Biobased Nanotechnology for Green Applications. Springer International Publishing (ISBN 978-3-030-61985-5) https://www.springer.com/gp/book/9783030619848

  • Satija J, Sai VVR, Mukherji S (2011) Dendrimers in biosensors: Concept and applications. J Mater Chem 21:14367–14386

    Google Scholar 

  • Shende P, Sahu P (2021) Enzyme bioconjugated PAMAM dendrimers for estimation of glucose in saliva. Inter J Polymeric Mater Polymeric Biomater 70:469–475

    Google Scholar 

  • Shobha BN, Muniraj NJR (2015) Design, modeling and performance analysis of carbon nanotube with DNA strands as biosensor for prostate cancer. Microsyst Technol 21:791–800

    Google Scholar 

  • Siddiquee S, Rovina K, Yusof NA, Rodrigues KF, Suryani S (2014) Nanoparticle-enhanced electrochemical biosensor with DNA immobilization and hybridization of Trichoderma harzianum gene. Sens BioSensing Res 2:16–22

    Google Scholar 

  • Simão EP, Silva DB, Cordeiro MT, Gil LH, Andrade CA, Oliveira MD (2020) Nanostructured impedimetric lectin-based biosensor for arboviruses detection. Talanta 208:120338

    Google Scholar 

  • Srinivasan M, Rajabi M, Mousa SA (2015) Multifunctional Nanomaterials and Their Applications in Drug Delivery and Cancer Therapy. Nanomaterials 5:1690–1703

    Google Scholar 

  • Taniselass S, Arshad MM, Gopinath SC (2019) Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens Bioelectron 130:276–292

    Google Scholar 

  • Tansil SN, Gao Z (2015) Nanoparticles in biomolecular detection. Nano Today 1:28–37

    Google Scholar 

  • Teker MS, Karaca E, Pekmez NQ, Tamer U, Pekmez K (2019) An Enzyme-free H2O2 Sensor Based on Poly(2-Aminophenylbenzimidazole)/Gold Nanoparticles Coated Pencil Graphite Electrode. Electroanalysis 31:75–82

    Google Scholar 

  • Tilmaciu CM, Morris MC (2015) Carbon nanotube biosensors. Front Chem 3:59

    Google Scholar 

  • Tombelli S, Minunni M, Luzi E, Mascini M (2005) Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochem 67:135–141

    Google Scholar 

  • Vasantha V, Chen SMJ (2006) Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly (3, 4-ethylenedioxy) thiophene film modified electrodes. J Electroanal Chem 592:77–87

    Google Scholar 

  • Wen T, Zhu W, Xue C, Wu J, Han Q, Wang X, Zhou X, Jiang H (2014) Novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@Polyaniline nanoparticles for clinical detection of creatinine. Biosens Bioelectron 56:180–185

    Google Scholar 

  • Xu Q, Mao C, Liu NN, Zhu JJ, Sheng J (2006) Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan-gold nanoparticle nanocomposite. Biosens Bioelectron 22:768–773

    Google Scholar 

  • Xu S, Huang X, Chen Y, Liu Y, Zhao W, Sun Z, Wong CP (2019) Silver Nanoparticle-Enzyme Composite Films for Hydrogen Peroxide Detection. ACS Appl Nano Mater 2(9):5910–5921

    Google Scholar 

  • Yao Y, Wang GX, Shi XJ, Li JS, Yang FZ, Cheng ST, Zhang H, Dong HW, Guo YM, Sun X, Wu YX (2020) Ultrasensitive aptamer-based biosensor for acetamiprid using tetrahedral DNA nanostructures. J Mater Sci 55:15975–15987

    Google Scholar 

  • Yi X, Wu Y, Tan G, Yu P, Zhou L, Zhou Z, Chen J, Wang Z, Pang J, Ning C (2017) Palladium nanoparticles entrapped in a self-supporting nanoporous gold wire as sensitive dopamine biosensor. Sci Rep 7:7941

    Google Scholar 

  • Yuan G, He J, Li Y, Xu W, Gao L, Yu C (2015) A novel ultrasensitive electrochemical immunosensor based on carboxy-endcapped conductive polypyrrole for the detection of gypican-3 in human serum. Anal Methods 7:1745–1750

    Google Scholar 

  • Yue HY, Zhang HJ, Huang S, Gao X, Song SS, Wang Z, Wang WQ, Guan EH (2019) A novel non-enzymatic dopamine sensors based on NiO-reduced graphene oxide hybrid nanosheets. J Mater Sci 30(5):5000–5007

    Google Scholar 

  • Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G (2013) Highly sensitive glucose sensor based on pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7:3540–3546

    Google Scholar 

  • Zhang F (2017) Grand Challenges for Nanoscience and Nanotechnology in Energy and Health. Front Chem 5:80

    Google Scholar 

  • Zhang Y, Fu W, Yang H, Li M, Li Y, Zhao W, Sun P, Yuan M, Ma D, Liu B, Zou G (2008) A novel humidity sensor based on Na2Ti3O7 nanowires with rapid response-recovery. Sens Actuators B Chem 135:317–321

    Google Scholar 

  • Zhang Z, Zhu H, Wang X, Yang X (2011) Sensitive electrochemical sensor for hydrogen peroxide using Fe 3 O 4 magnetic nanoparticles as a mimic for peroxidase. Microchim Acta 174:183–189

    Google Scholar 

  • Zhang J, Chai Y, Yuan R, Yuan Y, Bai L, Xie SA (2013) A highly sensitive electrochemical aptasensor for thrombin detection using functionalized mesoporous silica@multiwalled carbon nanotubes as signal tags and DNAzyme signal amplification. Analyst 138:6938–6945

    Google Scholar 

  • Zhang X, Li CR, Wang WC, Xue J, Huang YL, Yang XX, Tan B, Zhou XP, Shao C, Ding SJ, Qiu JF (2016) A novel electrochemical immunosensor for highly sensitive detection of aflatoxin B1 in corn using single-walled carbon nanotubes/chitosan. Food Chem 192:197–202

    Google Scholar 

  • Zhang Y, Li X, Li D, Wei Q (2020) A laccase based biosensor on AuNPs-MoS2 modified glassy carbon electrode for catechol detection. Colloids Surf B 186:110683

    Google Scholar 

  • Zhao ZW, Chen XJ, Tay BK, Chen JS, Han ZJ, Khor KA (2007) A novel amperometric biosensor based on ZnO:Co nanoclusters for biosensing glucose. Biosens Bioelectron 23:135–139

    Google Scholar 

  • Zhao Z, Lei W, Zhang X, Wang B, Jiang H (2010) ZnO-Based Amperometric Enzyme Biosensors. Sensors 10(2):1216–1231

    Google Scholar 

  • Zheng TT, Zhang R, Zou L, Zhu JJ (2012) A label-free cytosensor for the enhanced electrochemical detection of cancer cells using polydopamine-coated carbon nanotubes. Analyst 137:1316–1318

    Google Scholar 

  • Zheng H, Liu M, Yan Z, Chen J (2020) Highly selective and stable glucose biosensor based on incorporation of platinum nanoparticles into polyaniline-montmorillonite hybrid composites. Microchem J 152:104266

    Google Scholar 

  • Zhu W, Jiang G, Xu L, Li BZ, Cai QZ, Jiang HJ, Zhou XM (2015) Facile and controllable one-step fabrication of molecularly imprinted polymer membrane by magnetic field directed self-assembly for electrochemical sensing of glutathione. Anal Chim Acta 886:37–47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anusha, J.R., Arasu, M.V., Al-Dhabi, N.A., Raj, C.J. (2022). Nanomaterials in Electrochemical Biosensors and Their Applications. In: Krishnan, A., Ravindran, B., Balasubramanian, B., Swart, H.C., Panchu, S.J., Prasad, R. (eds) Emerging Nanomaterials for Advanced Technologies. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-80371-1_16

Download citation

Publish with us

Policies and ethics