Skip to main content

Biomaterials

  • Chapter
  • First Online:
Advanced Materials

Abstract

In modern society, diseases have been increasing in humans as well as domestic animals because of pollution, accident, and lifestyle. The mutilation in the human body leads to expand the need for the replacement of tissues/organs where the availabilities of sources for tissues/organs is limited. Creating artificial tissues/organs for the replacement of damaged, dysfunctional tissues/organs becomes a big discipline in material science. This chapter describes the brief idea on the requirement of materials for implant inside or outside the body, material–body fluid interface, and interactions. The main governing factors associated with choosing the material as a biomaterial have been described. Typically, five classes of biomaterials such as metallic, ceramic, polymeric, composite, and natural biomaterials are discussed with their modification and application in various parts of the body. Synthesis processes and surface modifications have been presented to develop better biocompatible materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, W., Larry, L.: Hench, bioactive materials. Ceramics Int. 22(6), 493–507 (1996). https://doi.org/10.1016/0272-8842(95)00126-3

    Article  CAS  Google Scholar 

  2. Wilson, C.J., Clegg, R.E., Leavesley, D.I., Pearcy, M.J.: Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng. 11(1-2) (2005). https://doi.org/10.1089/ten.2005.11.1

  3. Wang, W., Yeung, K.W.K.: Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioactive Mater. 2(4), 224–247 (2017). https://doi.org/10.1016/j.bioactmat.2017.05.007

    Article  Google Scholar 

  4. Silver, F.H., Christiansen, D.L.: Introduction to biomaterials science and biocompatibility. In: Biomaterials science and biocompatibility. Springer, New York, NY (1999). https://doi.org/10.1007/978-1-4612-0557-9_1

    Chapter  Google Scholar 

  5. Lawrence, B.D., Marchant, J.K., Pindrus, M.A., Omenetto, F.G., Kaplan, D.L.: Silk film biomaterials for cornea tissue engineering. Biomaterials. 30(7), 1299–1308 (2009). https://doi.org/10.1016/j.biomaterials.2008.11.018

    Article  CAS  Google Scholar 

  6. Jandt, K.D.: Evolutions, revolutions and trends in biomaterials science – a perspective, special issue. Biomaterials. 9(12), 1035–1050 (2007). https://doi.org/10.1002/adem.200700284

    Article  Google Scholar 

  7. See: https://www.marketsandmarkets.com/Market-Reports/biomaterials-393.html?gclid=Cj0KCQjws536BRDTARIsANeUZ5_v618EenMXGC_dzOHnb33VlDM01YP0biqRY7fYElCD0uV_xSgGYREaAvcCEALw_wcB. 01.03.2020

  8. See: https://en.wikipedia.org/wiki/Sushruta_Samhita. 01.03.2020

  9. Shrivastava, S., Soundararajan, P., Agrawal, A.: Ayurvedic approach in chronic disease management. In: Noland, D., Drisko, J., Wagner, L. (eds.) Integrative and functional medical nutrition therapy. Humana, Cham (2020). https://doi.org/10.1007/978-3-030-30730-1_45

    Chapter  Google Scholar 

  10. Dearnley, P.A.: A review of metallic, ceramic and surface-treated metals used for bearing surfaces in human joint replacements. Proc. Inst. Mech. Eng. H J. Eng. Med. 213(2), 107–135 (1999). https://doi.org/10.1243/0954411991534843

    Article  CAS  Google Scholar 

  11. Manam, N.S., Harun, W.S.W., Shri, D.N.A., Ghani, S.A.C., Kurniawan, T., Ismail, M.H., Ibrahim, M.H.I.: Study of corrosion in biocompatible metals for implants: a review. J. Alloys Compd. 701, 698–715 (2017). https://doi.org/10.1016/j.jallcom.2017.01.196

    Article  CAS  Google Scholar 

  12. Oliveira, A., et al.: In vitro studies of bioactive glass/polyhydroxybutyrate composites. Mat. Res. 9(4), 417–423 (2006). https://doi.org/10.1590/S1516-14392006000400013

    Article  Google Scholar 

  13. Roumelioti, M.E., Glew, R.H., Khitan, Z.J., et al.: Fluid balance concepts in medicine: principles and practice. World J. Nephrol. 7(1), 1–28 (2018). https://doi.org/10.5527/wjn.v7.i1.1

    Article  Google Scholar 

  14. Kim, J., Heo, J.N., Do, J.Y., Chava, R.K., Kang, M.: Electrochemical synergies of heterostructured Fe2O3-MnO catalyst for oxygen evolution reaction in alkaline water splitting. Nanomaterials (Basel). 9(10), 1486 (2019). https://doi.org/10.3390/nano9101486. Published 2019 Oct 18

    Article  CAS  Google Scholar 

  15. Vatansever, F., de Melo, W.C., Avci, P., et al.: Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 37(6), 955–989 (2013). https://doi.org/10.1111/1574-6976.12026

    Article  CAS  Google Scholar 

  16. Frank, M., Gutowska, M.A., Martina, L., Dupont, S., Lucassen, M., Thorndyke, M.C., Bleich, M., Pörtner, H.-O.: Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Open Access Biogeosciences (BG). 6, 2313–2331 (2009). https://doi.org/10.5194/bg-6-2313-2009

    Article  Google Scholar 

  17. See: https://qmro.qmul.ac.uk/xmlui/handle/123456789/36705. 02.03.2020

  18. David, F.W.: On the mechanisms of biocompatibility. Biomaterials. 29(20), 2941–2953 (2008). https://doi.org/10.1016/j.biomaterials.2008.04.023

    Article  CAS  Google Scholar 

  19. Schroers, J., Kumar, G., Hodges, T.M., et al.: Bulk metallic glasses for biomedical applications. JOM. 61, 21–29 (2009). https://doi.org/10.1007/s11837-009-0128-1

    Article  CAS  Google Scholar 

  20. Naidich, J.V.: The wettability of solids by liquid metals. In: Cadenhead, D.A., Danielli, J.F. (eds.) Progress in surface and membrane science, vol. 14, pp. 353–484. Elsevier, Amsterdam (1981). https://doi.org/10.1016/B978-0-12-571814-1.50011-7. ISBN 9780125718141

    Chapter  Google Scholar 

  21. Shuilin, W., Liu, X., Yeung, K.W.K., Liu, C., Yang, X.: Biomimetic porous scaffolds for bone tissue engineering. Mater. Sci. Eng. R Rep. 80, 1–36 (2014). https://doi.org/10.1016/j.mser.2014.04.001

    Article  Google Scholar 

  22. Tang, W., Lin, D., Yu, Y., Niu, H., Guo, H., Yuan, Y., Liu, C.: Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Acta Biomater. 32, 309–323 (2016). https://doi.org/10.1016/j.actbio.2015.12.006

    Article  CAS  Google Scholar 

  23. Murphy, C.M., O’Brien, F.J.: Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhes. Migr. 4(3), 377–381 (2010). https://doi.org/10.4161/cam.4.3.11747

    Article  Google Scholar 

  24. Zhu, D., Cockerill, I., Su, Y., Zhang, Z., Fu, J., Lee, K.-W., Ma, J., Okpokwasili, C., Tang, L., Zheng, Y., Qin, Y.-X., Wang, Y.: Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials. ACS Appl. Mater. Interfaces. 11(7), 6809–6819 (2019). https://doi.org/10.1021/acsami.8b20634

    Article  CAS  Google Scholar 

  25. Amid, P.K.: Biomaterials - classification, technical and experimental aspects. In: Schumpelick, V., Kingsnorth, A.N. (eds.) Incisional Hernia. Springer, Berlin (1999). https://doi.org/10.1007/978-3-642-60123-1_13

    Chapter  Google Scholar 

  26. Amid, P.K.: Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia. 1, 15–21 (1997). https://doi.org/10.1007/BF02426382

    Article  Google Scholar 

  27. Mohapatra, R.K., El-ajaily, M.M., Alassbaly, F.S., Sarangi, A.K., Das, D., Maihub, A.A., Ben-Gweirif, S.F., Mahal, A., Suleiman, M., Perekhoda, L., Azam, M., Al-Noor, T.H.: DFT, anticancer, antioxidant and molecular docking investigations of some ternary Ni(II) complexes with 2-[(E)-[4-(dimethylamino)phenyl]methyleneamino]phenol. Chem. Papers. (2020). https://doi.org/10.1007/s11696-020-01342-8

  28. Mohapatra, R.K., Mishra, U.K., Mishra, S.K., Mahapatra, A., Dash, D.C.: Synthesis and characterization of transition metal complexes with benzimidazolyl-2-hydrazones of o-anisaldehyde and furfural. J. Korean Chem. Soc. 55(6), 926–931 (2011)

    Article  CAS  Google Scholar 

  29. Mohapatra, R.K., Dash, M., Mishra, U.K., Mahapatra, A., Dash, D.C.: Synthesis and characterization of transition metal complexes with benzimidazolyl-2-hydrazones of glyoxal, diacetyl and benzil. Synth. React. Inorg. M. 44(5), 642–648 (2014)

    Article  CAS  Google Scholar 

  30. Radenković, G., Petković, D.: Metallic biomaterials. In: Zivic, F., Affatato, S., Trajanovic, M., Schnabelrauch, M., Grujovic, N., Choy, K. (eds.) Biomaterials in clinical practice. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68025-5_8

    Chapter  Google Scholar 

  31. Marjanović-Balaban, Ž., Jelić, D.: Polymeric biomaterials in clinical practice. In: Zivic, F., Affatato, S., Trajanovic, M., Schnabelrauch, M., Grujovic, N., Choy, K. (eds.) Biomaterials in clinical practice. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68025-5_4

    Chapter  Google Scholar 

  32. Mohan, P., Rajak, D.K., Catalin, P.I., Behera, A., Amigó-Borrása, V., Elshalakany, A.B.: Influence of β-phase stability in elemental blended Ti-Mo and Ti-Mo-Zr alloys. Micron. 142, 102992 (2021). https://doi.org/10.1016/j.micron.2020.102992

    Article  CAS  Google Scholar 

  33. Ma, P., Langer, R.: Degradation, structure and properties of fibrous nonwoven poly(glycolic acid) scaffolds for tissue engineering. MRS Proc. 394, 99 (1995). https://doi.org/10.1557/PROC-394-99

    Article  CAS  Google Scholar 

  34. Lemons, J.E., Lucas, L.C.: Properties of biomaterials. J. Arthroplasty. 1(2), 143–147 (1986). https://doi.org/10.1016/S0883-5403(86)80053-5

    Article  CAS  Google Scholar 

  35. Pezzin, A.P.T., Duek, E.A.R.: Hydrolytic degradation of poly(para-dioxanone) films prepared by casting or phase separation. Polym. Degradation Stability. 78(3), 405–411 (2002). https://doi.org/10.1016/S0141-3910(02)00174-X

    Article  CAS  Google Scholar 

  36. Pilliar, R.M.: Metallic Biomaterials. In: Narayan, R. (ed.) Biomedical materials. Springer, Boston, MA (2009). https://doi.org/10.1007/978-0-387-84872-3_2

    Chapter  Google Scholar 

  37. Kathryne, S.B., Lai, B.F.L., Jayachandran, N.K., Paul Santerre, J.: Hemocompatibility of degrading polymeric biomaterials: degradable polar hydrophobic ionic polyurethane versus poly(lactic-co-glycolic) acid. Biomacromolecules. 18(8), 2296–2305 (2017). https://doi.org/10.1021/acs.biomac.7b00456

    Article  CAS  Google Scholar 

  38. Mueller, W.-D., Lucia Nascimento, M., de Mele, M.F.L.: Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomater. 6(5), 1749–1755 (2010). https://doi.org/10.1016/j.actbio.2009.12.048

    Article  CAS  Google Scholar 

  39. Yingchao, S., Cockerill, I., Wang, Y., Qin, Y.-X., Chang, L., Zheng, Y., Zhu, D.: Zinc-based biomaterials for regeneration and therapy. Trends Biotechnol. 37(4) (2019). https://doi.org/10.1016/j.tibtech.2018.10.009

  40. Hermawan, H., Alamdari, H., Mantovani, D., Dubé, D.: Iron–manganese: new class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metallurgy. 51(1), 38–45 (2008). https://doi.org/10.1179/174329008X284868

    Article  CAS  Google Scholar 

  41. Wu, G., Li, P., Feng, H., Zhanga, X., Chu, P.K.: Engineering and functionalization of biomaterials via surface modification. J. Mater. Chem. B. 3, 2024–2042 (2015). https://doi.org/10.1039/C4TB01934B

    Article  CAS  Google Scholar 

  42. Parida, P., Mishra, S.C., Sahoo, S., Behera, A., Nayak, B.P.: Development and characterization of ethylcellulose based microsphere for sustained release of nifedipine. J. Pharm. Anal. 6(5), 341–344 (2016). https://doi.org/10.1016/j.jpha.2014.02.001

    Article  Google Scholar 

  43. Chen, Q., Thouas, G.A.: Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 87, 1–57 (2015). https://doi.org/10.1016/j.mser.2014.10.001

    Article  Google Scholar 

  44. Huang, J., Best, S.M.: 1 - Ceramic biomaterials. In: Boccaccini, A.R., Gough, J.E. (eds.) Woodhead publishing series in biomaterials, tissue engineering using ceramics and polymers, pp. 3–31. Woodhead Publishing, Sawston (2007). https://doi.org/10.1533/9781845693817.1.3. ISBN 9781845691769

    Chapter  Google Scholar 

  45. Jones, D.W.: Ceramic biomaterials. In: Key engineering materials, vol. 122–124, pp. 345–386. Trans Tech Publications, Ltd., Freienbach (1996). https://doi.org/10.4028/www.scientific.net/kem.122-124.345

    Chapter  Google Scholar 

  46. Harun, W.S.W., Asri, R.I.M., Alias, J., Zulkifli, F.H., Kadirgama, K., Ghani, S.A.C., Shariffuddin, J.H.M.: A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceramics Int. 44(2), 1250–1268 (2018). https://doi.org/10.1016/j.ceramint.2017.10.162

    Article  CAS  Google Scholar 

  47. Paul Ducheyne, W., Van Raemdonck, J.C., Heughebaert, M.: Heughebaert, Structural analysis of hydroxyapatite coatings on titanium. Biomaterials. 7(2), 97–103 (1986). https://doi.org/10.1016/0142-9612(86)90063-3

    Article  Google Scholar 

  48. Echave, M.C., Burgo, L.S., Pedraz, J.L., Orive, G.: Gelatin as biomaterial for tissue engineering. Curr. Pharm. Des. 23(18), 3567–3584 (2017). https://doi.org/10.2174/0929867324666170511123101

    Article  CAS  Google Scholar 

  49. Piconi, C., Maccauro, G., Muratori, F., Del Prever, E.B.: Alumina and zirconia ceramics in joint replacements. J. Appl. Biomater. Biomech. 1(1), 19–32 (2003). https://doi.org/10.1177/228080000300100103

    Article  CAS  Google Scholar 

  50. Liu, X., Huang, A., Ding, C., Chu, P.K.: Bioactivity and cytocompatibility of zirconia (ZrO2) films fabricated by cathodic arc deposition. Biomaterials. 27(21), 3904–3911 (2006). https://doi.org/10.1016/j.biomaterials.2006.03.007

    Article  CAS  Google Scholar 

  51. Ritchie, R.O., Dauskardt, R.H., Yu, W., Brendzel, A.M.: Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications. J. Biomed. Mater. Res. 24(2), 189–206 (1990). https://doi.org/10.1002/jbm.820240206

    Article  CAS  Google Scholar 

  52. Eleanor, M.P., Szybala, C., Boison, D., Kaplan, D.L.: Silk fibroin encapsulated powder reservoirs for sustained release of adenosine. J. Control. Release. 144(2), 159–167 (2010). https://doi.org/10.1016/j.jconrel.2010.01.035

    Article  CAS  Google Scholar 

  53. João, S.F., Gentile, P., Pires, R.A., Reis, R.L., Hatton, P.V.: Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Biomater. 59, 2–11 (2017). https://doi.org/10.1016/j.actbio.2017.06.046

    Article  CAS  Google Scholar 

  54. Kamitakahara, M., Ohtsuki, C., Miyazaki, T.: Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J. Biomater. Appl. 23(3), 197–212 (2008). https://doi.org/10.1177/0885328208096798

    Article  CAS  Google Scholar 

  55. Jack, E.L.: Ceramics: past, present, and future. Bone. 9(1 Supplement 1), 121–128 (1996). https://doi.org/10.1016/S8756-3282(96)00128-7

    Article  Google Scholar 

  56. He, W., Benson, R.: 8 - Polymeric biomaterials. In: Kutz, M. (ed.) Plastics design library, applied plastics engineering handbook, 2nd edn, pp. 145–164. William Andrew Publishing, Norwich (2017). https://doi.org/10.1016/B978-0-323-39040-8.00008-0. ISBN 9780323390408

    Chapter  Google Scholar 

  57. Kohane, D., Langer, R.: Polymeric Biomaterials in Tissue Engineering. Pediatr. Res. 63, 487–491 (2008). https://doi.org/10.1203/01.pdr.0000305937.26105.e7

    Article  CAS  Google Scholar 

  58. Athanasiou, K.A., Niederauer, G.G., Agrawal, C.M.: Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/ polyglycolic acid copolymers. Biomaterials. 17(2), 93–102 (1996). https://doi.org/10.1016/0142-9612(96)85754-1. ISSN 0142–9612

    Article  CAS  Google Scholar 

  59. Kirn, D., Takeno, M.M., Ratner, B.D., et al.: Glow discharge plasma deposition (GDPD) technique for the local controlled delivery of hirudin from biomaterials. Pharm. Res. 15, 783–786 (1998). https://doi.org/10.1023/A:1011987423502

    Article  Google Scholar 

  60. Calis, S., Jeyanthi, R., Tsai, T., et al.: Adsorption of salmon calcitonin to PLGA microspheres. Pharm. Res. 12, 1072–1076 (1995). https://doi.org/10.1023/A:1016278902839

    Article  CAS  Google Scholar 

  61. Wang, C., Chen, H., Zhu, X., Xiao, Z., Zhang, K., Zhang, X.: An improved polymeric sponge replication method for biomedical porous titanium scaffolds. Mater. Sci. Eng. C. 70(Part 2), 1192–1199 (2017). https://doi.org/10.1016/j.msec.2016.03.037

    Article  CAS  Google Scholar 

  62. Rachael, H.S., Masters, K.S., West, J.L.: Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials. 23(22), 4325–4332 (2002). https://doi.org/10.1016/S0142-9612(02)00177-1

    Article  Google Scholar 

  63. Hyun, J., Zhu, Y., Liebmann-Vinson, A., Thomas, P.B., Chilkoti, A.: Microstamping on an activated polymer surface: patterning biotin and streptavidin onto common polymeric biomaterials. Langmuir. 17(20), 6358–6367 (2001). https://doi.org/10.1021/la010695x

    Article  CAS  Google Scholar 

  64. Das, M., Balla, V.K., Kumar, T.S.S., Manna, I.: Fabrication of biomedical implants using laser engineered net shaping (LENS™). Trans. Indian Ceramic Soc. 72(3), 169–174 (2013). https://doi.org/10.1080/0371750X.2013.851619

    Article  CAS  Google Scholar 

  65. Edidin, A.A., Rimnac, C.M., Goldberg, V.M., Kurtz, S.M.: Mechanical behavior, wear surface morphology, and clinical performance of UHMWPE acetabular components after 10 years of implantation. Wear. 250(1–12), 152–158 (2001). https://doi.org/10.1016/S0043-1648(01)00616-0

    Article  Google Scholar 

  66. Jones, D.S., Djokic, J., Gorman, S.P.: The resistance of polyvinylpyrrolidone–Iodine–poly(ε-caprolactone) blends to adherence of Escherichia coli. Biomaterials. 26(14), 2013–2020 (2005). https://doi.org/10.1016/j.biomaterials.2004.06.001

    Article  CAS  Google Scholar 

  67. Cifková, I., Lopour, P., Vondráček, P., Jelínek, F.: Silicone rubber-hydrogel composites as polymeric biomaterials: I. Biological properties of the silicone rubber-p(HEMA) composite. Biomaterials. 11(6), 393–396 (1990). https://doi.org/10.1016/0142-9612(90)90093-6

    Article  Google Scholar 

  68. Xiao, L., Li, J., Brougham§, D.F., Fox§, E.K., Feliu⊥, N., Bushmelev, A., Schmidt, A., Mertens, N., Kiessling, F., Valldor, M., Fadeel, B., Mathur, S.: Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano. 5(8), 6315–6324 (2011). https://doi.org/10.1021/nn201348s

    Article  CAS  Google Scholar 

  69. Lee, K.-W., Wang, S., Fox, B.C., Ritman, E.L., Yaszemski, M.J., Lichun, L.: Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules. 8(4), 1077–1084 (2007). https://doi.org/10.1021/bm060834v

    Article  CAS  Google Scholar 

  70. Chen, G.-Q., Qiong, W.: The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials. 26(33), 6565–6578 (2005). https://doi.org/10.1016/j.biomaterials.2005.04.036

    Article  CAS  Google Scholar 

  71. Boni, R., Ali, A., Shavandi, A., et al.: Current and novel polymeric biomaterials for neural tissue engineering. J. Biomed. Sci. 25, 90 (2018). https://doi.org/10.1186/s12929-018-0491-8

    Article  CAS  Google Scholar 

  72. Mohanty, A.K., Misra, M., Hinrichsen, G.: Biofibres biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 276, 277(1), 1–24 (2000). https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W

    Article  Google Scholar 

  73. Lan, G., Lu, B., Wang, T., Wang, L., Chen, J., Yu, K., Liu, J., Dai, F., Wu, D.: Chitosan/gelatin composite sponge is an absorbable surgical hemostatic agent. Colloids Surf. B: Biointerfaces. 136, 1026–1034 (2015). https://doi.org/10.1016/j.colsurfb.2015.10.039

    Article  CAS  Google Scholar 

  74. Park, S.-B., Lih, E., Park, K.-S., Joung, Y.K., Han, D.K.: Biopolymer-based functional composites for medical applications. Prog. Polym. Sci. 68, 77–105 (2017). https://doi.org/10.1016/j.progpolymsci.2016.12.003

    Article  CAS  Google Scholar 

  75. Tan, H.-L., Teow, S.-Y., Pushpamalar, J.: Application of metal nanoparticle–hydrogel composites in tissue regeneration. Bioengineering. 6(1), 17 (2019). https://doi.org/10.3390/bioengineering6010017

    Article  CAS  Google Scholar 

  76. Mogoşanu, G.D., Grumezescu, A.M.: Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm. 463(2), 127–136 (2014). https://doi.org/10.1016/j.ijpharm.2013.12.015

    Article  CAS  Google Scholar 

  77. Dinesh, M.: Pardhi, Didem Şen Karaman, Juri Timonen, Wei Wu, Qi Zhang, Saurabh Satija, Meenu Mehta, Nitin Charbe, Paul Mc Carron, Murtaza Tambuwala, Hamid A. Bakshi, Poonam Negi, Alaa AAljabali, Kamal Dua, Dinesh K Chaellappan, Ajit Behera, Kamla Pathak, Ritesh B. Wathar karo, Jessica M. Rosenholm. Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens. Int. J. Pharm. 586, 119531 (2020). https://doi.org/10.1016/j.ijpharm.2020.119531

    Article  CAS  Google Scholar 

  78. Chabbaa, S., Matthewsb, G.F., Netravali, A.N.: Green’ composites using cross-linked soy flour and flax yarns. Green Chem. 7, 576–581 (2005). https://doi.org/10.1039/B410817E

    Article  Google Scholar 

  79. Nishihara, T., Rubin, A.L., Stenzel, K.H.: Biologically derived collagen membranes. In: Stark, L., Agarwal, G. (eds.) Biomaterials. Springer, Boston, MA (1967). https://doi.org/10.1007/978-1-4615-6555-0_14

    Chapter  Google Scholar 

  80. John, F., Cavallaro Paul, D., Kemp Karl, H.K.: Collagen fabrics as biomaterials. Biotechnol Bioeng. 43(8), 781–791 (1994). https://doi.org/10.1002/bit.260430813

    Article  Google Scholar 

  81. Choi, Y.S., Hong, S.R., Lee, Y.M., Song, K.W., Park, M.H., Nam, Y.S.: Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials. 20(5), 409–417 (1999). https://doi.org/10.1016/S0142-9612(98)00180-X

    Article  CAS  Google Scholar 

  82. Ha, T.L.B., Quan, T.M., Vu, D.N., Si, D.M.: Naturally derived biomaterials: preparation and application. IntechOpen, London (2013). https://doi.org/10.5772/55668

    Book  Google Scholar 

  83. Anshu, B.M., Gupta, V.: NANOMEDICINE, Silk fibroin-derived nanoparticles for biomedical applications. Nanomedicine. 5(5) (2010). https://doi.org/10.2217/nnm.10.51

  84. Nguyen, T.P., Nguyen, Q.V., Nguyen, V.H., et al.: Silk fibroin-based biomaterials for biomedical applications: a review. Polymers (Basel). 11(12), 1933 (2019). https://doi.org/10.3390/polym11121933

    Article  CAS  Google Scholar 

  85. Ahmed, T.A.E., Dare, E.V., Hincke, M.: Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. B Rev. 14(2) (2008). https://doi.org/10.1089/ten.teb.2007.0435

  86. Le Guéhennec, L., Layrolle, P., Daculsi, G.: A review of bioceramics and fibrin sealant. Eur. Cells Mater. 8, 1–11 (2004). https://doi.org/10.22203/eCM.v008a01

    Article  Google Scholar 

  87. Stanton, J., Xue, Y., Waters, J.C., Lewis, A., Cowan, D., Hu, X., la Cruz, D.S.-d.: Structure–property relationships of blended polysaccharide and protein biomaterials in ionic liquid. Cellulose. 24, 1775–1789 (2017). https://doi.org/10.1007/s10570-017-1208-y

    Article  CAS  Google Scholar 

  88. Park, T.-J., Murugesan, S., Linhardt, R.J.: Cellulose composites prepared using ionic liquids (ILs) - blood compatibility to batteries. In: Polysaccharide materials: performance by design, Chapter 7 ACS Symposium Series, vol. 1017, pp. 133–152. IntechOpen, London (2009). https://doi.org/10.1021/bk-2009-1017.ch007. ISBN13: 9780841269866eISBN: 9780841225343

    Chapter  Google Scholar 

  89. Cheng, K., Catchmark, J.M., Demirci, A.: Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose. 16, 1033–1045 (2009). https://doi.org/10.1007/s10570-009-9346-5

    Article  CAS  Google Scholar 

  90. Shigemasa, Y., Minami, S.: Applications of chitin and chitosan for biomaterials. Biotechnol. Genetic Eng. Rev. 13(1), 383–420 (1996). https://doi.org/10.1080/02648725.1996.10647935

    Article  CAS  Google Scholar 

  91. Usami, Y., Minami, S., Okamoto, Y., Matsuhashi, A., Shigemasa, Y.: Influence of chain length of N-acetyl-d-glucosamine and d-glucosamine residues on direct and complement-mediated chemotactic activities for canine polymorphonuclear cells. Carbohydr. Polym. 32(2), 115–122 (1997). https://doi.org/10.1016/S0144-8617(96)00153-1

    Article  CAS  Google Scholar 

  92. Piskin, E.: Synthetic polymeric membranes: separation via membranes. In: Piskin, E., Hoffman, A.S. (eds.) Polymeric biomaterials. NATO ASI series (Series E: applied sciences), vol. 106. Springer, Dordrecht (1986). https://doi.org/10.1007/978-94-009-4390-2_8

    Chapter  Google Scholar 

  93. Francis Suh, J.-K., Matthew, H.W.T.: Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 21(24), 2589–2598 (2000). https://doi.org/10.1016/S0142-9612(00)00126-5

    Article  CAS  Google Scholar 

  94. Hani, A.A., Wickham, M.Q., Leddy, H.A., Gimble, J.M., Guilak, F.: Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials. 25(16), 3211–3222 (2004). https://doi.org/10.1016/j.biomaterials.2003.10.045

    Article  CAS  Google Scholar 

  95. Liu, J., Zhan, X., Wan, J., Wang, Y., Wang, C.: Review for carrageenan-based pharmaceutical biomaterials: Favourable physical features versus adverse biological effects. Carbohydr. Polym. 121, 27–36 (2015). https://doi.org/10.1016/j.carbpol.2014.11.063

    Article  CAS  Google Scholar 

  96. Park, S.-j., Lee, K.W., Lim, D.-S., Lee, S.: The sulfated polysaccharide fucoidan stimulates osteogenic differentiation of human adipose-derived stem cells. Stem Cells Dev. 21(12) (2011). https://doi.org/10.1089/scd.2011.0521

  97. I Rodrı́guez, M., Santamarina, M.H., Bollaı́n, M.C., Mejuto, R.C.: Speciation of organotin compounds in marine biomaterials after basic leaching in a non-focused microwave extractor equipped with pressurized vessels. J. Chromatogr. A. 774(1–2), 379–387 (1997). https://doi.org/10.1016/S0021-9673(96)00912-0

    Article  Google Scholar 

  98. Kim, T.K., Yoon, J.J., Lee, D.S., Park, T.G.: Gas foamed open porous biodegradable polymeric microspheres. Biomaterials. 27(2), 152–159 (2006). https://doi.org/10.1016/j.biomaterials.2005.05.081

    Article  CAS  Google Scholar 

  99. Liu, X., Ma, P.X.: Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials. 30(25), 4094–4103 (2009). https://doi.org/10.1016/j.biomaterials.2009.04.024

    Article  CAS  Google Scholar 

  100. Claire, M.B., Levingstone, T.J., Shen, N., Cooney, G.M., Jockenhoevel, S., Flanagan, T.C., O’Brien, F.J.: Freeze-drying as a novel biofabrication method for achieving a controlled microarchitecture within large, complex natural biomaterial scaffolds. Adv. Healthcare Mater. 6(21), 1 (2017). https://doi.org/10.1002/adhm.201700598

    Article  CAS  Google Scholar 

  101. Xue, J., Wu, T., Dai, Y., Xia, Y.: Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593

    Article  CAS  Google Scholar 

  102. Song, Y.W., Shan, D.Y., Han, E.H.: Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater. Lett. 62(17–18), 3276–3279 (2008). https://doi.org/10.1016/j.matlet.2008.02.048

    Article  CAS  Google Scholar 

  103. Koike, M., Greer, P., Owen, K., Lilly, G., Murr, L.E., Gaytan, S.M., Martinez, E., Okabe, T.: Evaluation of titanium alloys fabricated using rapid prototyping technologies-electron beam melting and laser beam melting. Materials. 4(10), 1776–1792 (2011). https://doi.org/10.3390/ma4101776

    Article  CAS  Google Scholar 

  104. Chu, P.K., Chen, J.Y., Wang, L.P., Huang, N.: Plasma-surface modification of biomaterials. Mater. Sci. Eng. R Rep. 36(5–6), 143–206 (2002). https://doi.org/10.1016/S0927-796X(02)00004-9

    Article  Google Scholar 

  105. Rao, P.J., Pelletier, M.H., Walsh, W.R., Mobbs, R.J.: Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthoped. Surg. 6(2), 81–89 (2014). https://doi.org/10.1111/os.12098

    Article  Google Scholar 

  106. Lin, D.-J., Hung, F.-Y., Jakfar, S., Yeh, M.-L.: Tailored coating chemistry and interfacial properties for construction of bioactive ceramic coatings on magnesium biomaterial. Mater. Des. 89, 235–244 (2016). https://doi.org/10.1016/j.matdes.2015.09.144

    Article  CAS  Google Scholar 

  107. Behera, A., Aich, S.: Characterization and properties of magnetron sputtered nanoscale NiTi thin film and the effect of annealing temperature. Surf. Interface Anal. 47, 805–814 (2015). https://doi.org/10.1002/sia.5777

    Article  CAS  Google Scholar 

  108. Asri, R.I.M., Harun, W.S.W., Hassan, M.A., Ghani, S.A.C., Buyong, Z.: A review of hydroxyapatite-based coating techniques: sol-gel and electrochemical depositions on biocompatible metals. J. Mech. Behav. Biomed. Mater. 57, 95–108 (2016). https://doi.org/10.1016/j.jmbbm.2015.11.031

    Article  CAS  Google Scholar 

  109. Cheang, P., Khor, K.A.: Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials. 17(5), 537–544 (1996). https://doi.org/10.1016/0142-9612(96)82729-3

    Article  CAS  Google Scholar 

  110. Lugscheider, E., Weber, T., Knepper, M., Vizethum, F.: Production of biocompatible coatings by atmospheric plasma spraying. Mater. Sci. Eng. A. 139, 45–48 (1991). https://doi.org/10.1016/0921-5093(91)90594-D

    Article  Google Scholar 

  111. Li, B., Hao, J., Min, Y., Xin, S., Guo, L., He, F., Liang, C., Wang, H., Li, H.: Biological properties of nanostructured Ti incorporated with Ca, P and Ag by electrochemical method. Mater. Sci. Eng. C. 51, 80–86 (2015). https://doi.org/10.1016/j.msec.2015.02.036

    Article  CAS  Google Scholar 

  112. Kuo, M.C., Yen, S.K.: The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater. Sci. Eng. C. 20(1–2), 153–160 (2002). https://doi.org/10.1016/S0928-4931(02)00026-7

    Article  Google Scholar 

  113. Prado Da Silva, M.H., Lima, J.H.C., Soares, G.A., Elias, C.N., de Andrade, M.C., Best, S.M., Gibson, I.R.: Transformation of monetite to hydroxyapatite in bioactive coatings on titanium. Surf. Coat. Technol. 137(2–3), 270–276 (2001). https://doi.org/10.1016/S0257-8972(00)01125-7

    Article  CAS  Google Scholar 

  114. Grill, A.: Diamond-like carbon coatings as biocompatible materials—an overview. Diamond Relat. Mater. 12(2), 166–170 (2003). https://doi.org/10.1016/S0925-9635(03)00018-9

    Article  CAS  Google Scholar 

  115. Ul-Hamid, A.: The effect of deposition conditions on the properties of Zr-carbide, Zr-nitride and Zr-carbonitride coatings– a review. Mater. Adv. 1, 988–1011 (2020). https://doi.org/10.1039/D0MA00232A

    Article  CAS  Google Scholar 

  116. Shenoy, D.B., Antipov, A.A., Sukhorukov, G.B., Möhwald, H.: Layer-by-layer engineering of biocompatible, decomposable core−shell structures. Biomacromolecules. 4(2), 265–272 (2003). https://doi.org/10.1021/bm025661y

    Article  CAS  Google Scholar 

  117. Hua Ai, Hongdi Meng, Izumi Ichinose, Steven A Jones, David K Mills, Yuri M Lvov, Xiaoxi QiaoBiocompatibility of layer-by-layer self-assembled nanofilm on silicone rubber for neurons, J. Neurosci. Methods 2003, 128, 1–2, 1–8. doi:https://doi.org/10.1016/S0165-0270(03)00191-2ISSN 0165–0270

  118. Variola, F., Vetrone, F., Richert, L., Jedrzejowski, P., Yi, J.-H., Zalzal, S., Clair, S., Sarkissian, A., Perepichka, D.F., Wuest, J.D., Rosei, F., Nanci, A.: Improving biocompatibility of implantable metals by nanoscale modification of surfaces: an overview of strategies, fabrication methods, and challenges. Small. 5(9), 996–1006 (2009). https://doi.org/10.1002/smll.200801186

    Article  CAS  Google Scholar 

  119. Eckardt, A., Aberman, H.M., Cantwell, H.D., Heine, J.: Biological fixation of hydroxyapatite-coated versus grit-blasted titanium hip stems: a canine study. Arch. Orthop. Trauma Surg. 123(1), 28–35 (2003). https://doi.org/10.1007/s00402-002-0451-2

    Article  Google Scholar 

  120. Huynh, V., Ngo, N.K., Golden, T.D.: Surface activation and pretreatments for biocompatible metals and alloys used in biomedical applications. Int J Biomaterials. Volume. 2019, 3806504 (2019). https://doi.org/10.1155/2019/3806504

    Article  CAS  Google Scholar 

  121. Mohammadi, F., Golafshan, N., Kharaziha, M., Ashrafi, A.: Chitosan-heparin nanoparticle coating on anodized NiTi for improvement of blood compatibility and biocompatibility. Int. J. Biol. Macromol. 127, 159–168 (2019). https://doi.org/10.1016/j.ijbiomac.2019.01.026

    Article  CAS  Google Scholar 

  122. Lee, K., Choe, H.-C., Kim, B.-H., Ko, Y.-M.: The biocompatibility of HA thin films deposition on anodized titanium alloys. Surf. Coat. Technol. 205, S267–S270 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.015

    Article  CAS  Google Scholar 

  123. Hryniewicz, T., Rokicki, R., Rokosz, K.: Surface characterization of AISI 316L biomaterials obtained by electropolishing in a magnetic field. Surf. Coat. Technol. 202(9), 1668–1673 (2008). https://doi.org/10.1016/j.surfcoat.2007.07.067

    Article  CAS  Google Scholar 

  124. Bigerelle, M., Anselme, K., Noël, B., Ruderman, I., Hardouin, P., Iost, A.: Improvement in the morphology of Ti-based surfaces: a new process to increase in vitro human osteoblast response. Biomaterials. 23(7), 1563–1577 (2002). https://doi.org/10.1016/S0142-9612(01)00271-X

    Article  CAS  Google Scholar 

  125. Cui, F.Z., Luo, Z.S.: Biomaterials modification by ion-beam processing. Surf. Coat. Technol. 112(1–3), 278–285 (1999). https://doi.org/10.1016/S0257-8972(98)00763-4

    Article  CAS  Google Scholar 

  126. Barnbauer, R., Mestres, P., Schiel, R., Klinkrnann, J., Sioshansi, P.: Surface-treated catheters with ion beam-based process evaluation in rats. Artif. Organ. 21(9), 1039–1041 (1997). https://doi.org/10.1111/j.1525-1594.1997.tb00520.x

    Article  Google Scholar 

  127. Kurella, A., Dahotre, N.B.: Review paper: surface modification for bioimplants: the role of laser surface engineering. J. Biomater. Appl. 20(1), 5–50 (2005). https://doi.org/10.1177/0885328205052974

    Article  Google Scholar 

  128. Xiao, Y., Martin, D.C., Cui, X., et al.: Surface modification of neural probes with conducting polymer poly(hydroxymethylated-3,4-ethylenedioxythiophene) and its biocompatibility. Appl. Biochem. Biotechnol. 128, 117–129 (2006). https://doi.org/10.1385/ABAB:128:2:117

    Article  CAS  Google Scholar 

  129. Priyadarshini, B., Rama, M., Chetan, U.: Vijayalakshmi. Bioactive coating as a surface modification technique for biocompatible metallic implants: a review. J. Asian Ceramic Soc. 7(4), 397–406 (2019). https://doi.org/10.1080/21870764.2019.1669861

    Article  Google Scholar 

  130. Zhang, Y.Z., Venugopal, J., Huang, Z.-M., Lim, C.T., Ramakrishna, S.: Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules. 6(5), 2583–2589 (2005). https://doi.org/10.1021/bm050314k

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Behera, A. (2022). Biomaterials. In: Advanced Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-80359-9_13

Download citation

Publish with us

Policies and ethics