Skip to main content

Abstract

Thanks to millions of years of evolution, living beings have developed complex mechanisms for sensing, actuation, and adaptation to the surrounding environment. Biohybrid robots exploit these mechanisms by embedding living components and combining them with nonliving elements. This allows overcoming some of the issues affecting entirely artificial devices, such as difficult scalability to small scales, inability to self-heal, and possible immunogenicity. In this chapter, biohybrid microrobots based on bacteria or other single cells (e.g., sperm cells, erythrocytes, neutrophils) are described. The most relevant examples reported in the state-of-the-art are analyzed, focusing on their specific sensing and actuation mechanisms. Relying on the use of a complete and autonomous living organism, they must be considered examples of a top-down approach, which needs to find ways of adequately controlling them. Specific applications of these systems are also described, with a particular focus on clinical ones. Then, muscle-based multicellular robots are introduced. Such systems are based on a bottom-up approach, through which single contractile units (skeletal muscle cells, cardiomyocytes, or insect-derived cells) are assembled and integrated with materials supporting them, to achieve effective locomotion and other functions. The main applications and challenges related to multicellular biohybrid microrobots are described, mentioning among others, modeling issues and the need for implementing multiple degrees of freedom, yet keeping high controllability by an external user.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott, L. J. J., et al. (2007). Robotics in the small. IEEE Robotics and Automation Magazine, 14, 92.

    Article  Google Scholar 

  2. Purcell. (1976). Life at low Reynolds numbers.

    Google Scholar 

  3. Pons, J. L. (2005). Emerging actuator technologies: A micromechatronic approach. Wiley.

    Book  Google Scholar 

  4. Liu, D. K.-C., Friend, J., & Yeo, L. (2010). A brief review of actuation at the micro-scale using electrostatics, electromagnetics and piezoelectric ultrasonics. Acoustical Science and Technology, 31, 115–123.

    Article  Google Scholar 

  5. Ricotti, L., Trimmer, B., Feinberg, A. W., Raman, R., Parker, K. K., Bashir, R., … Menciassi, A. (2017). Biohybrid actuators for robotics: A review of devices actuated by living cells. Science Robotics, 2(12).

    Google Scholar 

  6. Darnton, N., Turner, L., Breuer, K., & Berg, H. C. (2004). Moving fluid with bacterial carpets. Biophysical Journal, 86(3), 1863–1870.

    Article  Google Scholar 

  7. Berg, H. C. (1975). How bacteria swim. Scientific American, 233(2), 36–45.

    Article  Google Scholar 

  8. Macnab, R. M. (1979). How do flagella propel bacteria? Trends in Biochemical Sciences, 4(1), N10–N13.

    Article  MathSciNet  Google Scholar 

  9. Altegoer, F., Schuhmacher, J., Pausch, P., & Bange, G. (2014). From molecular evolution to biobricks and synthetic modules: A lesson by the bacterial flagellum. Biotechnology and Genetic Engineering Reviews, 30(1), 49–64.

    Article  Google Scholar 

  10. Carlsen, R. W., & Sitti, M. (2014). Bio-hybrid cell-based actuators for microsystems. Small, 10(19), 3831–3851.

    Article  Google Scholar 

  11. Yasuda, R., Noji, H., Kinosita, K., Jr., & Yoshida, M. (1998). F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 steps. Cell, 93(7), 1117–1124.

    Article  Google Scholar 

  12. Brennen, C., & Winet, H. (1977). Fluid mechanics of propulsion by cilia and flagella. Annual Review of Fluid Mechanics, 9(1), 339–398.

    Article  MATH  Google Scholar 

  13. Gilpin, W., Bull, M. S., & Prakash, M. (2020). The multiscale physics of cilia and flagella. Nature Reviews Physics, 1–15.

    Google Scholar 

  14. Bershadsky, A. D., & Kozlov, M. M. (2011). Crawling cell locomotion revisited. Proceedings of the National Academy of Sciences, 108(51), 20275–20276.

    Article  Google Scholar 

  15. Wadhams, G. H., & Armitage, J. P. (2004). Making sense of it all: Bacterial chemotaxis. Nature Reviews Molecular Cell Biology, 5(12), 1024–1037.

    Article  Google Scholar 

  16. Akin, D., Sturgis, J., Ragheb, K., Sherman, D., Burkholder, K., Robinson, J. P., … Bashir, R. (2007). Bacteria-mediated delivery of nanoparticles and cargo into cells. Nature Nanotechnology, 2(7), 441–449.

    Article  Google Scholar 

  17. Behkam, B., & Sitti, M. (2008). Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads. Applied Physics Letters, 93(22), 223901.

    Article  Google Scholar 

  18. Fernandes, R., Zuniga, M., Sassine, F. R., Karakoy, M., & Gracias, D. H. (2011). Enabling cargo-carrying bacteria via surface attachment and triggered release. Small, 7(5), 588–592.

    Article  Google Scholar 

  19. Nogawa, K., Kojima, M., Nakajima, M., Homma, M., Arai, F., & Fukuda, T. (2011, November). Improvement of motility of bacterium-driven microobject fabricated by optical tweezers. In 2011 international symposium on micro-nanomechatronics and human science (pp. 482–485). IEEE.

    Google Scholar 

  20. Park, S. J., Bae, H., Ko, S. Y., Min, J. J., Park, J. O., & Park, S. (2013). Selective bacterial patterning using the submerged properties of microbeads on agarose gel. Biomedical Microdevices, 15(5), 793–799.

    Article  Google Scholar 

  21. Park, S. J., Bae, H., Kim, J., Lim, B., Park, J., & Park, S. (2010). Motility enhancement of bacteria actuated microstructures using selective bacteria adhesion. Lab on a Chip, 10(13), 1706–1711.

    Article  Google Scholar 

  22. Traoré, M. A., Sahari, A., & Behkam, B. (2011). Computational and experimental study of chemotaxis of an ensemble of bacteria attached to a microbead. Physical Review E, 84(6), 061908.

    Article  Google Scholar 

  23. Edwards, M. R., Carlsen, R. W., & Sitti, M. (2013). Three dimensional motion analysis of bacteria-driven microbeads near and away from walls. Applied Physics Letters, 102(14), 143701.

    Article  Google Scholar 

  24. Park, S. J., Park, S. H., Cho, S., Kim, D. M., Lee, Y., Ko, S. Y., … Park, S. (2013). New paradigm for tumor theranostic methodology using bacteria-based microrobot. Scientific Reports, 3(1), 1–8.

    Article  Google Scholar 

  25. Han, J. W., Choi, Y. J., Cho, S., Zheng, S., Ko, S. Y., Park, J. O., & Park, S. (2016). Active tumor-therapeutic liposomal bacteriobot combining a drug (paclitaxel)-encapsulated liposome with targeting bacteria (Salmonella Typhimurium). Sensors and Actuators B: Chemical, 224, 217–224.

    Article  Google Scholar 

  26. Singh, A. V., Hosseinidoust, Z., Park, B. W., Yasa, O., & Sitti, M. (2017). Microemulsion-based soft bacteria-driven microswimmers for active cargo delivery. ACS Nano, 11(10), 9759–9769.

    Article  Google Scholar 

  27. Mostaghaci, B., Yasa, O., Zhuang, J., & Sitti, M. (2017). Bioadhesive bacterial microswimmers for targeted drug delivery in the urinary and gastrointestinal tracts. Advanced Science, 4(6), 1700058.

    Article  Google Scholar 

  28. Xie, S., Zhao, L., Song, X., Tang, M., Mo, C., & Li, X. (2017). Doxorubicin-conjugated Escherichia coli Nissle 1917 swimmers to achieve tumor targeting and responsive drug release. Journal of Controlled Release, 268, 390–399.

    Article  Google Scholar 

  29. Xie, S., Xia, T., Li, S., Mo, C., Chen, M., & Li, X. (2020). Bacteria-propelled microrockets to promote the tumor accumulation and intracellular drug uptake. Chemical Engineering Journal, 392, 123786.

    Article  Google Scholar 

  30. Felfoul, O., Mohammadi, M., Gaboury, L., & Martel, S. (2011, September). Tumor targeting by computer controlled guidance of magnetotactic bacteria acting like autonomous microrobots. In 2011 IEEE/RSJ international conference on intelligent robots and systems (pp. 1304–1308). IEEE.

    Google Scholar 

  31. Martel, S., Mohammadi, M., Felfoul, O., Lu, Z., & Pouponneau, P. (2009). Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. The International Journal of Robotics Research, 28(4), 571–582.

    Article  Google Scholar 

  32. Martel, S., & Mohammadi, M. (2009, October). A robotic micro-assembly process inspired by the construction of the ancient pyramids and relying on several thousand flagellated bacteria acting as micro-workers. In 2009 IEEE/RSJ international conference on intelligent robots and systems (pp. 426–427). IEEE.

    Google Scholar 

  33. Khalil, I. S., Pichel, M. P., Abelmann, L., & Misra, S. (2013). Closed-loop control of magnetotactic bacteria. The International Journal of Robotics Research, 32(6), 637–649.

    Article  Google Scholar 

  34. Taherkhani, S., Mohammadi, M., Daoud, J., Martel, S., & Tabrizian, M. (2014). Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents. ACS Nano, 8(5), 5049–5060.

    Article  Google Scholar 

  35. Park, B. W., Zhuang, J., Yasa, O., & Sitti, M. (2017). Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano, 11(9), 8910–8923.

    Article  Google Scholar 

  36. Alapan, Y., Yasa, O., Schauer, O., Giltinan, J., Tabak, A. F., Sourjik, V., & Sitti, M. (2018). Soft erythrocyte-based bacterial microswimmers for cargo delivery. Science robotics, 3(17).

    Google Scholar 

  37. Adler, J., & Shi, W. (1988, January). Galvanotaxis in bacteria. In Cold Spring Harbor Symposia on quantitative biology (Vol. 53, pp. 23–25). Cold Spring Harbor Laboratory Press.

    Google Scholar 

  38. Clayton, R. K. (1964). Phototaxis in microorganisms. Photophysiology, 2, 51–77.

    Article  Google Scholar 

  39. Paulick, A., Jakovljevic, V., Zhang, S., Erickstad, M., Groisman, A., Meir, Y., … Sourjik, V. (2017). Mechanism of bidirectional thermotaxis in Escherichia coli. eLife, 6, e26607.

    Article  Google Scholar 

  40. Taylor, B. L., Zhulin, I. B., & Johnson, M. S. (1999). Aerotaxis and other energy-sensing behavior in bacteria. Annual Reviews in Microbiology, 53(1), 103–128.

    Article  Google Scholar 

  41. Felfoul, O., Mohammadi, M., Taherkhani, S., De Lanauze, D., Xu, Y. Z., Loghin, D., … Gaboury, L. (2016). Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nature Nanotechnology, 11(11), 941–947.

    Article  Google Scholar 

  42. Sentürk, O. I., Schauer, O., Chen, F., Sourjik, V., & Wegner, S. V. (2020). Red/far-red light switchable cargo attachment and release in bacteria-driven microswimmers. Advanced Healthcare Materials, 9(1), 1900956.

    Article  Google Scholar 

  43. Makhluf, S. B. D., Abu-Mukh, R., Rubinstein, S., Breitbart, H., & Gedanken, A. (2008). Modified PVA–Fe3O4 nanoparticles as protein carriers into sperm cells. Small, 4(9), 1453–1458.

    Article  Google Scholar 

  44. Geerts, N., McGrath, J., Stronk, J. N., Vanderlick, T. K., & Huszar, G. (2014). Spermatozoa as a transport system of large unilamellar lipid vesicles into the oocyte. Reproductive Biomedicine Online, 28(4), 451–461.

    Article  Google Scholar 

  45. Xu, H., Medina-Sánchez, M., Magdanz, V., Schwarz, L., Hebenstreit, F., & Schmidt, O. G. (2018). Sperm-hybrid micromotor for targeted drug delivery. ACS Nano, 12(1), 327–337.

    Article  Google Scholar 

  46. Magdanz, V., Khalil, I. S., Simmchen, J., Furtado, G. P., Mohanty, S., Gebauer, J., … Schmidt, O. G. (2020). IRONSperm: Sperm-templated soft magnetic microrobots. Science Advances, 6(28), eaba5855.

    Article  Google Scholar 

  47. Yan, X., Zhou, Q., Yu, J., Xu, T., Deng, Y., Tang, T., … Zhang, L. (2015). Magnetite nanostructured porous hollow helical microswimmers for targeted delivery. Advanced Functional Materials, 25(33), 5333–5342.

    Article  Google Scholar 

  48. Yan, X., Zhou, Q., Vincent, M., Deng, Y., Yu, J., Xu, J., … Kostarelos, K. (2017). Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Science Robotics, 2(12).

    Google Scholar 

  49. Wu, Z., Li, T., Li, J., Gao, W., Xu, T., Christianson, C., … Wang, J. (2014). Turning erythrocytes into functional micromotors. ACS Nano, 8(12), 12041–12048.

    Article  Google Scholar 

  50. Villa, C. H., Anselmo, A. C., Mitragotri, S., & Muzykantov, V. (2016). Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Advanced Drug Delivery Reviews, 106, 88–103.

    Article  Google Scholar 

  51. Sun, X., Wang, C., Gao, M., Hu, A., & Liu, Z. (2015). Remotely controlled red blood cell carriers for cancer targeting and near-infrared light-triggered drug release in combined Photothermal–chemotherapy. Advanced Functional Materials, 25(16), 2386–2394.

    Article  Google Scholar 

  52. Cinti, C., Taranta, M., Naldi, I., & Grimaldi, S. (2011). Newly engineered magnetic erythrocytes for sustained and targeted delivery of anti-cancer therapeutic compounds. PLoS One, 6(2), e17132.

    Article  Google Scholar 

  53. Grifantini, R., Taranta, M., Gherardini, L., Naldi, I., Parri, M., Grandi, A., … Campagnoli, S. (2018). Magnetically driven drug delivery systems improving targeted immunotherapy for colon-rectal cancer. Journal of Controlled Release, 280, 76–86.

    Article  Google Scholar 

  54. Erkoc, P., Yasa, I. C., Ceylan, H., Yasa, O., Alapan, Y., & Sitti, M. (2019). Mobile microrobots for active therapeutic delivery. Advanced Therapeutics, 2(1), 1800064.

    Article  Google Scholar 

  55. Xue, J., Zhao, Z., Zhang, L., Xue, L., Shen, S., Wen, Y., … Ping, Q. (2017). Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nature Nanotechnology, 12(7), 692.

    Article  Google Scholar 

  56. Chu, D., Gao, J., & Wang, Z. (2015). Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano, 9(12), 11800–11811.

    Article  Google Scholar 

  57. Shao, J., Xuan, M., Zhang, H., Lin, X., Wu, Z., & He, Q. (2017). Chemotaxis-guided hybrid neutrophil micromotors for targeted drug transport. Angewandte Chemie, 129(42), 13115–13119.

    Article  Google Scholar 

  58. Choi, M. R., Stanton-Maxey, K. J., Stanley, J. K., Levin, C. S., Bardhan, R., Akin, D., … Halas, N. J. (2007). A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Letters, 7(12), 3759–3765.

    Article  Google Scholar 

  59. Smith, B. R., Ghosn, E. E. B., Rallapalli, H., Prescher, J. A., Larson, T., Herzenberg, L. A., & Gambhir, S. S. (2014). Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery. Nature Nanotechnology, 9(6), 481.

    Article  Google Scholar 

  60. Polak, R., Lim, R. M., Beppu, M. M., Pitombo, R. N. M., Cohen, R. E., & Rubner, M. F. (2015). Advanced Healthcare Materials, 4, 2832.

    Article  Google Scholar 

  61. Han, J., Zhen, J., Van Du Nguyen, G. G., Choi, Y., Ko, S. Y., Park, J. O., & Park, S. (2016). Hybrid-actuating macrophage-based microrobots for active cancer therapy sci.

    Google Scholar 

  62. Han, J., Go, G., Zhen, J., Zheng, S., Le, V. H., Park, J. O., & Park, S. (2017). Feasibility study of dual-targeting paclitaxel-loaded magnetic liposomes using electromagnetic actuation and macrophages. Sensors and Actuators B: Chemical, 240, 1226–1236.

    Article  Google Scholar 

  63. Huang, W. C., Chiang, W. H., Cheng, Y. H., Lin, W. C., Yu, C. F., Yen, C. Y., … Chiu, H. C. (2015). Tumortropic monocyte-mediated delivery of echogenic polymer bubbles and therapeutic vesicles for chemotherapy of tumor hypoxia. Biomaterials, 71, 71–83.

    Article  Google Scholar 

  64. Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A., & Irvine, D. J. (2010). Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nature Medicine, 16(9), 1035–1041.

    Article  Google Scholar 

  65. Huang, B., Abraham, W. D., Zheng, Y., López, S. C. B., Luo, S. S., & Irvine, D. J. (2015). Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Science Translational Medicine, 7(291), 291ra94.

    Article  Google Scholar 

  66. Alizadeh, S., Esmaeili, A., Barzegari, A., Rafi, M. A., & Omidi, Y. (2020). Bioengineered smart bacterial carriers for combinational targeted therapy of solid tumours. Journal of Drug Targeting, 1–14.

    Google Scholar 

  67. Ricotti, L., Cafarelli, A., Iacovacci, V., Vannozzi, L., & Menciassi, A. (2015). Advanced micro-nano-bio systems for future targeted therapies. Current Nanoscience, 11(2), 144–160.

    Article  Google Scholar 

  68. Buss, N., Yasa, O., Alapan, Y., Akolpoglu, M. B., & Sitti, M. (2020). Nanoerythrosome-functionalized biohybrid microswimmers. APL Bioengineering, 4(2), 026103.

    Article  Google Scholar 

  69. Yasa, I. C., Ceylan, H., Bozuyuk, U., Wild, A. M., & Sitti, M. (2020). Elucidating the interaction dynamics between microswimmer body and immune system for medical microrobots. Science Robotics, 5(43).

    Google Scholar 

  70. Cabanach, P., Pena-Francesch, A., Sheehan, D., Bozuyuk, U., Yasa, O., Borros, S., & Sitti, M. (2020). Zwitterionic 3D-printed non-immunogenic stealth microrobots. Advanced Materials, 2003013.

    Google Scholar 

  71. Xing, J. et al. (2021). Sequential magneto-actuated and optics-triggered microrobots for targeted cancer therapy. Adv. Funct. Mater. 31(11): 2008262.

    Google Scholar 

  72. Iacovacci, V., Blanc, A., Huang, H., Ricotti, L., Schibli, R., Menciassi, A., … Nelson, B. J. (2019). High-resolution SPECT imaging of stimuli-responsive soft microrobots. Small, 15(34), 1900709.

    Article  Google Scholar 

  73. Aziz, A., Holthof, J., Meyer, S., Schmidt, O., & Medina-Sanchez, M. (2020). In vivo imaging of swimming micromotors using hybrid high-frequency ultrasound and photoacoustic imaging. bioRxiv.

    Google Scholar 

  74. Liang, W., Liu, H., Wang, K., Qian, Z., Ren, L., & Ren, L. (2020). Comparative study of robotic artificial actuators and biological muscle. Advances in Mechanical Engineering, 12(6), 1687814020933409.

    Article  Google Scholar 

  75. Golob, M., Moss, R. L., & Chesler, N. C. (2014). Cardiac tissue structure, properties, and performance: A materials science perspective. Annals of Biomedical Engineering, 42(10), 2003–2013.

    Article  Google Scholar 

  76. Shimizu, K., Sasaki, H., Hida, H., Fujita, H., Obinata, K., Shikida, M., & Nagamori, E. (2010). Assembly of skeletal muscle cells on a Si-MEMS device and their generative force measurement. Biomedical Microdevices, 12(2), 247–252.

    Article  Google Scholar 

  77. Karp, G. (2009). Cell and molecular biology: Concepts and experiments. Wiley.

    Google Scholar 

  78. Yin, S., Zhang, X., Zhan, C., Wu, J., Xu, J., & Cheung, J. (2005). Measuring single cardiac myocyte contractile force via moving a magnetic bead. Biophysical Journal, 88(2), 1489–1495.

    Article  Google Scholar 

  79. Madden, J. D., Vandesteeg, N. A., Anquetil, P. A., Madden, P. G., Takshi, A., Pytel, R. Z., … Hunter, I. W. (2004). Artificial muscle technology: Physical principles and naval prospects. IEEE Journal of Oceanic Engineering, 29(3), 706–728.

    Article  Google Scholar 

  80. Zupan, M., Ashby, M. F., & Fleck, N. A. (2002). Actuator classification and selection – The development of a database. Advanced Engineering Materials, 4(12), 933–940.

    Article  Google Scholar 

  81. Duffy, R. M., & Feinberg, A. W. (2014). Engineered skeletal muscle tissue for soft robotics: Fabrication strategies, current applications, and future challenges. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 6(2), 178–195.

    Google Scholar 

  82. Collinsworth, A. M., Zhang, S., Kraus, W. E., & Truskey, G. A. (2002). Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation. American Journal of Physiology-Cell Physiology, 283(4), C1219–C1227.

    Article  Google Scholar 

  83. Xi, J., Schmidt, J. J., & Montemagno, C. D. (2005). Self-assembled microdevices driven by muscle. Nature Materials, 4(2), 180–184.

    Article  Google Scholar 

  84. Kim, J., Park, J., Yang, S., Baek, J., Kim, B., Lee, S. H., … Park, S. (2007). Establishment of a fabrication method for a long-term actuated hybrid cell robot. Lab on a Chip, 7(11), 1504–1508.

    Article  Google Scholar 

  85. Park, J., Kim, I. C., Baek, J., Cha, M., Kim, J., Park, S., … Kim, B. (2007). Micro pumping with cardiomyocyte–polymer hybrid. Lab on a Chip, 7(10), 1367–1370.

    Article  Google Scholar 

  86. Feinberg, A. W., Feigel, A., Shevkoplyas, S. S., Sheehy, S., Whitesides, G. M., & Parker, K. K. (2007). Muscular thin films for building actuators and powering devices. Science, 317(5843), 1366–1370.

    Article  Google Scholar 

  87. Chan, V., Park, K., Collens, M. B., Kong, H., Saif, T. A., & Bashir, R. (2012). Development of miniaturized walking biological machines. Scientific Reports, 2, 857.

    Article  Google Scholar 

  88. Chan, V., Jeong, J. H., Bajaj, P., Collens, M., Saif, T., Kong, H., & Bashir, R. (2012). Multi-material bio-fabrication of hydrogel cantilevers and actuators with stereolithography. Lab on a Chip, 12(1), 88–98.

    Article  Google Scholar 

  89. Nawroth, J. C., Lee, H., Feinberg, A. W., Ripplinger, C. M., McCain, M. L., Grosberg, A., … Parker, K. K. (2012). A tissue-engineered jellyfish with biomimetic propulsion. Nature Biotechnology, 30(8), 792–797.

    Article  Google Scholar 

  90. Williams, B. J., Anand, S. V., Rajagopalan, J., & Saif, M. T. A. (2014). A self-propelled biohybrid swimmer at low Reynolds number. Nature Communications, 5(1), 1–8.

    Article  Google Scholar 

  91. Vannozzi, L., Ricotti, L., Cianchetti, M., Bearzi, C., Gargioli, C., Rizzi, R., … Menciassi, A. (2015). Self-assembly of polydimethylsiloxane structures from 2D to 3D for bio-hybrid actuation. Bioinspiration & Biomimetics, 10(5), 056001.

    Article  Google Scholar 

  92. Hoshino, T., Imagawa, K., Akiyama, Y., & Morishima, K. (2012). Cardiomyocyte-driven gel network for bio mechano-informatic wet robotics. Biomedical Microdevices, 14(6), 969–977.

    Article  Google Scholar 

  93. Shin, S. R., Jung, S. M., Zalabany, M., Kim, K., Zorlutuna, P., Kim, S. B., … Wan, K. T. (2013). Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano, 7(3), 2369–2380.

    Article  Google Scholar 

  94. Shin, S. R., Shin, C., Memic, A., Shadmehr, S., Miscuglio, M., Jung, H. Y., … Dokmeci, M. R. (2015). Aligned carbon nanotube–based flexible gel substrates for engineering biohybrid tissue actuators. Advanced Functional Materials, 25(28), 4486–4495.

    Article  Google Scholar 

  95. Yoon, J., Eyster, T. W., Misra, A. C., & Lahann, J. (2015). Cardiomyocyte-driven actuation in biohybrid microcylinders. Advanced Materials, 27(30), 4509–4515.

    Article  Google Scholar 

  96. Chen, Z., Fu, F., Yu, Y., Wang, H., Shang, Y., & Zhao, Y. (2019). Cardiomyocytes-actuated morpho butterfly wings. Advanced Materials, 31(8), 1805431.

    Article  Google Scholar 

  97. Sun, L., Chen, Z., Bian, F., & Zhao, Y. (2020). Bioinspired soft robotic caterpillar with cardiomyocyte drivers. Advanced Functional Materials, 30(6), 1907820.

    Article  Google Scholar 

  98. Fenno, L., Yizhar, O., & Deisseroth, K. (2011). The development and application of optogenetics. Annual Review of Neuroscience, 34.

    Google Scholar 

  99. Park, S. J., Gazzola, M., Park, K. S., Park, S., Di Santo, V., Blevins, E. L., … Pasqualini, F. S. (2016). Phototactic guidance of a tissue-engineered soft-robotic ray. Science, 353(6295), 158–162.

    Article  Google Scholar 

  100. Xu, B., Han, X., Hu, Y., Luo, Y., Chen, C. H., Chen, Z., & Shi, P. (2019). A remotely controlled transformable soft robot based on engineered cardiac tissue construct. Small, 15(18), 1900006.

    Article  Google Scholar 

  101. Dennis, R. G., & Kosnik, P. E. (2000). Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In vitro Cellular & Developmental Biology-Animal, 36(5), 327–335.

    Article  Google Scholar 

  102. Sun, Y., Duffy, R., Lee, A., & Feinberg, A. W. (2013). Optimizing the structure and contractility of engineered skeletal muscle thin films. Acta Biomaterialia, 9(8), 7885–7894.

    Article  Google Scholar 

  103. Kim, T. H., Kwon, C. H., Lee, C., An, J., Phuong, T. T. T., Park, S. H., … Kim, S. J. (2016). Bio-inspired hybrid carbon nanotube muscles. Scientific Reports, 6(1), 1–8.

    Google Scholar 

  104. Webster, V. A., Hawley, E. L., Akkus, O., Chiel, H. J., & Quinn, R. D. (2016). Effect of actuating cell source on locomotion of organic living machines with electrocompacted collagen skeleton. Bioinspiration & Biomimetics, 11(3), 036012.

    Article  Google Scholar 

  105. Hasebe, A., Suematsu, Y., Takeoka, S., Mazzocchi, T., Vannozzi, L., Ricotti, L., & Fujie, T. (2019). Biohybrid actuators based on skeletal muscle-powered microgrooved ultrathin films consisting of poly (styrene-block-butadiene-block-styrene). ACS Biomaterials Science & Engineering, 5(11), 5734–5743.

    Article  Google Scholar 

  106. Vannozzi, L., Mazzocchi, T., Hasebe, A., Takeoka, S., Fujie, T., & Ricotti, L. (2020). A coupled FEM-SPH modeling technique to investigate the contractility of biohybrid thin films. Advanced Biosystems, 1900306.

    Google Scholar 

  107. Li, Z., Seo, Y., Aydin, O., Elhebeary, M., Kamm, R. D., Kong, H., & Saif, M. T. A. (2019). Biohybrid valveless pump-bot powered by engineered skeletal muscle. Proceedings of the National Academy of Sciences, 116(5), 1543–1548.

    Article  Google Scholar 

  108. Tanaka, Y., Morishima, K., Shimizu, T., Kikuchi, A., Yamato, M., Okano, T., & Kitamori, T. (2006). An actuated pump on-chip powered by cultured cardiomyocytes. Lab on a Chip, 6(3), 362–368.

    Article  Google Scholar 

  109. Sakar, M. S., Neal, D., Boudou, T., Borochin, M. A., Li, Y., Weiss, R., … Asada, H. H. (2012). Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. Lab on a Chip, 12(23), 4976–4985.

    Article  Google Scholar 

  110. Cvetkovic, C., Raman, R., Chan, V., Williams, B. J., Tolish, M., Bajaj, P., … Bashir, R. (2014). Three-dimensionally printed biological machines powered by skeletal muscle. Proceedings of the National Academy of Sciences, 111(28), 10125–10130.

    Article  Google Scholar 

  111. Raman, R., Cvetkovic, C., Uzel, S. G., Platt, R. J., Sengupta, P., Kamm, R. D., & Bashir, R. (2016). Optogenetic skeletal muscle-powered adaptive biological machines. Proceedings of the National Academy of Sciences, 113(13), 3497–3502.

    Article  Google Scholar 

  112. Pagan-Diaz, G. J., Zhang, X., Grant, L., Kim, Y., Aydin, O., Cvetkovic, C., … Saif, T. (2018). Simulation and fabrication of stronger, larger, and faster walking biohybrid machines. Advanced Functional Materials, 28(23), 1801145.

    Article  Google Scholar 

  113. Morimoto, Y., Onoe, H., & Takeuchi, S. (2018). Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues. Science Robotics, 3(18).

    Google Scholar 

  114. Morimoto, Y., Onoe, H., & Takeuchi, S. (2020). Biohybrid robot with skeletal muscle tissue covered with a collagen structure for moving in air. APL Bioengineering, 4(2), 026101.

    Article  Google Scholar 

  115. Cvetkovic, C., Rich, M. H., Raman, R., Kong, H., & Bashir, R. (2017). A 3D-printed platform for modular neuromuscular motor units. Microsystems & Nanoengineering, 3(1), 1–9.

    Article  Google Scholar 

  116. Aydin, O., Passaro, A. P., Elhebeary, M., Pagan-Diaz, G. J., Fan, A., Nuethong, S., … Saif, M. T. A. (2020). Development of 3D neuromuscular bioactuators. APL Bioengineering, 4(1), 016107.

    Article  Google Scholar 

  117. Aydin, O., Zhang, X., Nuethong, S., Pagan-Diaz, G. J., Bashir, R., Gazzola, M., & Saif, M. T. A. (2019). Neuromuscular actuation of biohybrid motile bots. Proceedings of the National Academy of Sciences, 116(40), 19841–19847.

    Article  Google Scholar 

  118. Akiyama, Y., Iwabuchi, K., Furukawa, Y., & Morishima, K. (2008). Culture of insect cells contracting spontaneously; research moving toward an environmentally robust hybrid robotic system. Journal of Biotechnology, 133(2), 261–266.

    Article  Google Scholar 

  119. Akiyama, Y., Iwabuchi, K., Furukawa, Y., & Morishima, K. (2009). Long-term and room temperature operable bioactuator powered by insect dorsal vessel tissue. Lab on a Chip, 9(1), 140–144.

    Article  Google Scholar 

  120. Akiyama, Y., Iwabuchi, K., Furukawa, Y., & Morishima, K. (2010). Electrical stimulation of cultured lepidopteran dorsal vessel tissue: An experiment for development of bioactuators. In vitro Cellular & Developmental Biology-Animal, 46(5), 411–415.

    Article  Google Scholar 

  121. Akiyama, Y., Odaira, K., Sakiyama, K., Hoshino, T., Iwabuchi, K., & Morishima, K. (2012). Rapidly-moving insect muscle-powered microrobot and its chemical acceleration. Biomedical Microdevices, 14(6), 979–986.

    Article  Google Scholar 

  122. Akiyama, Y., Hoshino, T., Iwabuchi, K., & Morishima, K. (2012). Room temperature operable autonomously moving bio-microrobot powered by insect dorsal vessel tissue. PLoS One, 7(7), e38274.

    Article  Google Scholar 

  123. Akiyama, Y., Sakuma, T., Funakoshi, K., Hoshino, T., Iwabuchi, K., & Morishima, K. (2013). Atmospheric-operable bioactuator powered by insect muscle packaged with medium. Lab on a Chip, 13(24), 4870–4880.

    Article  Google Scholar 

  124. Baryshyan, A. L., Domigan, L. J., Hunt, B., Trimmer, B. A., & Kaplan, D. L. (2014). Self-assembled insect muscle bioactuators with long term function under a range of environmental conditions. RSC Advances, 4(75), 39962–39968.

    Article  Google Scholar 

  125. Uesugi, K., Shimizu, K., Akiyama, Y., Hoshino, T., Iwabuchi, K., & Morishima, K. (2016). Contractile performance and controllability of insect muscle-powered bioactuator with different stimulation strategies for soft robotics. Soft Robotics, 3(1), 13–22.

    Article  Google Scholar 

  126. Yamatsuta, E., Beh, S. P., Uesugi, K., Tsujimura, H., & Morishima, K. (2019). A micro peristaltic pump using an optically controllable bioactuator. Engineering, 5(3), 580–585.

    Article  Google Scholar 

  127. Uesugi, K., Sakuma, Y., Akiyama, Y., Akiyama, Y., Iwabuchi, K., Okano, T., & Morishima, K. (2019). Temperature-responsive culture surfaces for insect cell sheets to fabricate a bioactuator. Advanced Robotics, 33(5), 219–231.

    Article  Google Scholar 

  128. Yalikun, Y., Uesugi, K., Hiroki, M., Shen, Y., Tanaka, Y., Akiyama, Y., & Morishima, K. (2019, June). Insect muscular tissue-powered swimming robot. In Actuators (Vol. 8, no. 2, p. 30). Multidisciplinary Digital Publishing Institute.

    Google Scholar 

  129. Raman, R., Grant, L., Seo, Y., Cvetkovic, C., Gapinske, M., Palasz, A., … Bashir, R. (2017). Damage, healing, and remodeling in optogenetic skeletal muscle bioactuators. Advanced Healthcare Materials, 6(12), 1700030.

    Article  Google Scholar 

  130. Doss, M. X., & Sachinidis, A. (2019). Current challenges of iPSC-based disease modeling and therapeutic implications. Cells, 8(5), 403.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Ricotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iberite, F., Vannozzi, L., Ricotti, L. (2022). Biohybrid Microrobots. In: Sun, Y., Wang, X., Yu, J. (eds) Field-Driven Micro and Nanorobots for Biology and Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-80197-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80197-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80196-0

  • Online ISBN: 978-3-030-80197-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics