Skip to main content

Drug Resistance Mechanism in Staphylococcus aureus

  • Chapter
  • First Online:
Innovations in Biotechnology for a Sustainable Future

Abstract

Infectious diseases are the world’s second most significant cause of human death. Staphylococcus aureus is perhaps the human’s greatest concern because of its inherent virulence and its ability to cause a wide variety of life-threatening infections and its capability to adapt under various conditions. The drug resistance of S. aureus has gradually increased due to the adaptation of bacteria and the excessive use of antibiotics. There are many anti-staphylococcus drugs; however, they quickly lose their therapeutic value due to the resistance mechanisms developed by the bacteria. The major fundamental mechanisms of antimicrobial resistance are enzymatic degradation of antibacterial drugs, alteration of bacterial proteins that are antimicrobial targets and changes in membrane permeability to antibiotics. S. aureus develops resistance to beta-lactamase through the acquisition of a genomic island called staphylococcus cassette chromosome (SCC mec) which carries methicillin resistance determinant called mecA. Biofilm formation and quorum sensing of S. aureus have shown resistance to different antibiotics. Therefore, understanding the drug resistance of MRSA (methicillin-resistant Staphylococcus aureus) correctly and elucidating its drug resistance mechanism at the molecular level is of great importance for the treatment of S. aureus infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akanbi, O. E., Njom, H. K., Fri, J., Otigbu, A. C., & Clarke, A. M. (2017). Antimicrobial susceptibility of Staphylococcus aureus isolated from recreational waters and beach sand in Eastern cape province of south Africa. International Journal of Environmental Research and Public Health, 14(9), 1001. https://doi.org/10.3390/ijerph14091001

    Article  CAS  PubMed Central  Google Scholar 

  • Anne S., & Reisman R. E. (1995). Risk of administering cephalosporin antibiotics to patients with histories of penicillin allergy. Ann Allergy Asthma Immunol. Feb;74(2), 167–70.

    Google Scholar 

  • Archer, G. L., & Crossly, K. B. (1997). The Staphylococci in human disease. Elsevier.

    Google Scholar 

  • Aziz, Z. S., & Hassan, M. A. (2019). Phenotypic and molecular study of mecA gene in MRSA isolated from clinical isolates in Misan Province. Indian Journal of Public Health Research and Development, 10, 553–558. https://doi.org/10.5958/0976-5506.2019.00350.4

    Article  Google Scholar 

  • Bitrus, A. A., Peter, O. M., Abbas, M. A., & Goni, M. D. (2018). Staphylococcus aureus: A review of antimicrobial resistance mechanisms. Research Reviews, 4(2), 43–54.

    Google Scholar 

  • Carboneau, C., Benge, E., Jaco, M. T., & Robinson, M. (2010). A lean six sigma team increases hand hygiene compliance and reduces hospital-acquired MRSA infections by 51%. Journal for Healthcare Quality, 32, 61–70.

    Article  Google Scholar 

  • Cazares-Domínguez, V., Cruz-Cordova, A., Ochoa, S. A., Escalona, G., Arellano-Galindo, J., & Rodríguez-Leviz. (2015). Vancomycin tolerant, methicillin-resistant Staphylococcus aureus the effects of vancomycin on cell wall thickening. PLoS One, 10(3), e0118791. https://doi.org/10.1371/journal.pone.0118791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers, H. F. (1997). Methicillin resistance in Staphylococci molecular and biochemical basis and clinical implications. Clinical Microbiology Reviews, 10(4), 781–791.

    Article  CAS  Google Scholar 

  • Chen, Y., Liu, T., Wang, K., Hou, C., Cai, S., Huang, Y., Du, Z., Huang, H., Kong, J., & Chen, Y. (2016). Baicalein inhibits Staphylococcus aureus biofilm formation and the quorum sensing system in vitro. PLoS One, 11, e153468. https://doi.org/10.1371/journal.pone.0153468

    Article  CAS  Google Scholar 

  • Cluff, L. E., & Reynolds, R. J. (1965). Management of Staphylococcal infections. The American Journal of Medicine, 39, 812–825.

    Article  CAS  Google Scholar 

  • Damon, H. A., Soussy, C. J., & Courvalin, P. (1998). Characterization of mutations in the rpoB gene that confer rifampin resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 42(10), 2590–2594.

    Article  Google Scholar 

  • Dever, L. A., & Dermody, T. S. (1991). Mechanisms of bacterial resistance to antibiotics. Archives of Internal Medicine, 151(5), 886–895. https://doi.org/10.1001/archinte.1991.00400050040010

    Article  CAS  PubMed  Google Scholar 

  • Donlan, R. M. (2001). Biofilm formation: A clinically relevant microbiological process. Clinical Infectious Diseases, 33, 1387–1392. https://doi.org/10.1086/322972

    Article  CAS  PubMed  Google Scholar 

  • Donlan, R. M. (2002). Microbial life on surfaces. Emerge Infectious Diseases, 8(9), 881–890. https://doi.org/10.3201/eid0809.020063

    Article  Google Scholar 

  • Fiebelkorn, K. R., Crawford, S. A., McElmeel, M. L., & Jorgensen, J. H. (2003). Practical disc diffusion method for detection of inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative Staphylococci. Journal of Clinical Microbiology, 41, 4740–4744.

    Article  CAS  Google Scholar 

  • Fishovitz, J., Hermoso, J. A., Chan, M., & Mobashery, S. (2014). Penicillin- binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life, 66(8), 572–577. https://doi.org/10.1002/iub.1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster, T. J. (2017). Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiology Reviews, 41, 430–449.

    Article  CAS  Google Scholar 

  • Francolini, I., & Donelli, G. (2010). Prevention and control of biofilm-based medical-device-related infections. FEMS Immunology and Medical Microbiology, 59(3), 227–238. https://doi.org/10.1111/j.1574-695X.2010.00665x

    Article  CAS  PubMed  Google Scholar 

  • Guo, Y., Song, G., Sun, M., & Wang, J. (2020). Prevalence and therapies of antibiotic resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 10, 107. https://doi.org/10.3389/fcimb.2020.00107

    Article  PubMed  PubMed Central  Google Scholar 

  • Gursoy, N. C., Ersoy, Y., Gunal, S., & Kuzucu, C. (2009). Antibiotic resistance in Staphylococcus aureus strains isolated from blood cultures. Ankem Dergisi, 23(1), 26–29.

    Google Scholar 

  • Harris, L. G., Foster, S. J., & Richards, R. G. (2002). An Introduction to staphylococcus aureus and techniques for identification and quantifying Staphylococcus aureus adhesins about adhesion to biomaterials: Review. European Cells & Materials, 4, 4. https://doi.org/10.22203/eCM.v004a04

    Article  Google Scholar 

  • Hoiby, N., Ciofu, O., Johansen, H. K., Song, Z. J., Moser, C., Jensen, P. O., Molin, S., Givskov, M., & Tolker-Neilsen, T. (2011). The clinical impact of bacterial biofilms. International Journal of Oral Science, 3(2), 55–65. https://doi.org/10.4248/IJOS11026

    Article  PubMed  PubMed Central  Google Scholar 

  • Huijbers, P. M., Blaak, H., de Jong, M. C., Graat, E. A., Vandenbroucke-Grauls C. M., & de Roda Husman A. M. (2015). Role of the Environment in the Transmission of Antimicrobial Resistance to Humans: A Review. https://doi.org/10.1021/acs.est.5b02566

  • Ito, T., Katayama, Y., Asada, K., Mori, N., & Tsutsumimoto, K. (2001). Structural comparison of three types of Staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 45, 1323–1336. https://doi.org/10.1128/AAC.45.5.1323-1336.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, T., Ma, X. X., Takeuchi, F., Okuma, K., Yuzawa, H., & Hiramatsu, K. (2004). Novel type V Staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrobial Agents and Chemotheraphy, 7, 2637–2651. https://doi.org/10.1128/AAC.48.7.2637-2651

    Article  Google Scholar 

  • Jessica, L., Alexander, R., Roy, J., & Carver, L. A. (2014). Staphylococcus aureus biofilms: Recent developments in biofilm dispersal. Frontiers in Cellular and Infection Microbiology, 2014, 178. https://doi.org/10.3389/fcimb.2014.00178

    Article  Google Scholar 

  • Ji, G., Beavis, R., & Novick, R. P. (1997). Bacterial interference caused by autoinducing peptide variants. Science, 276, 2027–2030. https://doi.org/10.1126/science.276.5321.2027

    Article  CAS  PubMed  Google Scholar 

  • Kirby, W. M. (1944). Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science, 99, 452–453.

    Article  CAS  Google Scholar 

  • Kirmusaoglu, S. (2007). MRSA and MSSA: The mechanism of methicillin resistance and the influence of methicillin resistance on biofilm phenotype of Staphylococcus aureus. IntechOpen.

    Google Scholar 

  • Kleerebezem, M., Quadri, L. E., & Kuipers, O. P. (1997). Quorum sensing by peptide pheromones and two- component signal-transduction signals in Gram-positive bacteria. Molecular Biology, 24(5), 895–904. https://doi.org/10.1046/j.1365-2958.1997.4251782.x

    Article  CAS  Google Scholar 

  • Le, K. Y. & Otto, M. (2015) Quorum-sensing regulation in staphylococci—an overview. Front. Microbiol. 6:1174. https://doi.org/10.3389/fmicb.2015.01174

  • Leski, T. A., & Tomasz, A. (2005). Role of penicillin binding protein 2 (PBP2) in the antibiotic susceptibility and cell wall cross-inking of evidence for the cooperative functioning of PBP2, PBP4, and PBP2A. Journal of Bacteriology, 187(5), 1815–1824. https://doi.org/10.1128/JB.187.5.1815-1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin, T. P., Suh, B., Axelrod, P., Truant, A. L., & Fekete, T. (2005). Potential clindamycin resistance in clindamycin-susceptible, erythromycin- resistant Staphylococcus aureus: report of a clinical failure. Antimicrobial Agents and Chemotherapy, 49, 1222–1224.

    Article  CAS  Google Scholar 

  • Li, M., Zou, P., Tyner, K., & Lee, S. (2017). Physiologically based pharmacokinetic (PBPK) modeling of pharmaceutical nanoparticles. The AAPS Journal, 19, 26–42. https://doi.org/10.1208/s12248-016-0010-3

    Article  CAS  PubMed  Google Scholar 

  • Lowy, F. D. (1998). Staphylococcus aureus infections. The New England Journal of Medicine, 339, 520–532.

    Article  CAS  Google Scholar 

  • Lowy, F. D. (2003). Antimicrobial resistance: the example of staphylococcus aureus. The Journal of Clinical Investigation, 111, 1265–1273. https://doi.org/10.1172/JCI200318535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malachowa, N., & DeLeo, F. R. (2010). Mobile genetic elements of staphylococcus aureus. Life Sciences, 67, 3057–3071. https://doi.org/10.1007/s00018-010-0389-4

    Article  CAS  Google Scholar 

  • Matsuoka, M., Inoue, M., Endou, K., & Nakajima, Y. (2003). Characteristic expression of three genes, msr(A), mph(C) and erm(Y), that confer resistance to macrolide antibiotics on Staphylococcus aureus. FEMS Microbiology Letters, 220, 287–293.

    Article  CAS  Google Scholar 

  • Mcclintock, B. (1951). Chromosome organisation and genic expression. Cold Spring Harbor Symposia on Quantitative Biology, 16, 13–47. https://doi.org/10.1101/SQB.1951.016.01.004

    Article  CAS  PubMed  Google Scholar 

  • McNamara, P. J., Monroe, K. C., Khalili, S., & Proctor, R. A. (2000). Identification, cloning and initial characterization of rot, a locus encoding a regulator of virulence factor expression in Staphylococcus aureus. Journal of Bacteriology, 182, 3197–3202. https://doi.org/10.1128/JB.182.11.3197-3203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, M. B. (2001). Quorum sensing in bacteria. Annual Review of Microbiology, 55(1), 165–199.

    Article  CAS  Google Scholar 

  • Moosdeen, F., & Williams, J. D. (1986). Antibiotic resistance in: epidemiology, mechanisms and therapeutic possibilities. Rev Infect Dis 8(Suppl 5): S555–S561.

    Google Scholar 

  • Munita, J. M., Bayer, A. S., & Arias, C. A. (2015). Evolving resistance among Gram-positive pathogens. Clin Infect Dis, 61. https://doi.org/10.1093/cid/civ523

  • Nunes, L. D. C., Santos, K. R. N. D., Mondino, P. J. J., De Freire Bastos, M. D. C. D. F., & Giambiagi-Demarval, M. (1999). Detection of iles-2 gene encoding mupirocin resistance in methicillin- resistance Staphylococcus aureus by multiplex PCR. https://doi.org/10.1016/S0732-8893(99)00021-8

  • Peacock, S. J., & Paterson, G. K. (2015). Mechanism of MRSA resistance. Annual Review of Biochemistry, 84, 577–601. https://doi.org/10.1146/annurev-biochem-060614-034516

    Article  CAS  PubMed  Google Scholar 

  • Peacock, S. J., & Peterson, G. K. (2015). Mechanisms of methicillin resistance in Staphylococcus aureus. Annual Review of Biochemistry, 2015, 34516. https://doi.org/10.1146/annurev-biochem-060614-034516

    Article  CAS  Google Scholar 

  • Piątkowska, E., Tkowski, J., & Mordarsk, A. P. (2012). The strongest resistance of staphylococcus aureus to erythromycin is caused by decreasing uptake of the antibiotic into the cells. Cellular & Molecular Biology Letters, 17(4), 633–645. https://doi.org/10.2478/s11658-012-0034-3

    Article  CAS  Google Scholar 

  • Piriyaporn, C., Ito, T., Ma, X. X., Kondo, Y., Trakulsomboon, S., Tiensasitorn, C., Jamklang, M., Chavalit, T., Song, J.-H., & Hiramatsu, K. (2006). Staphylococcal Cassette Chromosome mec (SCC mec) typing of Methicillin- Resistant Staphylococcus aureus strains Isolated in 11 Asian countries: a proposal for a New Nomenclature for SCC mec Elements. Antimicrobial agents and Chemotherapy, March 2006, p. 1001–1012. https://doi.org/10.1128/AAC.50.3.1001-1012.2006.

  • Pillai, S. K., Sakoulas, G., Wennersten, C., Eliopoulos, G. M., Moellering, R. C. Jr, Ferraro, M. J., & Gold, H. S. (2002). Linezolid resistance in Staphylococcus aureus: characterization and stability of resistant phenotype. J Infect Dis, 186(11), 1603–7. https://doi.org/10.1086/345368.

  • Plata, K., Rosato, A. E., & Wegrzyn, G. (2009). Staphylococcus aureus as an infective agent: overview of biochemistry and molecular genetics of its pathogenicity. Acta Biochemica Polnica, 56(4), 597–612.

    CAS  Google Scholar 

  • Queck, S. Y., Jameson, L. M., Villaruz, A. E., Bach, T. H., Burhan, A., Khan, B. A., Sturdevant, D. E., Ricklefs, S. M., Li, M., & Ott, M. (2008). RNAIII- independent target gene control by the agr quorum-sensing system: Insight into the evolution of virulence regulation in Staphylococcus aureus. Molecular Cell, 32, 150–158.

    Article  CAS  Google Scholar 

  • Rabin, Z., Opoku-Temeng, D., Bonsu & Sintim. (2015). Future Med. Chem., 7(4), 493–512.

    Google Scholar 

  • Ragbetli, C., Parlak, M., Bayram, Y., Guducuoglu, H., & Ceylan, N. (2016). Evaluation of antimicrobial resistance in Staphylococcus aureus isolates by years. Interdisciplinary Perspectives on Infectious Diseases, 2016, 9171395. https://doi.org/10.1155/2016/9171395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramage, G., Savile, S. P., Wickes, B. L., & Lopez, R. J. L. (2002). Inhibition of Candida albicans biofilm formation by farnesol, a quorum sensing molecule. Applied and Environmental Microbiology, 68, 5459–5463.

    Article  CAS  Google Scholar 

  • Rasigade, J. P., Dumitrescu, O., & Lina, G. (2014). New epidemiology of staphylococcus aureus infections. Clinical Microbiology and Infection, 20, 587–588.

    Article  Google Scholar 

  • Reffuveille, F., Josse, J., Valle, Q., Mongaret, C., & Gangloff, S. C. (2017). Staphylococcus aureus biofilms and their impact on the medical field. IntechOpen.

    Book  Google Scholar 

  • Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482–501. https://doi.org/10.3934/microbiol.2018.3.482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasirekha, B., Usha, M. S., Amruta, J. A., Ankit, S., Brinda, N., & Divya, R. (2014). Incidence of constitutive and inducible clindamycin resistance among hospital-associated Staphylococcus aureus. 3 Biotech, 4, 85–89. https://doi.org/10.1007/s13205-013-0133-5

    Article  CAS  PubMed  Google Scholar 

  • Shahid, A., Rasool, M., Akhter, N., Aslam, B., Hassan, A., & Sana, S. (2019). Innovative strategies for the control of biofilm formation in clinical settings. IntechOpen.

    Google Scholar 

  • Sharma, D., Misba, L., & Khan, A. U. (2019). Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrobial Resistance and Infection Control, 8, 76. https://doi.org/10.1186/s13756-019-0533-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, S., Kumar, S., & Indrajit. (2017). Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. The Open Microbiology Journal, 11, 53. https://doi.org/10.2174/1874285801711010053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, P. F., & Wilkinson, B. J. (1981). Synthesis of methicillin resistant Staphylococcus aureus. Journal of Bacteriology, 148, 610–617.

    Article  CAS  Google Scholar 

  • Stark, L. (2013). Staphylococcus aureus-aspects of pathogenesis and molecular epidemiology. Elsevier.

    Google Scholar 

  • Steven, Y. C. T., Joshua, S., Eichenberger, E., Thomas, L., & Vance, G. (2015). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations and management. Clinical Microbiology Reviews, 28(3), 603–661. https://doi.org/10.1128/CMR.00134-14

    Article  Google Scholar 

  • Thammavongsa, V., Kim, H. K., Missiakas, D., & Schneewind, O. (2015). Staphylococcal manipulation of host immune responses. Nature Reviews. Microbiology, 13(9), 529–543.

    Article  CAS  Google Scholar 

  • Tipper, D. J., & Strominger, J. L. (1965). Mechanism of action of penicillins: A proposal based on their structural similarity to acyl-d-amyl-d-alanine. Proceedings of the National Academy of Sciences of the United States of America, 54, 1133–1141.

    Article  CAS  Google Scholar 

  • Tomasz, A., & De Lencastre, H. (1994). Reassessment of the number of auxiliary genes essential for expression of high-level methicillin resistance in staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 38, 2590–2598.

    Article  Google Scholar 

  • Van Tilburg, B. E., Lewenza, S., & Reckseidler, Z. S. (2015). Current research approaches to target biofilm infections. Journal of Postdoctoral Research, 3(6), 36–49.

    Google Scholar 

  • Vlaeminck, J., Raafat, D., Surmann, K., Timbermont, L., Normann, N., Sellman, B., Willem, J. B., & Wamel, M.-k. S. (2020). Exploring virulence factors and alternative therapies against Staphylococcus aureus. Toxins, 12(11), 721. https://doi.org/10.3390/toxins12110721

    Article  CAS  PubMed Central  Google Scholar 

  • Walsh, C. T., & Timothy, A. W. (2016). Antibiotics: Challenges, mechanisms opportunities. ASM Press.

    Book  Google Scholar 

  • Wang, W., Lin, X., Jiang, T., Peng, Z., Xu, J., Yi, L., Li, F., Fanning, S., & Baloch, Z. (2018). Prevalence and Characterization of Staphylococcus aureus Cultured from Raw Milk Taken From Dairy Cows With Mastitis in Beijing, China. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01123

  • Wyke, A. W., Ward, J. B., & Hayes, M. V. (1982). Synthesis of peptidoglycan in vivo in methicillin-resistant Staphylococcus aureus. European Journal of Biochemistry, 127, 553–558.

    Article  CAS  Google Scholar 

  • Yarwood, J. M., Patrick, M., & Schlievert, P. M. (2003). Quorum sensing in Staphylococcus infections. The Clinical Investigator, 112(11), 1620–1625. https://doi.org/10.1172/JCI20442

    Article  CAS  Google Scholar 

  • Zhang, H. Z., Hackbarth, C. J., Chansky, K. M., & Chambers, H. F. (2001). A proteolytic transmembrane signalling pathway and resistance to β-lactams in Staphylococci. Science, 291, 1962–1965.

    Article  CAS  Google Scholar 

  • Zhao, X., Yu, Z., & Ding, T. (2020). Quorum sensing regulation of antimicrobial resistance in bacteria. Microorganisms, 8(3), 425. https://doi.org/10.3390/microrganisms8030425

    Article  CAS  PubMed Central  Google Scholar 

  • Zhou, W., Shan, W., Ma, X., Chang, W., Zhou, X., Lu, H., & Dai, Y. (2012). Molecular characterization of rifampicin-resistant Staphylococcus aureus isolates in a Chinese teaching hospital from Anhui, China. BMC Microbiology, 12, 240.

    Article  CAS  Google Scholar 

  • Zoabi, M., Keness, Y., Titler, N., & Bisharat, N. (2011). Compliance of hospital staff with guidelines for the active surveillance of methicillin-resistance Staphylococcus aureus (MRSA) and its impact on rates of nosocomial MRSA bacteremia. The Israel Medical Association Journal, 2011(13), 740–744.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjaneyulu Musini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Musini, A., Kandula, P., Giri, A. (2021). Drug Resistance Mechanism in Staphylococcus aureus. In: Maddela, N.R., García, L.C. (eds) Innovations in Biotechnology for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-80108-3_17

Download citation

Publish with us

Policies and ethics