Skip to main content

Osteoporosis Management with Focus on Spine

  • Chapter
  • First Online:
Image Guided Interventions of the Spine

Abstract

Osteoporosis is one of the most prevalent bone diseases and is associated with age. Vertebral fractures are the most common manifestation of osteoporosis. Vertebral and hip fractures are associated with excess mortality. A previous spine fracture increases the risk of next vertebral fracture by fivefold during the following year, with almost 20% of women developing a vertebral fracture (VF) within the next 12 months. Low bone mineral density (BMD) is a major risk factor for poor screw fixation, screw loosening, and fixation failure since the ability of screws to resist pullout from bone is directly related to BMD. The anti-osteoporosis medications, pharmacological and non-pharmacological osteoporosis management, and bone-targeted therapy for selected malignancies are described in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAOMS:

American Association of Oral and Maxillofacial Surgeons

ADT:

Androgen deprivation therapy

AIs:

Aromatase inhibitors

BMD:

Bone mineral density

Dmab:

Denosumab

DXA:

Dual-energy X-ray absorptiometry

FMP:

Final menstrual period

GC:

Glucocorticoids

HRT:

Hormonal replacement therapy

MOF:

Major osteoporotic fractures (the spine, hip, wrist, or humerus)

OFS:

Ovarian function suppression

ONJ:

Osteonecrosis of the jaw

ROI:

Region of interest

SERM:

Selective estrogen receptor modulators

TBS:

Trabecular bone score

VTE:

Venous thromboembolism

ZA:

Zoledronic acid

References

  1. Murphy SL, Xu J, Kochanek KD, Arias E. Mortality in the United States, 2017. NCHS Data Brief. 2018;(328):1–8.

    Google Scholar 

  2. Consensus development conference: prophylaxis and treatment of osteoporosis. Am J Med. 1991;90(1):107–10.

    Google Scholar 

  3. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ensrud KE. Epidemiology of fracture risk with advancing age. J Gerontol A Biol Sci Med Sci. 2013;68(10):1236–42.

    Article  PubMed  Google Scholar 

  5. Melton LJ 3rd, Lane AW, Cooper C, Eastell R, O’Fallon WM, Riggs BL. Prevalence and incidence of vertebral deformities. Osteoporos Int. 1993;3(3):113–9.

    Article  PubMed  Google Scholar 

  6. Teng GG, Curtis JR, Saag KG. Mortality and osteoporotic fractures: is the link causal, and is it modifiable? Clin Exp Rheumatol. 2008;26(5 Suppl 51):S125–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, et al. Risk of new vertebral fracture in the year following a fracture. JAMA. 2001;285(3):320–3.

    Article  CAS  PubMed  Google Scholar 

  8. Lewiecki EM, Bilezikian JP, Kagan R, Krakow D, McClung MR, Miller PD, et al. Proceedings of the 2019 Santa Fe Bone symposium: new concepts in the care of osteoporosis and rare bone diseases. J Clin Densitom. 2020;23(1):1–20.

    Article  PubMed  Google Scholar 

  9. Shuhart CR, Yeap SS, Anderson PA, Jankowski LG, Lewiecki EM, Morse LR, et al. Executive summary of the 2019 ISCD position development conference on monitoring treatment, DXA cross-calibration and least significant change, spinal cord injury, peri-prosthetic and orthopedic bone health, transgender medicine, and pediatrics. J Clin Densitom. 2019;22(4):453–71.

    Article  PubMed  Google Scholar 

  10. International Society for Clinical Densitometry. 2019 ISCD Official Positions. Adult. www.ISCD.org. 2019.

  11. Banse C, Ould-Slimane M, Foulongne E, Perez A, Avenel G, Daragon A, et al. Impact of assessment of bone status before corrective surgery of lumbar spine in patients over 50 years old. Open Access Rheumatol. 2019;11:111–5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ripamonti C, Lisi L, Buffa A, Gnudi S, Caudarella R. The trabecular bone score predicts spine fragility fractures in postmenopausal caucasian women without osteoporosis independently of bone mineral density. Med Arch. 2018;72(1):46–50.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chin DK, Park JY, Yoon YS, Kuh SU, Jin BH, Kim KS, et al. Prevalence of osteoporosis in patients requiring spine surgery: incidence and significance of osteoporosis in spine disease. Osteoporos Int. 2007;18(9):1219–24.

    Article  CAS  PubMed  Google Scholar 

  14. Lehman RA Jr, Kang DG, Wagner SC. Management of osteoporosis in spine surgery. J Am Acad Orthop Surg. 2015;23(4):253–63.

    Article  PubMed  Google Scholar 

  15. Stoker GE, Buchowski JM, Bridwell KH, Lenke LG, Riew KD, Zebala LP. Preoperative vitamin D status of adults undergoing surgical spinal fusion. Spine (Phila Pa 1976). 2013;38(6):507–15.

    Article  Google Scholar 

  16. Schmidt T, Ebert K, Rolvien T, Oehler N, Lohmann J, Papavero L, et al. A retrospective analysis of bone mineral status in patients requiring spinal surgery. BMC Musculoskelet Disord. 2018;19(1):53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Jang S, Graffy PM, Ziemlewicz TJ, Lee SJ, Summers RM, Pickhardt PJ. Opportunistic osteoporosis screening at routine abdominal and thoracic ct: normative l1 trabecular attenuation values in more than 20 000 adults. Radiology. 2019;291(2):360–7.

    Article  PubMed  Google Scholar 

  18. Lee SY, Kwon SS, Kim HS, Yoo JH, Kim J, Kim JY, et al. Reliability and validity of lower extremity computed tomography as a screening tool for osteoporosis. Osteoporos Int. 2015;26(4):1387–94.

    Article  CAS  PubMed  Google Scholar 

  19. Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med. 2013;158(8):588–95.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Buckens CF, Dijkhuis G, de Keizer B, Verhaar HJ, de Jong PA. Opportunistic screening for osteoporosis on routine computed tomography? An external validation study. Eur Radiol. 2015;25(7):2074–9.

    Article  PubMed  Google Scholar 

  21. Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc. 2008;83(9):1032–45.

    Article  CAS  PubMed  Google Scholar 

  22. Cremers SC, Pillai G, Papapoulos SE. Pharmacokinetics/pharmacodynamics of bisphosphonates: use for optimisation of intermittent therapy for osteoporosis. Clin Pharmacokinet. 2005;44(6):551–70.

    Article  CAS  PubMed  Google Scholar 

  23. Cremers S, Papapoulos S. Pharmacology of bisphosphonates. Bone. 2011;49(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  24. Roelofs AJ, Thompson K, Gordon S, Rogers MJ. Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res. 2006;12(20 Pt 2):6222s–30s.

    Article  CAS  PubMed  Google Scholar 

  25. Coxon FP, Thompson K, Roelofs AJ, Ebetino FH, Rogers MJ. Visualizing mineral binding and uptake of bisphosphonate by osteoclasts and non-resorbing cells. Bone. 2008;42(5):848–60.

    Article  CAS  PubMed  Google Scholar 

  26. Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19(6):733–59.

    Article  CAS  PubMed  Google Scholar 

  27. Weiss HM, Pfaar U, Schweitzer A, Wiegand H, Skerjanec A, Schran H. Biodistribution and plasma protein binding of zoledronic acid. Drug Metab Dispos. 2008;36(10):2043–9.

    Article  CAS  PubMed  Google Scholar 

  28. Carnevale V, Dicembrino F, Frusciante V, Chiodini I, Minisola S, Scillitani A. Different patterns of global and regional skeletal uptake of 99mTc-methylene diphosphonate with age: relevance to the pathogenesis of bone loss. J Nucl Med. 2000;41(9):1478–83.

    CAS  PubMed  Google Scholar 

  29. Israel O, Front D, Hardoff R, Ish-Shalom S, Jerushalmi J, Kolodny GM. In vivo SPECT quantitation of bone metabolism in hyperparathyroidism and thyrotoxicosis. J Nucl Med. 1991;32(6):1157–61.

    CAS  PubMed  Google Scholar 

  30. Hanley DA, Adachi JD, Bell A, Brown V. Denosumab: mechanism of action and clinical outcomes. Int J Clin Pract. 2012;66(12):1139–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boivin GY, Chavassieux PM, Santora AC, Yates J, Meunier PJ. Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone. 2000;27(5):687–94.

    Article  CAS  PubMed  Google Scholar 

  32. Seeman E. Bone quality. Osteoporos Int. 2003;14(Suppl 5):S3–7.

    Article  PubMed  Google Scholar 

  33. Dobnig H, Sipos A, Jiang Y, Fahrleitner-Pammer A, Ste-Marie LG, Gallagher JC, et al. Early changes in biochemical markers of bone formation correlate with improvements in bone structure during teriparatide therapy. J Clin Endocrinol Metab. 2005;90(7):3970–7.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang Y, Zhao JJ, Mitlak BH, Wang O, Genant HK, Eriksen EF. Recombinant human parathyroid hormone (1-34) [teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res. 2003;18(11):1932–41.

    Article  CAS  PubMed  Google Scholar 

  35. Bernhardsson M, Aspenberg P. Abaloparatide versus teriparatide: a head to head comparison of effects on fracture healing in mouse models. Acta Orthop. 2018;89(6):674–7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Boyce EG, Mai Y, Pham C. Abaloparatide: review of a next-generation parathyroid hormone agonist. Ann Pharmacother. 2018;52(5):462–72.

    Article  CAS  PubMed  Google Scholar 

  37. Shah AD, Shoback D, Lewiecki EM. Sclerostin inhibition: a novel therapeutic approach in the treatment of osteoporosis. Int J Women’s Health. 2015;7:565–80.

    Google Scholar 

  38. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–58.

    Article  CAS  PubMed  Google Scholar 

  39. Keizer RJ, Huitema AD, Schellens JH, Beijnen JH. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(8):493–507.

    Article  CAS  PubMed  Google Scholar 

  40. Lim SY, Bolster MB. Profile of romosozumab and its potential in the management of osteoporosis. Drug Des Devel Ther. 2017;11:1221–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Galbusera F, Volkheimer D, Reitmaier S, Berger-Roscher N, Kienle A, Wilke HJ. Pedicle screw loosening: a clinically relevant complication? Eur Spine J. 2015;24(5):1005–16.

    Article  PubMed  Google Scholar 

  42. Park SB, Chung CK. Strategies of spinal fusion on osteoporotic spine. J Korean Neurosurg Soc. 2011;49(6):317–22.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen H, Zhou X, Fujita H, Onozuka M, Kubo KY. Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol. 2013;2013:213234.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lubelski D, Choma TJ, Steinmetz MP, Harrop JS, Mroz TE. Perioperative medical management of spine surgery patients with osteoporosis. Neurosurgery. 2015;77(Suppl 4):S92–7.

    Article  PubMed  Google Scholar 

  45. Bjerke BT, Zarrabian M, Aleem IS, Fogelson JL, Currier BL, Freedman BA, et al. Incidence of osteoporosis-related complications following posterior lumbar fusion. Global Spine J. 2018;8(6):563–9.

    Article  PubMed  Google Scholar 

  46. Lewiecki EM, Binkley N, Bilezikian JP. Treated osteoporosis is still osteoporosis. J Bone Miner Res. 2019;34(4):605–6.

    Article  PubMed  Google Scholar 

  47. Grey A, Horne A, Gamble G, Mihov B, Reid IR, Bolland M. Ten years of very infrequent zoledronate therapy in older women: an open-label extension of a randomized trial. J Clin Endocrinol Metab. 2020;105(4):dgaa062.

    Article  PubMed  Google Scholar 

  48. Reid IR, Black DM, Eastell R, Bucci-Rechtweg C, Su G, Hue TF, et al. Reduction in the risk of clinical fractures after a single dose of zoledronic acid 5 milligrams. J Clin Endocrinol Metab. 2013;98(2):557–63.

    Article  CAS  PubMed  Google Scholar 

  49. Grey A, Bolland MJ, Horne A, Mihov B, Gamble G, Reid IR. Duration of antiresorptive activity of zoledronate in postmenopausal women with osteopenia: a randomized, controlled multidose trial. CMAJ. 2017;189(36):E1130–E6.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Miyauchi A, Matsumoto T, Sugimoto T, Tsujimoto M, Warner MR, Nakamura T. Effects of teriparatide on bone mineral density and bone turnover markers in Japanese subjects with osteoporosis at high risk of fracture in a 24-month clinical study: 12-month, randomized, placebo-controlled, double-blind and 12-month open-label phases. Bone. 2010;47(3):493–502.

    Article  CAS  PubMed  Google Scholar 

  51. Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N, et al. Comparison of teriparatide and bisphosphonate treatment to reduce pedicle screw loosening after lumbar spinal fusion surgery in postmenopausal women with osteoporosis from a bone quality perspective. Spine (Phila Pa 1976). 2013;38(8):E487–92.

    Article  Google Scholar 

  52. Kim JW, Park SW, Kim YB, Ko MJ. The effect of postoperative use of teriparatide reducing screw loosening in osteoporotic patients. J Korean Neurosurg Soc. 2018;61(4):494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N, et al. Teriparatide accelerates lumbar posterolateral fusion in women with postmenopausal osteoporosis: prospective study. Spine (Phila Pa 1976). 2012;37(23):E1464–8.

    Article  Google Scholar 

  54. Leder BZ, Mitlak B, Hu MY, Hattersley G, Bockman RS. Effect of abaloparatide vs alendronate on fracture risk reduction in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2020;105(3):938.

    Article  Google Scholar 

  55. Kendler D, Chines A, Clark P, Ebeling PR, McClung M, Rhee Y, et al. Bone mineral density after transitioning from denosumab to alendronate. J Clin Endocrinol Metab. 2020;105(3):e255.

    Article  Google Scholar 

  56. Cosman F, Nieves JW, Dempster DW. Treatment sequence matters: anabolic and antiresorptive therapy for osteoporosis. J Bone Miner Res. 2017;32(2):198–202.

    Article  CAS  PubMed  Google Scholar 

  57. Ohtori S, Orita S, Yamauchi K, Eguchi Y, Ochiai N, Kuniyoshi K, et al. More than 6 months of teriparatide treatment was more effective for bone union than shorter treatment following lumbar posterolateral fusion surgery. Asian Spine J. 2015;9(4):573–80.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ramchand SK, David NL, Leder BZ, Tsai JN. Bone mineral density response with denosumab in combination with standard or high-dose teriparatide: the DATA-HD RCT. J Clin Endocrinol Metab. 2020;105(3):890–7.

    Article  Google Scholar 

  59. Leder BZ, Tsai JN, Uihlein AV, Wallace PM, Lee H, Neer RM, et al. Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-switch study): extension of a randomised controlled trial. Lancet. 2015;386(9999):1147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lyu H, Zhao SS, Yoshida K, Tedeschi SK, Xu C, Nigwekar SU, et al. Comparison of teriparatide and denosumab in patients switching from long-term bisphosphonate use. J Clin Endocrinol Metab. 2019;104(11):5611–20.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Buerba RA, Sharma A, Ziino C, Arzeno A, Ajiboye RM. Bisphosphonate and teriparatide use in thoracolumbar spinal fusion: a systematic review and meta-analysis of comparative studies. Spine (Phila Pa 1976). 2018;43(17):E1014–E23.

    Article  Google Scholar 

  62. Fretes N, Vellios E, Sharma A, Ajiboye RM. Radiographic and functional outcomes of bisphosphonate use in lumbar fusion: a systematic review and meta-analysis of comparative studies. Eur Spine J. 2020;29(2):272–81.

    Article  PubMed  Google Scholar 

  63. Tu CW, Huang KF, Hsu HT, Li HY, Yang SS, Chen YC. Zoledronic acid infusion for lumbar interbody fusion in osteoporosis. J Surg Res. 2014;192(1):112–6.

    Article  CAS  PubMed  Google Scholar 

  64. Suen PK, He YX, Chow DH, Huang L, Li C, Ke HZ, et al. Sclerostin monoclonal antibody enhanced bone fracture healing in an open osteotomy model in rats. J Orthop Res. 2014;32(8):997–1005.

    Article  CAS  PubMed  Google Scholar 

  65. Makino T, Tsukazaki H, Ukon Y, Tateiwa D, Yoshikawa H, Kaito T. The biological enhancement of spinal fusion for spinal degenerative disease. Int J Mol Sci. 2018;19(8):2430.

    Article  PubMed Central  CAS  Google Scholar 

  66. Sarahrudi K, Thomas A, Albrecht C, Aharinejad S. Strongly enhanced levels of sclerostin during human fracture healing. J Orthop Res. 2012;30(10):1549–55.

    Article  CAS  PubMed  Google Scholar 

  67. Gaudio A, Pennisi P, Bratengeier C, Torrisi V, Lindner B, Mangiafico RA, et al. Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab. 2010;95(5):2248–53.

    Article  CAS  PubMed  Google Scholar 

  68. Camacho PM, Petak SM, Binkley N, Diab DL, Eldeiry LS, Farooki A, et al. American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 update. Endocr Pract. 2020;26(Suppl 1):1–46.

    Article  PubMed  Google Scholar 

  69. Ruggiero SL, Dodson TB, Fantasia J, Goodday R, Aghaloo T, Mehrotra B, et al. American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw–2014 update. J Oral Maxillofac Surg. 2014;72(10):1938–56.

    Article  PubMed  Google Scholar 

  70. Anderson K, Ismaila N, Kyle RA. Role of bone-modifying agents in multiple myeloma: American Society of Clinical Oncology clinical practice guideline update summary. J Oncol Pract. 2018;14(4):266–9.

    Article  PubMed  Google Scholar 

  71. Markiewicz MR, Margarone JE 3rd, Campbell JH, Aguirre A. Bisphosphonate-associated osteonecrosis of the jaws: a review of current knowledge. J Am Dent Assoc. 2005;136(12):1669–74.

    Article  PubMed  Google Scholar 

  72. Bagan JV, Jimenez Y, Murillo J, Hernandez S, Poveda R, Sanchis JM, et al. Jaw osteonecrosis associated with bisphosphonates: multiple exposed areas and its relationship to teeth extractions. Study of 20 cases. Oral Oncol. 2006;42(3):327–9.

    Article  PubMed  Google Scholar 

  73. Lo JC, O’Ryan FS, Gordon NP, Yang J, Hui RL, Martin D, et al. Prevalence of osteonecrosis of the jaw in patients with oral bisphosphonate exposure. J Oral Maxillofac Surg. 2010;68(2):243–53.

    Article  PubMed  Google Scholar 

  74. Shibahara T. Antiresorptive agent-related osteonecrosis of the jaw (ARONJ): a twist of fate in the bone. Tohoku J Exp Med. 2019;247(2):75–86.

    Article  CAS  PubMed  Google Scholar 

  75. Ruggiero SL, Mehrotra B, Rosenberg TJ, Engroff SL. Osteonecrosis of the jaws associated with the use of bisphosphonates: a review of 63 cases. J Oral Maxillofac Surg. 2004;62(5):527–34.

    Article  PubMed  Google Scholar 

  76. Malden N, Lopes V. An epidemiological study of alendronate-related osteonecrosis of the jaws. A case series from the south-east of Scotland with attention given to case definition and prevalence. J Bone Miner Metab. 2012;30(2):171–82.

    Article  CAS  PubMed  Google Scholar 

  77. Grbic JT, Black DM, Lyles KW, Reid DM, Orwoll E, McClung M, et al. The incidence of osteonecrosis of the jaw in patients receiving 5 milligrams of zoledronic acid: data from the health outcomes and reduced incidence with zoledronic acid once yearly clinical trials program. J Am Dent Assoc. 2010;141(11):1365–70.

    Article  CAS  PubMed  Google Scholar 

  78. Mozzati M, Arata V, Gallesio G. Tooth extraction in patients on zoledronic acid therapy. Oral Oncol. 2012;48(9):817–21.

    Article  CAS  PubMed  Google Scholar 

  79. Yamazaki T, Yamori M, Ishizaki T, Asai K, Goto K, Takahashi K, et al. Increased incidence of osteonecrosis of the jaw after tooth extraction in patients treated with bisphosphonates: a cohort study. Int J Oral Maxillofac Surg. 2012;41(11):1397–403.

    Article  CAS  PubMed  Google Scholar 

  80. Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S, et al. Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med. 2016;375(16):1532–43.

    Article  CAS  PubMed  Google Scholar 

  81. Dhesy-Thind S, Fletcher GG, Blanchette PS, Clemons MJ, Dillmon MS, Frank ES, et al. Use of adjuvant bisphosphonates and other bone-modifying agents in breast cancer: a cancer care Ontario and American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2017;35(18):2062–81.

    Article  PubMed  Google Scholar 

  82. Miller PD, Jamal SA, Evenepoel P, Eastell R, Boonen S. Renal safety in patients treated with bisphosphonates for osteoporosis: a review. J Bone Miner Res. 2013;28(10):2049–59.

    Article  CAS  PubMed  Google Scholar 

  83. Hellstein JW, Adler RA, Edwards B, Jacobsen PL, Kalmar JR, Koka S, et al. Managing the care of patients receiving antiresorptive therapy for prevention and treatment of osteoporosis: executive summary of recommendations from the American Dental Association Council on Scientific Affairs. J Am Dent Assoc. 2011;142(11):1243–51.

    Article  CAS  PubMed  Google Scholar 

  84. Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, et al. Executive summary of the 2017 KDIGO chronic kidney disease-mineral and bone disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int. 2017;92(1):26–36.

    Article  PubMed  Google Scholar 

  85. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. In: Ross AC, Taylor CL, Yaktine AL, et al., editors. Dietary reference intakes for calcium and vitamin D. Washington, DC: National Academies Press; 2011. https://www.ncbi.nlm.nih.gov/books/NBK56070/. https://doi.org/10.17226/13050.

    Chapter  Google Scholar 

  86. Billington EO, Burt LA, Rose MS, Davison EM, Gaudet S, Kan M, et al. Safety of high-dose vitamin d supplementation: secondary analysis of a randomized controlled trial. J Clin Endocrinol Metab. 2020;105(4):dgz212.

    Article  PubMed  Google Scholar 

  87. Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK. Bone loss and bone size after menopause. N Engl J Med. 2003;349(4):327–34.

    Article  PubMed  Google Scholar 

  88. Pouilles JM, Tremollieres F, Ribot C. The effects of menopause on longitudinal bone loss from the spine. Calcif Tissue Int. 1993;52(5):340–3.

    Article  CAS  PubMed  Google Scholar 

  89. Pouilles JM, Tremollieres F, Ribot C. Variability of vertebral and femoral postmenopausal bone loss: a longitudinal study. Osteoporos Int. 1996;6(4):320–4.

    Article  CAS  PubMed  Google Scholar 

  90. Greendale GA, Sowers M, Han W, Huang MH, Finkelstein JS, Crandall CJ, et al. Bone mineral density loss in relation to the final menstrual period in a multiethnic cohort: results from the Study of Women’s Health Across the Nation (SWAN). J Bone Miner Res. 2012;27(1):111–8.

    Article  PubMed  Google Scholar 

  91. Eastell R, Rosen CJ, Black DM, Cheung AM, Murad MH, Shoback D. Pharmacological management of osteoporosis in postmenopausal women: an Endocrine Society* clinical practice guideline. J Clin Endocrinol Metab. 2019;104(5):1595–622.

    Article  PubMed  Google Scholar 

  92. Buckley L, Guyatt G, Fink HA, Cannon M, Grossman J, Hansen KE, et al. 2017 American College of Rheumatology Guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res (Hoboken). 2017;69(8):1095–110.

    Article  Google Scholar 

  93. Shoback D, Rosen CJ, Black DM, Cheung AM, Murad MH, Eastell R. Pharmacological management of osteoporosis in postmenopausal women: an Endocrine Society guideline update. J Clin Endocrinol Metab. 2020;105(3):dgaa048.

    Article  PubMed  Google Scholar 

  94. Lewiecki EM, Kendler DL, Davison KS, Hanley DA, Harris ST, McClung MR, et al. Western osteoporosis alliance clinical practice series: treat-to-target for osteoporosis. Am J Med. 2019;132(11):e771–e7.

    Article  PubMed  Google Scholar 

  95. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bouxsein ML, Eastell R, Lui LY, Wu LA, de Papp AE, Grauer A, et al. Change in bone density and reduction in fracture risk: a meta-regression of published trials. J Bone Miner Res. 2019;34(4):632–42.

    Article  PubMed  Google Scholar 

  97. Bone HG, Bolognese MA, Yuen CK, Kendler DL, Miller PD, Yang YC, et al. Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. J Clin Endocrinol Metab. 2011;96(4):972–80.

    Article  CAS  PubMed  Google Scholar 

  98. Baber RJ, Panay N, Fenton A, Group IMSW. 2016 IMS recommendations on women’s midlife health and menopause hormone therapy. Climacteric. 2016;19(2):109–50.

    Article  CAS  PubMed  Google Scholar 

  99. The NHTPSAP. The 2017 hormone therapy position statement of the North American Menopause Society. Menopause. 2017;24(7):728–53.

    Article  Google Scholar 

  100. Nishikawa A, Yoshiki F, Taketsuna M, Kajimoto K, Enomoto H. Safety and effectiveness of daily teriparatide for osteoporosis in patients with severe stages of chronic kidney disease: post hoc analysis of a postmarketing observational study. Clin Interv Aging. 2016;11:1653–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nishikawa A, Ishida T, Taketsuna M, Yoshiki F, Enomoto H. Safety and effectiveness of daily teriparatide in a prospective observational study in patients with osteoporosis at high risk of fracture in Japan: final report. Clin Interv Aging. 2016;11:913–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ranson WA, White SJW, Cheung ZB, Mikhail C, Ye I, Kim JS, et al. The effects of chronic preoperative steroid therapy on perioperative complications following elective posterior lumbar fusion. Global Spine J. 2018;8(8):834–41.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Cloney MB, Garcia RM, Smith ZA, Dahdaleh NS. The effect of steroids on complications, readmission, and reoperation after posterior lumbar fusion. World Neurosurg. 2018;110:e526–e33.

    Article  PubMed  Google Scholar 

  104. Liu YZ, Akhter MP, Gao X, Wang XY, Wang XB, Zhao G, et al. Glucocorticoid-induced delayed fracture healing and impaired bone biomechanical properties in mice. Clin Interv Aging. 2018;13:1465–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kanis JA, Johansson H, Oden A, McCloskey EV. Guidance for the adjustment of FRAX according to the dose of glucocorticoids. Osteoporos Int. 2011;22(3):809–16.

    Article  CAS  PubMed  Google Scholar 

  106. Ding L, Hu J, Wang D, Liu Q, Mo Y, Tan X, et al. Efficacy and safety of first- and second-line drugs to prevent glucocorticoid-induced fractures. J Clin Endocrinol Metab. 2020;105(1):dgz023.

    PubMed  Google Scholar 

  107. Watts NB, Roux C, Modlin JF, Brown JP, Daniels A, Jackson S, et al. Infections in postmenopausal women with osteoporosis treated with denosumab or placebo: coincidence or causal association? Osteoporos Int. 2012;23(1):327–37.

    Article  CAS  PubMed  Google Scholar 

  108. Lewiecki EM, Watts NB. Assessing response to osteoporosis therapy. Osteoporos Int. 2008;19(10):1363–8.

    Article  CAS  PubMed  Google Scholar 

  109. Wasnich RD, Miller PD. Antifracture efficacy of antiresorptive agents are related to changes in bone density. J Clin Endocrinol Metab. 2000;85(1):231–6.

    Article  CAS  PubMed  Google Scholar 

  110. Szulc P, Naylor K, Hoyle NR, Eastell R, Leary ET, National Bone Health Alliance Bone Turnover Marker P. Use of CTX-I and PINP as bone turnover markers: National Bone Health Alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteoporos Int. 2017;28(9):2541–56.

    Article  CAS  PubMed  Google Scholar 

  111. Nitta K, Yajima A, Tsuchiya K. Management of osteoporosis in chronic kidney disease. Intern Med. 2017;56(24):3271–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ivaska KK, Gerdhem P, Akesson K, Garnero P, Obrant KJ. Effect of fracture on bone turnover markers: a longitudinal study comparing marker levels before and after injury in 113 elderly women. J Bone Miner Res. 2007;22(8):1155–64.

    Article  CAS  PubMed  Google Scholar 

  113. Pan C, Liu X, Li T, Wang G, Sun J. Kinetic of bone turnover markers after osteoporotic vertebral compression fractures in postmenopausal female. J Orthop Surg Res. 2018;13(1):314.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Inose H, Yamada T, Mulati M, Hirai T, Ushio S, Yoshii T, et al. Bone turnover markers as a new predicting factor for nonunion after spinal fusion surgery. Spine (Phila Pa 1976). 2018;43(1):E29–34.

    Article  Google Scholar 

  115. Lyu H, Zhao SS, Yoshida K, Tedeschi SK, Xu C, Nigwekar SU, et al. Delayed denosumab injections and bone mineral density response: an electronic health record-based study. J Clin Endocrinol Metab. 2020;105(5):1435–44.

    Article  PubMed Central  Google Scholar 

  116. Coleman RE, McCloskey EV. Bisphosphonates in oncology. Bone. 2011;49(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  117. Aft R. Bisphosphonates in breast cancer: clinical activity and implications of preclinical data. Clin Adv Hematol Oncol. 2011;9(3):194–205.

    PubMed  Google Scholar 

  118. Hesse E, Schroder S, Brandt D, Pamperin J, Saito H, Taipaleenmaki H. Sclerostin inhibition alleviates breast cancer-induced bone metastases and muscle weakness. JCI Insight. 2019;5:e125543.

    Article  Google Scholar 

  119. International Myeloma Working G. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the international myeloma working group. Br J Haematol. 2003;121(5):749–57.

    Article  Google Scholar 

  120. Gralow JR, Barlow WE, Paterson AHG, Miao JL, Lew DL, Stopeck AT, et al. Phase III randomized trial of bisphosphonates as adjuvant therapy in breast cancer: S0307. J Natl Cancer Inst. 2020;112(7):698–707.

    Article  PubMed  CAS  Google Scholar 

  121. Body JJ, Diel IJ, Lichinitser MR, Kreuser ED, Dornoff W, Gorbunova VA, et al. Intravenous ibandronate reduces the incidence of skeletal complications in patients with breast cancer and bone metastases. Ann Oncol. 2003;14(9):1399–405.

    Article  PubMed  Google Scholar 

  122. Gnant M, Pfeiler G, Steger GG, Egle D, Greil R, Fitzal F, et al. Adjuvant denosumab in postmenopausal patients with hormone receptor-positive breast cancer (ABCSG-18): disease-free survival results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20(3):339–51.

    Article  CAS  PubMed  Google Scholar 

  123. Cianferotti L, Bertoldo F, Carini M, Kanis JA, Lapini A, Longo N, et al. The prevention of fragility fractures in patients with non-metastatic prostate cancer: a position statement by the international osteoporosis foundation. Oncotarget. 2017;8(43):75646–63.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Smith MR, Egerdie B, Hernandez Toriz N, Feldman R, Tammela TL, Saad F, et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med. 2009;361(8):745–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ellis GK, Bone HG, Chlebowski R, Paul D, Spadafora S, Smith J, et al. Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol. 2008;26(30):4875–82.

    Article  CAS  PubMed  Google Scholar 

  126. Fukumoto S, Soen S, Taguchi T, Ishikawa T, Matsushima H, Terauchi M, et al. Management manual for cancer treatment-induced bone loss (CTIBL): position statement of the JSBMR. J Bone Miner Metab. 2020;38(2):141–4.

    Article  PubMed  Google Scholar 

  127. Wells SA Jr, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Himelstein AL, Foster JC, Khatcheressian JL, Roberts JD, Seisler DK, Novotny PJ, et al. Effect of longer-interval vs standard dosing of zoledronic acid on skeletal events in patients with bone metastases: a randomized clinical trial. JAMA. 2017;317(1):48–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Smallridge RC, Ain KB, Asa SL, Bible KC, Brierley JD, Burman KD, et al. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid. 2012;22(11):1104–39.

    Article  PubMed  Google Scholar 

  131. Scagliotti GV, Hirsh V, Siena S, Henry DH, Woll PJ, Manegold C, et al. Overall survival improvement in patients with lung cancer and bone metastases treated with denosumab versus zoledronic acid: subgroup analysis from a randomized phase 3 study. J Thorac Oncol. 2012;7(12):1823–9.

    Article  CAS  PubMed  Google Scholar 

  132. Kyle RA, Rajkumar SV. Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia. 2009;23(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  133. Hameed A, Brady JJ, Dowling P, Clynes M, O’Gorman P. Bone disease in multiple myeloma: pathophysiology and management. Cancer Growth Metastasis. 2014;7:33–42.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kyle RA, Therneau TM, Rajkumar SV, Larson DR, Plevak MF, Melton LJ 3rd. Incidence of multiple myeloma in Olmsted County, Minnesota: trend over 6 decades. Cancer. 2004;101(11):2667–74.

    Article  PubMed  Google Scholar 

  135. Bataille R, Chappard D, Marcelli C, Dessauw P, Sany J, Baldet P, et al. Mechanisms of bone destruction in multiple myeloma: the importance of an unbalanced process in determining the severity of lytic bone disease. J Clin Oncol. 1989;7(12):1909–14.

    Article  CAS  PubMed  Google Scholar 

  136. Roodman GD. Pathogenesis of myeloma bone disease. Blood Cells Mol Dis. 2004;32(2):290–2.

    Article  CAS  PubMed  Google Scholar 

  137. Cocks K, Cohen D, Wisloff F, Sezer O, Lee S, Hippe E, et al. An international field study of the reliability and validity of a disease-specific questionnaire module (the QLQ-MY20) in assessing the quality of life of patients with multiple myeloma. Eur J Cancer. 2007;43(11):1670–8.

    Article  CAS  PubMed  Google Scholar 

  138. Dunford JE, Thompson K, Coxon FP, Luckman SP, Hahn FM, Poulter CD, et al. Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther. 2001;296(2):235–42.

    CAS  PubMed  Google Scholar 

  139. Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT, Zackrisson S, Senkus E, ESMO Guidelines Committee. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2019;30(8):1194–220. Erratum in: Ann Oncol. 2019;30(10):1674. Erratum in: Ann Oncol. 2019;30(10):1674. Erratum in: Ann Oncol. 2020; PMID: 31161190.

    Article  CAS  PubMed  Google Scholar 

  140. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet. 2015;386(10001):1353–61. Erratum in: Lancet. 2016;387(10013):30. Erratum in: Lancet. 2017;389(10088):2472.

    Article  CAS  Google Scholar 

  141. Coleman RE, Rathbone E, Brown JE. Management of cancer treatment-induced bone loss. Nat Rev Rheumatol. 2013;9(6):365–74.

    Article  CAS  PubMed  Google Scholar 

  142. LeBlanc ES, Nielson CM, Marshall LM, Lapidus JA, Barrett-Connor E, Ensrud KE, et al. The effects of serum testosterone, estradiol, and sex hormone binding globulin levels on fracture risk in older men. J Clin Endocrinol Metab. 2009;94(9):3337–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gnant MF, Mlineritsch B, Luschin-Ebengreuth G, Grampp S, Kaessmann H, Schmid M, et al. Zoledronic acid prevents cancer treatment-induced bone loss in premenopausal women receiving adjuvant endocrine therapy for hormone-responsive breast cancer: a report from the Austrian breast and colorectal cancer study group. J Clin Oncol. 2007;25(7):820–8.

    Article  CAS  PubMed  Google Scholar 

  144. Bundred NJ, Campbell ID, Davidson N, DeBoer RH, Eidtmann H, Monnier A, et al. Effective inhibition of aromatase inhibitor-associated bone loss by zoledronic acid in postmenopausal women with early breast cancer receiving adjuvant letrozole: ZO-FAST study results. Cancer. 2008;112(5):1001–10.

    Article  CAS  PubMed  Google Scholar 

  145. Coleman RE, Marshall H, Cameron D, Dodwell D, Burkinshaw R, Keane M, et al. Breast-cancer adjuvant therapy with zoledronic acid. N Engl J Med. 2011;365(15):1396–405.

    Article  CAS  PubMed  Google Scholar 

  146. Eidtmann H, de Boer R, Bundred N, Llombart-Cussac A, Davidson N, Neven P, et al. Efficacy of zoledronic acid in postmenopausal women with early breast cancer receiving adjuvant letrozole: 36-month results of the ZO-FAST study. Ann Oncol. 2010;21(11):2188–94.

    Article  CAS  PubMed  Google Scholar 

  147. Powles T, Paterson A, McCloskey E, Schein P, Scheffler B, Tidy A, et al. Reduction in bone relapse and improved survival with oral clodronate for adjuvant treatment of operable breast cancer [ISRCTN83688026]. Breast Cancer Res. 2006;8(2):R13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Coleman R, Finkelstein DM, Barrios C, Martin M, Iwata H, Hegg R, et al. Adjuvant denosumab in early breast cancer (D-CARE): an international, multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2020;21(1):60–72.

    Article  CAS  PubMed  Google Scholar 

  149. Zhou Y, Bolton EC, Jones JO. Androgens and androgen receptor signaling in prostate tumorigenesis. J Mol Endocrinol. 2015;54(1):R15–29.

    Article  CAS  PubMed  Google Scholar 

  150. Mottet N, Bellmunt J, Briers E, van den Bergh RCN, Bolla M, van Casteren NJ. Guidelines on prostate cancer. European Association of Urology. Arnhem, the Netherlands: EAU Guidelines Office. 2015. https://uroweb.org/wp-content/uploads/EAU-Guidelines-Prostate-Cancer-2015-v2.pdf. Accessed 18 Dec 2020.

  151. Wang A, Obertova Z, Brown C, Karunasinghe N, Bishop K, Ferguson L, et al. Risk of fracture in men with prostate cancer on androgen deprivation therapy: a population-based cohort study in New Zealand. BMC Cancer. 2015;15:837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Hegemann M, Bedke J, Stenzl A, Todenhofer T. Denosumab treatment in the management of patients with advanced prostate cancer: clinical evidence and experience. Ther Adv Urol. 2017;9(3–4):81–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Oster G, Lamerato L, Glass AG, Richert-Boe KE, Lopez A, Chung K, et al. Natural history of skeletal-related events in patients with breast, lung, or prostate cancer and metastases to bone: a 15-year study in two large US health systems. Support Care Cancer. 2013;21(12):3279–86.

    Article  PubMed  Google Scholar 

  154. Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, et al. Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst. 2004;96(11):879–82.

    Article  CAS  PubMed  Google Scholar 

  155. Smith MR, Halabi S, Ryan CJ, Hussain A, Vogelzang N, Stadler W, et al. Randomized controlled trial of early zoledronic acid in men with castration-sensitive prostate cancer and bone metastases: results of CALGB 90202 (alliance). J Clin Oncol. 2014;32(11):1143–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Spears MR, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet. 2016;387(10024):1163–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kamba T, Kamoto T, Maruo S, Kikuchi T, Shimizu Y, Namiki S, et al. A phase III multicenter, randomized, controlled study of combined androgen blockade with versus without zoledronic acid in prostate cancer patients with metastatic bone disease: results of the ZAPCA trial. Int J Clin Oncol. 2017;22(1):166–73.

    Article  CAS  PubMed  Google Scholar 

  158. Rodrigues P, Meler A, Hering F. Titration of dosage for the protective effect of zoledronic acid on bone loss in patients submitted to androgen deprivation therapy due to prostate cancer: a prospective open-label study. Urol Int. 2010;85(2):180–5.

    Article  CAS  PubMed  Google Scholar 

  159. Aydinli U, Ozturk C, Bayram S, Sarihan S, Evrensel T, Yilmaz HS. Evaluation of lung cancer metastases to the spine. Acta Orthop Belg. 2006;72(5):592–7.

    PubMed  Google Scholar 

  160. Rosen LS, Gordon D, Tchekmedyian NS, Yanagihara R, Hirsh V, Krzakowski M, et al. Long-term efficacy and safety of zoledronic acid in the treatment of skeletal metastases in patients with nonsmall cell lung carcinoma and other solid tumors: a randomized, phase III, double-blind, placebo-controlled trial. Cancer. 2004;100(12):2613–21.

    Article  CAS  PubMed  Google Scholar 

  161. Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29(9):1125–32.

    Article  CAS  PubMed  Google Scholar 

  162. Choksi P, Papaleontiou M, Guo C, Worden F, Banerjee M, Haymart M. Skeletal complications and mortality in thyroid cancer: a population-based study. J Clin Endocrinol Metab. 2017;102(4):1254–60.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Iniguez-Ariza NM, Bible KC, Clarke BL. Bone metastases in thyroid cancer. J Bone Oncol. 2020;21:100282.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Wu D, Gomes Lima CJ, Moreau SL, Kulkarni K, Zeymo A, Burman KD, et al. Improved survival after multimodal approach with (131)i treatment in patients with bone metastases secondary to differentiated thyroid cancer. Thyroid. 2019;29(7):971–8.

    Article  PubMed  Google Scholar 

  165. Matta-Coelho C, Simoes-Pereira J, Vilar H, Leite V. Bone metastases from thyroid carcinoma of follicular origin: a single institutional experience. Eur Thyroid J. 2019;8(2):96–101.

    Article  CAS  PubMed  Google Scholar 

  166. Andrade F, Probstner D, Decnop M, Bulzico D, Momesso D, Corbo R, et al. The impact of zoledronic acid and radioactive iodine therapy on morbi-mortality of patients with bone metastases of thyroid cancer derived from follicular cells. Eur Thyroid J. 2019;8(1):46–55.

    Article  CAS  PubMed  Google Scholar 

  167. Orita Y, Sugitani I, Toda K, Manabe J, Fujimoto Y. Zoledronic acid in the treatment of bone metastases from differentiated thyroid carcinoma. Thyroid. 2011;21(1):31–5.

    Article  CAS  PubMed  Google Scholar 

  168. Wexler JA. Approach to the thyroid cancer patient with bone metastases. J Clin Endocrinol Metab. 2011;96(8):2296–307.

    Article  CAS  PubMed  Google Scholar 

  169. Xu JY, Murphy WA Jr, Milton DR, Jimenez C, Rao SN, Habra MA, et al. Bone metastases and skeletal-related events in medullary thyroid carcinoma. J Clin Endocrinol Metab. 2016;101(12):4871–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Vogel T, Wendler J, Frank-Raue K, Kreissl MC, Spitzweg C, Fassnacht M, et al. Bone metastases in medullary thyroid carcinoma: high morbidity and poor prognosis associated with osteolytic morphology. J Clin Endocrinol Metab. 2020;105(6):dgaa077.

    Article  PubMed  Google Scholar 

  171. Althausen P, Althausen A, Jennings LC, Mankin HJ. Prognostic factors and surgical treatment of osseous metastases secondary to renal cell carcinoma. Cancer. 1997;80(6):1103–9.

    Article  CAS  PubMed  Google Scholar 

  172. Smith EM, Kursh ED, Makley J, Resnick MI. Treatment of osseous metastases secondary to renal cell carcinoma. J Urol. 1992;148(3):784–7.

    Article  CAS  PubMed  Google Scholar 

  173. Broom RJ, Hinder V, Sharples K, Proctor J, Duffey S, Pollard S, et al. Everolimus and zoledronic acid in patients with renal cell carcinoma with bone metastases: a randomized first-line phase II trial. Clin Genitourin Cancer. 2015;13(1):50–8.

    Article  PubMed  Google Scholar 

  174. McKay RR, Lin X, Perkins JJ, Heng DY, Simantov R, Choueiri TK. Prognostic significance of bone metastases and bisphosphonate therapy in patients with renal cell carcinoma. Eur Urol. 2014;66(3):502–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wong ECL, Kapoor A. Does bone-targeted therapy benefit patients with metastatic renal cell carcinoma? Transl Oncol. 2020;13(2):241–4.

    Article  PubMed  Google Scholar 

  176. Kavecansky J, Wei L, Caronia L, Ramirez MT, Bloomston M, Shah MH. Bone metastases in well-to-moderately differentiated neuroendocrine tumors: a single institutional review from the Ohio State University Medical Center. Pancreas. 2015;44(2):198–203.

    Article  CAS  PubMed  Google Scholar 

  177. Alexandraki KI, Pizanias M, Uri I, Thomas D, Page T, Kolomodi D, et al. The prognosis and management of neuroendocrine neoplasms-related metastatic bone disease: lessons from clinical practice. Endocrine. 2019;64(3):690–701.

    Article  CAS  PubMed  Google Scholar 

  178. Ayala-Ramirez M, Palmer JL, Hofmann MC, de la Cruz M, Moon BS, Waguespack SG, et al. Bone metastases and skeletal-related events in patients with malignant pheochromocytoma and sympathetic paraganglioma. J Clin Endocrinol Metab. 2013;98(4):1492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Nolting S, Ullrich M, Pietzsch J, Ziegler CG, Eisenhofer G, Grossman A, et al. Current management of pheochromocytoma/paraganglioma: a guide for the practicing clinician in the era of precision medicine. Cancers (Basel). 2019;11(10):1505.

    Article  CAS  Google Scholar 

  180. Wolff I, van Croonenborg JJ, Kemper HC, Kostense PJ, Twisk JW. The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre- and postmenopausal women. Osteoporos Int. 1999;9(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  181. Cadore EL, Rodriguez-Manas L, Sinclair A, Izquierdo M. Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: a systematic review. Rejuvenation Res. 2013;16(2):105–14.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Panel on Prevention of Falls in Older Persons AGS, British Geriatrics S. Summary of the updated American Geriatrics Society/British Geriatrics Society clinical practice guideline for prevention of falls in older persons. J Am Geriatr Soc. 2011;59(1):148–57.

    Article  Google Scholar 

  183. Lewiecki EM, Bilezikian JP, Giangregorio L, Greenspan SL, Khosla S, Kostenuik P, et al. Proceedings of the 2018 Santa Fe Bone symposium: advances in the management of osteoporosis. J Clin Densitom. 2019;22(1):1–19.

    Article  PubMed  Google Scholar 

  184. Moncada LVV, Mire LG. Preventing falls in older persons. Am Fam Physician. 2017;96(4):240–7.

    PubMed  Google Scholar 

  185. Vellas BJ, Wayne SJ, Romero LJ, Baumgartner RN, Garry PJ. Fear of falling and restriction of mobility in elderly fallers. Age Ageing. 1997;26(3):189–93.

    Article  CAS  PubMed  Google Scholar 

  186. By the American Geriatrics Society Beers Criteria Update Expert P. American Geriatrics Society 2015 updated beers criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2015;63(11):2227–46.

    Article  Google Scholar 

  187. Wong PK, Christie JJ, Wark JD. The effects of smoking on bone health. Clin Sci (Lond). 2007;113(5):233–41.

    Article  CAS  Google Scholar 

  188. Midgette AS, Baron JA. Cigarette smoking and the risk of natural menopause. Epidemiology. 1990;1(6):474–80.

    Article  CAS  PubMed  Google Scholar 

  189. Callaway DA, Jiang JX. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab. 2015;33(4):359–70.

    Article  CAS  PubMed  Google Scholar 

  190. Ganry O, Baudoin C, Fardellone P. Effect of alcohol intake on bone mineral density in elderly women: the EPIDOS study. Epidemiologie de l’Osteoporose. Am J Epidemiol. 2000;151(8):773–80.

    Article  CAS  PubMed  Google Scholar 

  191. Lewiecki EM. Secondary fracture prevention via a fracture liaison service. Womens Health (Lond). 2015;11(3):269–71.

    Article  CAS  Google Scholar 

  192. Wu CH, Tu ST, Chang YF, Chan DC, Chien JT, Lin CH, et al. Fracture liaison services improve outcomes of patients with osteoporosis-related fractures: a systematic literature review and meta-analysis. Bone. 2018;111:92–100.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kushchayeva, Y., Lewiecki, E.M. (2021). Osteoporosis Management with Focus on Spine. In: Khan, M., Kushchayev, S.V., Faro, S.H. (eds) Image Guided Interventions of the Spine. Springer, Cham. https://doi.org/10.1007/978-3-030-80079-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80079-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80078-9

  • Online ISBN: 978-3-030-80079-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics