Skip to main content

Piercing All Translates of a Set of Axis-Parallel Rectangles

  • Conference paper
  • First Online:
  • 794 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12757))

Abstract

For a given shape S in the plane, one can ask what is the lowest possible density of a point set P that pierces (“intersects”, “hits”) all translates of S. This is equivalent to determining the covering density of S and as such is well studied. Here we study the analogous question for families of shapes where the connection to covering no longer exists. That is, we require that a single point set P simultaneously pierces each translate of each shape from some family \(\mathcal F\). We denote the lowest possible density of such an \(\mathcal F\)-piercing point set by \(\pi _T(\mathcal F)\). Specifically, we focus on families \(\mathcal F\) consisting of axis-parallel rectangles. When \(|\mathcal F|=2\) we exactly solve the case when one rectangle is more squarish than \(2\times 1\), and give bounds (within \(10\%\) of each other) for the remaining case when one rectangle is wide and the other one is tall. When \(|\mathcal F|\ge 2\) we present a linear-time constant-factor approximation algorithm for computing \(\pi _T(\mathcal F)\) (with ratio 1.895).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aistleitner, C., Hinrichs, A., Rudolf, D.: On the size of the largest empty box amidst a point set. Discret. Appl. Math. 230, 146–150 (2017)

    Article  MathSciNet  Google Scholar 

  2. Alon, N., Kleitman, D.J.: Piercing convex sets and the Hadwiger-Debrunner \((p, q)\)-problem. Adv. Math. 96(1), 103–112 (1992)

    Article  MathSciNet  Google Scholar 

  3. Aronov, B., Ezra, E., Sharir, M.: Small-Size \(\varepsilon \)-nets for axis-parallel rectangles and boxes. SIAM J. Comput. 39(7), 3248–3282 (2010)

    Article  MathSciNet  Google Scholar 

  4. Basic, B., Slivková, A.: On optimal piercing of a square. Discret. Appl. Math. 247, 242–251 (2018)

    Article  MathSciNet  Google Scholar 

  5. Braß, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005). https://doi.org/10.1007/0-387-29929-7

    Book  MATH  Google Scholar 

  6. Bukh, B., Chao, T.-W.: Empty axis-parallel boxes, manuscript (2021). arXiv:2009.05820

  7. Carmi, P., Katz, M.J., Lev-Tov, N.: Polynomial-time approximation schemes for piercing and covering with applications in wireless networks. Comput. Geom. Theory Appl. 39, 209–218 (2008)

    Article  MathSciNet  Google Scholar 

  8. Chan, T.M.: Polynomial-time approximation schemes for packing and piercing fat objects. J. Algorithms 46(2), 178–189 (2003)

    Article  MathSciNet  Google Scholar 

  9. Chan, T.M., Mahmood, A.-A.: Approximating the piercing number for unit-height rectangles. In: Proceedings of 17th Canadian Conference on Computational Geometry (CCCG 2005), University of Windsor, Ontario, Canada, pp. 15–18 (2005)

    Google Scholar 

  10. Chudnovsky, M., Spirkl, S., Zerbib, S.: Piercing axis-parallel boxes. Electron. J. Comb. 25(1), #P1.70 (2018)

    Google Scholar 

  11. Correa, J.R., Feuilloley, L., Pérez-Lantero, P., Soto, J.A.: Independent and hitting sets of rectangles intersecting a diagonal line: algorithms and complexity. Discrete Comput. Geom. 53(2), 344–365 (2015)

    Article  MathSciNet  Google Scholar 

  12. Danzer, L., Grünbaum, B., Klee, V.: Helly’s theorem and its relatives. In: Proceedings of Symposia in Pure Mathematics, vol. 7, pp. 101–181. American Mathematical Society (1963)

    Google Scholar 

  13. Dumitrescu, A., Jiang, M.: Piercing translates and homothets of a convex body. Algorithmica 61(1), 94–115 (2011)

    Article  MathSciNet  Google Scholar 

  14. Eckhoff, J.: A survey of the Hadwiger-Debrunner \((p, q)\)-problem. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete & Computational Geometry. Algorithms and Combinatorics, vol. 25, pp. 347–377. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-55566-4_16

    Chapter  Google Scholar 

  15. Fejes Tóth, G.: Packing and covering. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry (Chapter 2), 3rd edn, pp. 27–66. CRC Press, Boca Raton (2017)

    Google Scholar 

  16. Fiat, A., Shamir, A.: How to find a battleship. Networks 19, 361–371 (1989)

    Article  MathSciNet  Google Scholar 

  17. Fon-Der-Flaass, D., Kostochka, A.V.: Covering boxes by points. Discret. Math. 120(1–3), 269–275 (1993)

    Article  MathSciNet  Google Scholar 

  18. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the plane are NP-complete. Inf. Process. Lett. 12, 133–137 (1981)

    Article  MathSciNet  Google Scholar 

  19. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  20. Govindarajan, S., Nivasch, G.: A variant of the Hadwiger-Debrunner \((p, q)\)-problem in the plane. Discrete Comput. Geom. 54(3), 637–646 (2015)

    Article  MathSciNet  Google Scholar 

  21. Hadwiger, H., Debrunner, H.: Combinatorial Geometry in the Plane (English translation by Victor Klee). Holt, Rinehart and Winston, New York (1964)

    Google Scholar 

  22. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Oxford University Press, Oxford (1979)

    Google Scholar 

  23. Helly, E.: Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresber. Deutsch. Math.-Verein. 32, 175–176 (1923)

    MATH  Google Scholar 

  24. Holmsen, A., Wenger, R.: Helly-type theorems and geometric transversals. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry (Chapter 4), 3rd edn, pp. 91–123. CRC Press, Boca Raton (2017)

    Google Scholar 

  25. Ismăilescu, D.: Personal communication (2019)

    Google Scholar 

  26. Karasev, R.N.: Transversals for families of translates of a two-dimensional convex compact set. Discret. Comput. Geom. 24, 345–353 (2000)

    Article  MathSciNet  Google Scholar 

  27. Károlyi, G.: On point covers of parallel rectangles. Period. Math. Hung. 23(2), 105–107 (1991)

    Article  MathSciNet  Google Scholar 

  28. Károlyi, G., Tardos, G.: On point covers of multiple intervals and axis-parallel rectangles. Combinatorica 16(2), 213–222 (1996)

    Article  MathSciNet  Google Scholar 

  29. Kim, S.-J., Nakprasit, K., Pelsmajer, M.J., Skokan, J.: Transversal numbers of translates of a convex body. Discret. Math. 306, 2166–2173 (2006)

    Article  MathSciNet  Google Scholar 

  30. Krieg, D.: On the dispersion of sparse grids. J. Complex. 45, 115–119 (2018)

    Article  MathSciNet  Google Scholar 

  31. Kritzinger, R., Wiart, J.: Improved dispersion bounds for modified Fibonacci lattices. J. Complex. 63, 101522 (2021). https://doi.org/10.1016/j.jco.2020.101522

  32. Mustafa, N., Varadarajan, K.: Epsilon-nets and epsilon-approximations. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry (Chapter 47), 3rd edin. CRC Press, Boca Raton (2017)

    Google Scholar 

  33. Olds, C.D.: Continued Fractions. Random House, New York (1963)

    Book  Google Scholar 

  34. Sosnovec, J.: A note on minimal dispersion of point sets in the unit cube. Eur. J. Comb. 69, 255–259 (2018)

    Article  MathSciNet  Google Scholar 

  35. Szegedy, M.: Algorithms to tile the infinite grid with finite clusters. In: Proceedings of 39th Annual Symposium on Foundations of Computer Science (FOCS 1998), Palo Alto, California, USA, pp. 137–147. IEEE Computer Society (1998)

    Google Scholar 

  36. Ullrich, M., Vybíral, J.: An upper bound on the minimal dispersion. J. Complex. 45, 120–126 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Wolfgang Mulzer and Jakub Svoboda for helpful comments on an earlier version of this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dumitrescu, A., Tkadlec, J. (2021). Piercing All Translates of a Set of Axis-Parallel Rectangles. In: Flocchini, P., Moura, L. (eds) Combinatorial Algorithms. IWOCA 2021. Lecture Notes in Computer Science(), vol 12757. Springer, Cham. https://doi.org/10.1007/978-3-030-79987-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79987-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79986-1

  • Online ISBN: 978-3-030-79987-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics