Skip to main content

Factors Affecting Nanoparticle Dose–Exposure and Cell Response

  • Chapter
  • First Online:
Nanotoxicology in Humans and the Environment

Abstract

To understand cell response and the dose-dependent interaction between particles and cells, in vitro dosimetry of nanoparticles has become an important concept in predicting the dose delivered to cells that are cultured in plastic wells. The usefulness of any dosimetry method, however, requires a throughout experimental characterization of the physicochemical properties of the particles in the dispersion under study. Here we present the major aspects one must carefully consider and adapt in order to obtain reliable and reproducible results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.

    Article  CAS  PubMed  Google Scholar 

  • Anselmo AC, Mitragotri S. Impact of particle elasticity on particle-based drug delivery systems. Adv Drug Deliv Rev. 2017;108:51–67.

    Article  CAS  PubMed  Google Scholar 

  • Balog S, Rodriguez-Lorenzo L, Monnier CA, Michen B, Obiols-Rabasa M, Casal-Dujat L, Rothen-Rutishauser B, Petri-Fink A, Schurtenberger P. Dynamic depolarized light scattering of small round plasmonic nanoparticles: when imperfection is only perfect. J Phys Chem C. 2014;118:17968–74.

    Article  CAS  Google Scholar 

  • Balog S, Rodriguez-Lorenzo L, Monnier CA, Obiols-Rabasa M, Rothen-Rutishauser B, Schurtenberger P, Petri-Fink A. Characterizing nanoparticles in complex biological media and physiological fluids with depolarized dynamic light scattering. Nanoscale. 2015;7:5991–7.

    Article  CAS  PubMed  Google Scholar 

  • Balog S; Rothen-Rutishauser B, Fink A. Fluid menisci and in vitro particle dosimetry of submerged cells. bioRxiv. 2021, 2021.2003.2025.436962.

    Google Scholar 

  • Bekdemir A, Stellacci F. A centrifugation-based physicochemical characterization method for the interaction between proteins and nanoparticles. Nat Commun. 2016;7:13121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böhmert L, König L, Sieg H, Lichtenstein D, Paul N, Braeuning A, Voigt A, Lampen A. In vitro nanoparticle dosimetry for adherent growing cell monolayers covering bottom and lateral walls. Part Fibre Toxicol. 2018;15:42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boluk Y, Danumah C. Analysis of cellulose nanocrystal rod lengths by dynamic light scattering and electron microscopy. J Nanopart Res. 2013;16:2174.

    Article  Google Scholar 

  • Bossert D, Natterodt J, Urban DA, Weder C, Petri-Fink A, Balog S. Speckle-visibility spectroscopy of depolarized dynamic light scattering. J Phys Chem B. 2017;121:7999–8007.

    Article  CAS  PubMed  Google Scholar 

  • Bossert D, Crippa F, Petri-Fink A, Balog S. Hypothesis test of the photon count distribution for dust discrimination in dynamic light scattering. Anal Chem. 2018;90:3656–60.

    Article  CAS  PubMed  Google Scholar 

  • Burnand D, Milosevic A, Balog S, Spuch-Calvar M, Rothen-Rutishauser B, Dengjel J, Kinnear C, Moore TL, Petri-Fink A. Beyond global charge: role of amine bulkiness and protein fingerprint on nanoparticle–cell interaction. Small. 2018;14:1802088.

    Article  Google Scholar 

  • Dale AL, Lowry GV, Casman EA. Accurate and fast numerical algorithms for tracking particle size distributions during nanoparticle aggregation and dissolution. Environ Sci Nano. 2017;4:89–104.

    Article  CAS  Google Scholar 

  • Davidson AM, Brust M, Cooper DL, Volk M. Sensitive analysis of protein adsorption to colloidal gold by differential centrifugal sedimentation. Anal Chem. 2017;89:6807–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3:133–49.

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLoid GM, Cohen JM, Pyrgiotakis G, Pirela SV, Pal A, Liu J, Srebric J, Demokritou P. Advanced computational modeling for in vitro nanomaterial dosimetry. Part Fibre Toxicol. 2015;12:32.

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLoid GM, Cohen JM, Pyrgiotakis G, Demokritou P. Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nat Protoc. 2017;12:355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drasler B, Sayre P, Steinhäuser KG, Petri-Fink A, Rothen-Rutishauser B. In vitro approaches to assess the hazard of nanomaterials. NanoImpact. 2017a;8:99–116.

    Article  Google Scholar 

  • Drasler B, Vanhecke D, Rodriguez-Lorenzo L, Petri-Fink A, Rothen-Rutishauser B. Quantifying nanoparticle cellular uptake: which method is best? Nanomedicine. 2017b;12:1095–9.

    Article  CAS  PubMed  Google Scholar 

  • Faria M, Björnmalm M, Thurecht KJ, Kent SJ, Parton RG, Kavallaris M, Johnston APR, Gooding JJ, Corrie SR, Boyd BJ, Thordarson P, Whittaker AK, Stevens MM, Prestidge CA, Porter CJH, Parak WJ, Davis TP, Crampin EJ, Caruso F. Minimum information reporting in bio–nano experimental literature. Nat Nanotechnol. 2018;13:777–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faria M, Noi KF, Dai Q, Björnmalm M, Johnston ST, Kempe K, Caruso F, Crampin EJ. Revisiting cell–particle association in vitro: a quantitative method to compare particle performance. J Control Release. 2019;307:355–67.

    Article  CAS  PubMed  Google Scholar 

  • Fong W-K, Moore TL, Balog S, Vanhecke D, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Lattuada M, Petri-Fink A. In: Gehr P, Zellner R, editors. Nanoparticle Behaviour in Complex Media: Methods for Characterizing Physicochemical Properties, Evaluating Protein Corona Formation, and Implications for Biological Studies. Cham: Springer International Publishing; 2019. p. 101–50.

    Google Scholar 

  • Frenzel F, König-Mattern L, Stock V, Voss L, Paul MB, Sieg H, Braeuning A, Voigt A, Böhmert L. Nanopass: an easy-to-use user interface for nanoparticle dosimetry with the 3dsdd model. Part Fibre Toxicol. 2020;17:45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao X, Lowry GV. Progress towards standardized and validated characterizations for measuring physicochemical properties of manufactured nanomaterials relevant to nano health and safety risks. NanoImpact. 2018;9:14–30.

    Article  CAS  Google Scholar 

  • Geers C, Rodriguez-Lorenzo L, Andreas Urban D, Kinnear C, Petri-Fink A, Balog S. A new angle on dynamic depolarized light scattering: number-averaged size distribution of nanoparticles in focus. Nanoscale. 2016;8:15813–21.

    Article  CAS  PubMed  Google Scholar 

  • Gordon SC, Butala JH, Carter JM, Elder A, Gordon T, Gray G, Sayre PG, Schulte PA, Tsai CS, West J. Workshop report: strategies for setting occupational exposure limits for engineered nanomaterials. Regul Toxicol Pharmacol. 2014;68:305–11.

    Article  PubMed  Google Scholar 

  • Haiss W, Thanh NTK, Aveyard J, Fernig DG. Determination of size and concentration of gold nanoparticles from Uv−Vis spectra. Anal Chem. 2007;79:4215–21.

    Article  CAS  PubMed  Google Scholar 

  • Hinderliter PM, Minard KR, Orr G, Chrisler WB, Thrall BD, Pounds JG, Teeguarden JG. Isdd: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol. 2010;7:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch V, Kinnear C, Rodriguez-Lorenzo L, Monnier CA, Rothen-Rutishauser B, Balog S, Petri-Fink A. In vitro dosimetry of agglomerates. Nanoscale. 2014;6:7325–31.

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Butler PJ, Tong S, Muddana HS, Bao G, Zhang S. Substrate stiffness regulates cellular uptake of nanoparticles. Nano Lett. 2013;13:1611–5.

    Article  CAS  PubMed  Google Scholar 

  • Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev. 2013;42:2824–60.

    Article  CAS  PubMed  Google Scholar 

  • Jeon S, Hurley KR, Bischof JC, Haynes CL, Hogan CJ. Quantifying intra- and extracellular aggregation of iron oxide nanoparticles and its influence on specific absorption rate. Nanoscale. 2016;8:16053–64.

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Kim BYS, Rutka JT, Chan WCW. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008;3:145.

    Article  CAS  PubMed  Google Scholar 

  • Johnston ST, Faria M, Crampin EJ. An analytical approach for quantifying the influence of nanoparticle polydispersity on cellular delivered dose. J R Soc Interface. 2018;15:20180364.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston ST, Faria M, Crampin EJ. Isolating the sources of heterogeneity in nano-engineered particle-cell interactions. J R Soc Interface. 2020;17:20200221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston ST, Faria M, Crampin EJ. Understanding nano-engineered particle–cell interactions: biological insights from mathematical models. Nanoscale Adv. 2021;3:2139–56.

    Article  CAS  Google Scholar 

  • Kato H. Tracking nanoparticles inside cells. Nat Nanotechnol. 2011;6:139.

    Article  CAS  PubMed  Google Scholar 

  • Kettler K, Veltman K, van de Meent D, van Wezel A, Hendriks AJ. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ Toxicol Chem. 2013;33:481–92.

    Article  Google Scholar 

  • Kim JA, Åberg C, Salvati A, Dawson KA. Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nat Nanotechnol. 2011;7:62.

    Article  PubMed  Google Scholar 

  • Krewski D, Acosta D Jr, Andersen M, Anderson H, Bailar JC 3rd, Boekelheide K, Brent R, Charnley G, Cheung VG, Green S Jr, Kelsey KT, Kerkvliet NI, Li AA, McCray L, Meyer O, Patterson RD, Pennie W, Scala RA, Solomon GM, Stephens M, et al. Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Health B Crit Rev. 2010;13:51–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labouta HI, Asgarian N, Rinker K, Cramb DT. Meta-analysis of nanoparticle cytotoxicity via data-mining the literature. ACS Nano. 2019;13:1583–94.

    CAS  PubMed  Google Scholar 

  • Leong HS, Butler KS, Brinker CJ, Azzawi M, Conlan S, Dufés C, Owen A, Rannard S, Scott C, Chen C, Dobrovolskaia MA, Kozlov SV, Prina-Mello A, Schmid R, Wick P, Caputo F, Boisseau P, Crist RM, McNeil SE, Fadeel B, et al. On the issue of transparency and reproducibility in nanomedicine. Nat Nanotechnol. 2019;14:629–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhang X, Cao D. Nanoparticle hardness controls the internalization pathway for drug delivery. Nanoscale. 2015;7:2758–69.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhang Y, Wang J. Effects of ligand distribution on receptor-diffusion-mediated cellular uptake of nanoparticles. R Soc Open Sci. 2017;4:170063.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin P-C, Lin S, Wang PC, Sridhar R. Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv. 2014;32:711–26.

    Article  PubMed  Google Scholar 

  • Loza K, Diendorf J, Sengstock C, Ruiz-Gonzalez L, Gonzalez-Calbet JM, Vallet-Regi M, Köller M, Epple M. The dissolution and biological effects of silver nanoparticles in biological media. J Mater Chem B. 2014;2:1634–43.

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein Corona with possible implications for biological impacts. Proc Natl Acad Sci. 2008;105:14265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahnama A, Ghorbaniasl G, Allaei SMV, Nourbakhsh A. Semi-analytical solution for the in-vitro sedimentation, diffusion and dosimetry model: surveying the impact of the Peclet number. Colloids Surf B: Biointerfaces. 2014;122:324–31.

    Article  CAS  PubMed  Google Scholar 

  • Martchenko I, Dietsch H, Moitzi C, Schurtenberger P. Hydrodynamic properties of magnetic nanoparticles with tunable shape anisotropy: prediction and experimental verification. J Phys Chem B. 2011;115:14838–45.

    Article  CAS  PubMed  Google Scholar 

  • Michen B, Geers C, Vanhecke D, Endes C, Rothen-Rutishauser B, Balog S, Petri-Fink A. Avoiding drying-artifacts in transmission electron microscopy: characterizing the size and colloidal state of nanoparticles. Sci Rep. 2015;5:9793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miernicki M, Hofmann T, Eisenberger I, von der Kammer F, Praetorius A. Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nat Nanotechnol. 2019;14:208–16.

    Article  CAS  PubMed  Google Scholar 

  • Minelli C, Sikora A, Garcia-Diez R, Sparnacci K, Gollwitzer C, Krumrey M, Shard AG. Measuring the size and density of nanoparticles by centrifugal sedimentation and flotation. Anal Methods. 2018;10:1725–32.

    Article  CAS  Google Scholar 

  • Moore TL, Urban DA, Rodriguez-Lorenzo L, Milosevic A, Crippa F, Spuch-Calvar M, Balog S, Rothen-Rutishauser B, Lattuada M, Petri-Fink A. Nanoparticle administration method in cell culture alters particle-cell interaction. Sci Rep. 2019;9:900.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009;8:543.

    Article  CAS  PubMed  Google Scholar 

  • Nichols G, Byard S, Bloxham MJ, Botterill J, Dawson NJ, Dennis A, Diart V, North NC, Sherwood JD. A review of the terms agglomerate and aggregate with a recommendation for nomenclature used in powder and particle characterization. J Pharm Sci. 2002;91:2103–9.

    Article  CAS  PubMed  Google Scholar 

  • Price SR, Kinnear C, Balog S. Particokinetics and in vitro dose of high aspect ratio nanoparticles. Nanoscale. 2019;11:5209–14.

    Article  CAS  PubMed  Google Scholar 

  • Rischitor G, Parracino M, La Spina R, Urbán P, Ojea-Jiménez I, Bellido E, Valsesia A, Gioria S, Capomaccio R, Kinsner-Ovaskainen A, Gilliland D, Rossi F, Colpo P. Quantification of the cellular dose and characterization of nanoparticle transport during in vitro testing. Part Fibre Toxicol. 2016;13:47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A, Balog S. Nanoparticle polydispersity can strongly affect in vitro dose. Part Part Syst Charact. 2015;32:321–33.

    Article  CAS  Google Scholar 

  • Schmid O, Cassee FR. On the pivotal role of dose for particle toxicology and risk assessment: exposure is a poor surrogate for delivered dose. Part Fibre Toxicol. 2017;14:52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silvera Batista CA, Zheng M, Khripin CY, Tu X, Fagan JA. Rod hydrodynamics and length distributions of single-wall carbon nanotubes using analytical ultracentrifugation. Langmuir. 2014;30:4895–904.

    Article  CAS  Google Scholar 

  • Sokolov SV, Tschulik K, Batchelor-McAuley C, Jurkschat K, Compton RG. Reversible or not? Distinguishing agglomeration and aggregation at the nanoscale. Anal Chem. 2015;87:10033–9.

    Article  CAS  PubMed  Google Scholar 

  • Stoehr LC, Endes C, Radauer-Preiml I, Boyles MS, Casals E, Balog S, Pesch M, Petri-Fink A, Rothen-Rutishauser B, Himly M, Clift MJ, Duschl A. Assessment of a panel of interleukin-8 reporter lung epithelial cell lines to monitor the pro-inflammatory response following zinc oxide nanoparticle exposure under different cell culture conditions. Part Fibre Toxicol. 2015;12:29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Summers HD, Rees P, Holton MD, Rowan Brown M, Chappell SC, Smith PJ, Errington RJ. Statistical analysis of nanoparticle dosing in a dynamic cellular system. Nat Nanotechnol. 2011;6:170.

    Article  CAS  PubMed  Google Scholar 

  • Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG. Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci. 2007;95:300–12.

    Article  CAS  PubMed  Google Scholar 

  • Thajudeen T, Walter J, Srikantharajah R, Lübbert C, Peukert W. Determination of the length and diameter of nanorods by a combination of analytical ultracentrifugation and scanning mobility particle sizer. Nanoscale Horizons. 2017;2:253–60.

    Article  CAS  PubMed  Google Scholar 

  • Thomas DG, Smith JN, Thrall BD, Baer DR, Jolley H, Munusamy P, Kodali V, Demokritou P, Cohen J, Teeguarden JG. Isd3: a Particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems. Part Fibre Toxicol. 2018;15:6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Treuel L, Eslahian KA, Docter D, Lang T, Zellner R, Nienhaus K, Nienhaus GU, Stauber RH, Maskos M. Physicochemical characterization of nanoparticles and their behavior in the biological environment. Phys Chem Chem Phys. 2014;16:15053–67.

    Article  CAS  PubMed  Google Scholar 

  • Urban DA, Rodriguez-Lorenzo L, Balog S, Kinnear C, Rothen-Rutishauser B, Petri-Fink A. Plasmonic nanoparticles and their characterization in physiological fluids. Colloids Surf B: Biointerfaces. 2016;137:39–49.

    Article  CAS  PubMed  Google Scholar 

  • Verma A, Uzun O, Hu Y, Hu Y, Han H-S, Watson N, Chen S, Irvine DJ, Stellacci F. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater. 2008;7:588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voices from the community. Nat Nanotechnol. 2019;14:625–5.

    Google Scholar 

  • Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc. 2012;134:2139–47.

    Article  CAS  PubMed  Google Scholar 

  • Walter J, Löhr K, Karabudak E, Reis W, Mikhael J, Peukert W, Wohlleben W, Cölfen H. Multidimensional analysis of nanoparticles with highly disperse properties using multiwavelength analytical ultracentrifugation. ACS Nano. 2014;8:8871–86.

    Article  CAS  PubMed  Google Scholar 

  • Walter J, Gorbet G, Akdas T, Segets D, Demeler B, Peukert W. 2d analysis of polydisperse core–shell nanoparticles using analytical ultracentrifugation. Analyst. 2017;142:206–17.

    Article  CAS  Google Scholar 

  • Yi X, Gao H. Kinetics of receptor-mediated endocytosis of elastic nanoparticles. Nanoscale. 2017;9:454–63.

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Zhang S. Effects of particle size and ligand density on the kinetics of receptor-mediated endocytosis of nanoparticles. Appl Phys Lett. 2010;96:033704.

    Article  Google Scholar 

  • Yuan H, Li J, Bao G, Zhang S. Variable nanoparticle-cell adhesion strength regulates cellular uptake. Phys Rev Lett. 2010;105:138101.

    Article  PubMed  Google Scholar 

  • Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S. Size-dependent endocytosis of nanoparticles. Adv Mater. 2008;21:419–24.

    Article  Google Scholar 

  • Zhang S, Gao H, Bao G. Physical principles of nanoparticle cellular endocytosis. ACS Nano. 2015;9:8655–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors are grateful for the financial support of the Adolphe Merkle Foundation, the University of Fribourg, and the Swiss National Science Foundation through the National Centre of Competence in Research Bio-Inspired Materials. The authors are also grateful to Dr. Barbara Drasler for carefully reading the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alke Petri-Fink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balog, S., Rothen-Rutishauser, B., Petri-Fink, A. (2021). Factors Affecting Nanoparticle Dose–Exposure and Cell Response. In: Lead, J.R., Doak, S.H., Clift, M.J. (eds) Nanotoxicology in Humans and the Environment. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-79808-6_5

Download citation

Publish with us

Policies and ethics