Skip to main content

Discussion and Outlook

  • Chapter
  • First Online:
Understanding Real Traffic
  • 332 Accesses

Abstract

In this discussion chapter, we consider two topics: (i) The application of the famous Kuhn’s theory about the structure of scientific revolutions to transportation science. (ii) The importance of understanding real traffic for the analysis of the effect of autonomous driving on future vehicular traffic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We refer here to the 4th edition of the famous Kuhn’s book [28] firstly published in 1962.

  2. 2.

    See pages 149 and 150 of [28].

  3. 3.

    See [37].

  4. 4.

    See pages 150 and 151 of [28].

  5. 5.

    This expectation is confirmed by a recent book by Rehborn et al. [40] written by practical traffic engineers working in industry. Additionally, we should also mention that accordingly Max Planck’s conclusion that “... a new generation grows up that is familiar with” the three-phase traffic theory, already now there are many research papers made in the framework of the three-phase traffic theory (see, e.g., [6, 12,13,14,15,16,17, 27, 29, 38, 41, 46, 50,51,52, 54,55,56]).

  6. 6.

    There is a huge number of publications devoted to mixed traffic flow (see, e.g., [1,2,3,4,5, 7, 8, 11, 18,19,20,21, 30,31,36, 39, 43,44,45, 47, 48]). In particular, there exist a large series of papers by the well-known and massive “Automated Highway System” project involving the US government and a large number of transportation researchers [1, 2], EU projects [11], and projects made in Germany [3]. A consortium of researches all over the world performed extensive and pioneering research into autonomous and automated driving vehicle systems (see references to these extensive research, for example, in reviews and books by Ioannou [18], Ioannou and Sun [19], Ioannou and Kosmatopoulos [20], Shladover [43], Rajamani [39], Meyer and Beiker [36], Bengler et al. [4], and Van Brummelen et al. [47]).

  7. 7.

    This criticism can be found in Chaps. 1 and 5 as well as in Appendix C. In more detail, the criticism of the evaluation of mixed traffic flow with the use of standard models for traffic flow of human driving vehicles has been considered in Refs. [23, 24, 26].

  8. 8.

    See papers [23,24,25,26].

  9. 9.

    Standard models of autonomous vehicles can be found in [1, 2, 4, 5, 7, 8, 10, 18,19,20,21, 30,31,32,33,34,35,36, 39, 43,44,45, 47, 48].

  10. 10.

    See papers [23, 24, 26].

  11. 11.

    TPACC–Three-traffic-Phase Adaptive Cruise Control. One of the most important features of TPACC is the existence of the indifferent zone for car-following of the three-phase traffic theory. The indifferent zone for car-following of the three-phase traffic theory will be defined and considered in Sect. A.1.1 of Appendix A. A theory of the effect of TPACC vehicles on traffic breakdown at a bottleneck can be found in [23, 24, 26].

  12. 12.

    To explain this statement, we should note that the mean time headway (see the definition of the term time headway in Appendix A) in vehicular traffic can reach values 1–2 s or less. Even for an autonomous driving vehicle in which there is a possibility for driver control of the vehicle, none of the passengers is able to take the vehicle under control during the short time interval 1–2 s.

  13. 13.

    The organization of high-speed highway lanes dedicated to connected autonomous vehicles has been studied, for example, in [9, 42, 49, 53].

References

  1. Automated Highway Systems, http://www.seminarsonly.com/Civil_Engineering/automated-highway-systems.php

  2. Automated Highway Systems, https://seminarprojects.blogspot.de/2012/01/detailed-report-on-automated-highway.html

  3. Automatisches Fahren, http://www.tuvpt.de/index.php?id=foerderung000

  4. K. Bengler, K. Dietmayer, B. Farber, M. Maurer, Ch. Stiller, H. Winner, IEEE Intell. Transp. Syst. Mag. 6, 6–22 (2014)

    Google Scholar 

  5. L.C. Davis, Phys. Rev. E 69, 066110 (2004)

    Google Scholar 

  6. L.C. Davis, Phys. A 387, 6395–6410 (2008)

    Article  Google Scholar 

  7. L.C. Davis, Phys. A 405, 128–139 (2014)

    Article  MathSciNet  Google Scholar 

  8. L.C. Davis, Phys. A 451, 320–332 (2016)

    Article  Google Scholar 

  9. L.C. Davis, Phys. A 555, 124743 (2020)

    Google Scholar 

  10. L.C. Davis, Phys. A 562, 125402 (2021)

    Google Scholar 

  11. European Roadmap Smart Systems for Automated Driving (2015), https://www.smart-systems-integration.org/public/documents/

  12. D.-J. Fu, Q.-L. Li, R. Jiang, B.-H. Wang, Phys. A 559, 125075 (2020)

    Google Scholar 

  13. K. Gao, R. Jiang, S.-X. Hu, B.-H. Wang, Q.-S. Wu, Phys. Rev. E 76, 026105 (2007)

    Google Scholar 

  14. S. He, W. Guan, L. Song, Phys. A 389, 825–836 (2010)

    Article  Google Scholar 

  15. X.-J. Hu, X.-T. Hao, H. Wang, Z. Su, F. Zhang, Phys. A 545, 123725 (2020)

    Google Scholar 

  16. X.-J. Hu, F. Zhang, J. Lu, M.-Y. Liu, Y.-F. Ma, Q. Wan, Phys. A 527, 121176 (2019)

    Google Scholar 

  17. X.-j. Hu, H. Liu, X. Hao, Z. Su Z. Yang, Phys. A 563, 125495 (2021)

    Google Scholar 

  18. P.A. Ioannou (ed.), Automated Highway Systems (Plenum Press, New York, 1997)

    Google Scholar 

  19. P.A. Ioannou, J. Sun, Robust Adaptive Control (Prentice Hall Inc, Upper Saddle River, 1996)

    MATH  Google Scholar 

  20. P.A. Ioannou, E.B. Kosmatopoulos, in Wiley Encyclopedia of Electrical and Electronics Engineering, ed. by J.G. Webster (Wiley, New York, 2000), https://doi.org/10.1002/047134608X.W1002

  21. P.A. Ioannou, C.C. Chien, IEEE Trans. Veh. Technol. 42, 657–672 (1993)

    Article  Google Scholar 

  22. B.S. Kerner, Procedia Comput. Sci. 130, 785–790 (2018)

    Article  Google Scholar 

  23. B.S. Kerner, Phys. Rev. E 97, 042303 (2018)

    Google Scholar 

  24. B.S. Kerner, in Complex Dynamics of Traffic Management, ed. by B.S. Kerner. Encyclopedia of Complexity and Systems Science Series (Springer, New York, 2019), pp. 343–385

    Google Scholar 

  25. B.S. Kerner, in Complex Dynamics of Traffic Management, ed. by B.S. Kerner. Encyclopedia of Complexity and Systems Science Series (Springer, New York, 2019), pp. 195–283

    Google Scholar 

  26. B.S. Kerner, Phys. A 562, 125315 (2021)

    Google Scholar 

  27. S. Kokubo, J. Tanimoto, A. Hagishima, Phys. A 390, 561–568 (2011)

    Article  Google Scholar 

  28. T.S. Kuhn, The Structure of Scientific Revolutions, 4th edn. (The University of Chicago Press, Chicago, 2012)

    Google Scholar 

  29. H.K. Lee, R. Barlović, M. Schreckenberg, D. Kim, Phys. Rev. Lett. 92, 238702 (2004)

    Google Scholar 

  30. W. Levine, M. Athans, IEEE Trans. Autom. Control 11, 355–361 (1966)

    Article  Google Scholar 

  31. C.-Y. Liang, H. Peng, Veh. Syst. Dyn. 32, 313–330 (1999)

    Article  Google Scholar 

  32. C.-Y. Liang, H. Peng, J.S.M.E. Jnt, J. Ser. C 43, 671–677 (2000)

    Google Scholar 

  33. T.-W. Lin, S.-L. Hwang, P. Green, Saf. Sci. 47, 620–625 (2009)

    Article  Google Scholar 

  34. J.-J. Martinez, C. Canudas-do-Wit, IEEE Trans. Control Syst. Technol. 15, 246–258 (2007)

    Article  Google Scholar 

  35. M. Maurer, J.Ch. Gerdes, B. Lenz, H. Winner (eds.), Autonomes Fahren (Springer, Berlin, 2015)

    Google Scholar 

  36. G. Meyer, S. Beiker, Road Vehicle Automation (Springer, Berlin, 2014)

    Book  Google Scholar 

  37. M. Planck, Scientific Autobiography and Other Papers, trans. by F. Gaynor (Williams & Norgate LTD, London, 1950), pp. 33–34

    Google Scholar 

  38. Y.-S. Qian, X. Feng, J.-W. Zeng, Phys. A 479, 509–526 (2017)

    Article  MathSciNet  Google Scholar 

  39. R. Rajamani, in Vehicle Dynamics and Control. Mechanical Engineering Series (Springer, Boston, 2012)

    Google Scholar 

  40. H. Rehborn, M. Koller, S. Kaufmann, Data-Driven Traffic Engineering: Understanding of Traffic and Applications Based on Three-Phase Traffic Theory (Elsevier, Amsterdam, 2021)

    Google Scholar 

  41. F. Rempe, P. Franeck, U. Fastenrath, K. Bogenberger, Transp. Res. C 85, 644–663 (2017)

    Article  Google Scholar 

  42. X. Shan, P. Hao, K. Boriboonsomsin, G. Wu, M. Barth, X. Chen, Transp. Res. A 118, 25–37 (2018)

    Google Scholar 

  43. S.E. Shladover, Veh. Syst. Dyn. 24, 551–595 (1995)

    Article  Google Scholar 

  44. D. Swaroop, J.K. Hedrick, IEEE Trans. Autom. Control 41, 349–357 (1996)

    Article  Google Scholar 

  45. D. Swaroop, J.K. Hedrick, S.B. Choi, IEEE Trans. Veh. Technol. 50, 150–161 (2001)

    Article  Google Scholar 

  46. J.-F. Tian, C.-Q. Zhu, R. Jiang, in Complex Dynamics of Traffic Management, ed. by B.S. Kerner. Encyclopedia of Complexity and Systems Science Series (Springer, New York, 2019), pp. 313–342

    Google Scholar 

  47. J. Van Brummelen, M. O’Brien, D. Gruyer, H. Najjaran, Transp. Res. C 89, 384–406 (2018)

    Article  Google Scholar 

  48. P. Varaiya, IEEE Trans. Autom. Control 38, 195–207 (1993)

    Article  Google Scholar 

  49. J.-P. Wang, H.-J. Huang, X. Ban, Phys. A 524, 354–361 (2019)

    Article  MathSciNet  Google Scholar 

  50. J.J. Wu, H.J. Sun, Z.Y. Gao, Phys. Rev. E 78, 036103 (2008)

    Google Scholar 

  51. H. Yang, J. Lu, X.-J. Hu, J. Jiang, Phys. A 392, 4009–4018 (2013)

    Article  MathSciNet  Google Scholar 

  52. H. Yang, X. Zhai, C. Zheng, Phys. A 509, 567–577 (2018)

    Article  Google Scholar 

  53. L. Ye, T. Yamamoto, Phys. A 512, 588–597 (2018)

    Article  Google Scholar 

  54. J.-W. Zeng, Y.-S. Qian, Z. Lv, F. Yin, L. Zhu, Y. Zhang, D. Xu, Phys. A 574, 125918 (2021)

    Google Scholar 

  55. J.-W. Zeng, Y.-S. Qian, S.-B. Yu, X.-T. Wei, Phys. A 530, 121567 (2019)

    Google Scholar 

  56. H.-T. Zhao, L. Lin, C.-P. Xu, Z.-X. Li, X. Zhao, Phys. A 553, 124213 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris S. Kerner .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kerner, B.S. (2021). Discussion and Outlook. In: Understanding Real Traffic. Springer, Cham. https://doi.org/10.1007/978-3-030-79602-0_12

Download citation

Publish with us

Policies and ethics