Skip to main content

Memristive Devices and Circuits

  • Chapter
  • First Online:
Fundamentals of Organic Neuromorphic Systems
  • 621 Accesses

Abstract

The chapter is dedicated to the conceptual description of memristive devices as key elements of neuromorphic systems. Starting from the definition of the memristor, proposed by L. Chua in 1971, a comparison of this device with other resistance switching elements (memistor and mnemotrix, in particular) is presented. A current state of the art in the field of inorganic and organic memristive devices is overviewed with special attention to their synapse mimicking properties and neuromorphic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.O. Chua, Memristor – The missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  2. L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  3. F. Corinto, P.P. Civalleri, L.O. Chua, A theoretical approach to memristor devices. IEEE J. Emerg. Selected Topics Circuits Syst. 5, 123–132 (2015)

    Article  Google Scholar 

  4. S. Vongher, X. Shen, The missing memristor has not been found. Sci. Rep. 5, 11657 (2015)

    Article  Google Scholar 

  5. V.A. Demin, V.V. Erokhin, Hidden symmetry shows what a memristor is. Int. J. Unconventional Computing 12, 433–438 (2016)

    Google Scholar 

  6. Y.V. Pershin, M. Di Ventra, A simple test for ideal memristors. J. Phys. D Appl. Phys. 52, 01LT01 (2019)

    Article  Google Scholar 

  7. Y.V. Pershin, M. Di Ventra, Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145–227 (2011)

    Article  Google Scholar 

  8. M. Di Ventra, Y.V. Pershin, L.O. Chua, Circuit elements with memory: Memristors, memcapacitors, and meminductors. Proc. IEEE 97, 1717–1724 (2009)

    Article  Google Scholar 

  9. Y.V. Pershin, M. Di Ventra, Memristive circuits simulate memcapacitors and meminductors. Electron. Lett. 46, 517 (2010)

    Article  Google Scholar 

  10. D. Biolek, Z. Biolek, V. Biolkova, SPICE modelling of memcapacitor. Electron. Lett. 46, 520–521 (2010)

    Article  MATH  Google Scholar 

  11. D. Biolek, Z. Biolek, V. Biolkova, Behavioral modeling of memcapacitor. Radioengineering 20, 228–233 (2011)

    MATH  Google Scholar 

  12. X.Y. Wang, A.L. Fitch, H.H.C. Iu, W.G. Oi, Design of memcapacitor emulator based on a memristor. Phys. Lett. A 376, 394–399 (2012)

    Article  MATH  Google Scholar 

  13. C.B. Li, C.D. Li, T.W. Huang, H. Wang, Synaptic memcapacitor bridge synapses. Neurocomputing 122, 370–374 (2013)

    Article  Google Scholar 

  14. B. Liu, B.Y. Liu, X.F. Wang, X.H. Wu, W.N. Zhao, Z.M. Xu, D. Chen, G.Z. Chen, Memristor-integrated voltage-stabilized supercapacitor system. Adv. Mater. 26, 4999–5004 (2014)

    Article  Google Scholar 

  15. M.E. Fouda, A.G. Radwan, Memcapacitor response under step and sinusoidal voltage excitations. Microelectronics J. 45, 1416–1428 (2014)

    Article  Google Scholar 

  16. J.-S. Pei, J.P. Wright, M.D. Todd, S.F. Marsi, F. Gay-Balmaz, Understanding memristors and memcapacitors in engineering mechanics applications. Nonlinear Dynamics 80, 457–489 (2015)

    Article  Google Scholar 

  17. G.Y. Wang, B.Z. Cai, P.P. Jin, T.L. Hu, Memcapacitor model and its application in a chaotic oscillator. Chinese Phys. B 25, 010503 (2016)

    Article  Google Scholar 

  18. J. Mou, K.H. Sun, J.Y. Ruan, S.B. He, A nonlinear circuit with two memcapacitors. Nonlinear Dyn. 86, 1735–1744 (2016)

    Article  Google Scholar 

  19. G. Wang, X. Zang, F. Wang, F. Yuan, H.H.-C. Iu, Memcapacitor model and its application in chaotic oscillator with memristor. Chaos 27, 013110 (2017)

    Article  MATH  Google Scholar 

  20. D. Biolek, Z. Biolek, V. Biolkova, PSPICE modeling of meminductor. Analog Integr. Circuits Signal Process. 66, 129–137 (2011)

    Article  MATH  Google Scholar 

  21. Y. Liang, D.-S. Yu, H. Chen, A novel meminductor emulator based on analog circuits. Acta Phys. Sinica 62, 158501 (2013)

    Article  Google Scholar 

  22. J. Han, C. Cheng, S. Gao, Y. Wang, C. Chen, F. Pan, Realization of the memcapacitor. ACS Nano 8, 10043–10047 (2014)

    Article  Google Scholar 

  23. F. Yuan, G.-Y. Wang, P.-P. Jin, Study on dynamical characteristics of a memristor model and its meminductor-based oscillator. Acta Phys. Sinica 64, 210504 (2015)

    Article  Google Scholar 

  24. B. Widrow, W.H. Pierce, and J.B. Angell, “Birth, life, and death in microelectronic systems”, Technica Report, N. 1552-2/1851-1 (1961).

    Google Scholar 

  25. A.O. Bondar, L.A. Dedosha, O.M. Reznik, A.F. Stepanenkov, Simulation of the plasticity of synapses using memistors. Soviet Automatic Control 13, 47–51 (1968)

    Google Scholar 

  26. V. Braitenberg, Vehicles: Experiments in Synthetic Psychology (MIT Press, Cambridge, MA, 1984)

    Google Scholar 

  27. D.O. Hebb, Organization of Behavior (Wiley, New York, 1949), p. 335

    Google Scholar 

  28. D. Lambrinos, C. Scheier, “Extended Braitenberg architectures”, Technical Report Al Lab, Computer Science Department, University of Zurich, N. 95.10 (1995).

    Google Scholar 

  29. S. Thakoor, A. Moopenn, T. Daud, A.P. Thakoor, Solid-state thin-film memristor for electronic neural networks. J. Appl. Phys. 67, 3132–3135 (1990)

    Article  Google Scholar 

  30. G.S. Snider, Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18, 365202 (2007)

    Article  Google Scholar 

  31. V. Erokhin, T. Berzina, M.P. Fontana, Hybrid electronic device based on polyaniline-polyethyleneoxide junction. J. Appl. Phys. 97, 064501 (2005)

    Article  Google Scholar 

  32. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  33. H. Pagnia, N. Sotnik, Bistable switching in electroformed metal-insulator-metal devices. Phys. Status Solidi A 108, 11–65 (1988)

    Article  Google Scholar 

  34. A. Asamitsu, Y. Tomioka, H. Kuwahara, Y. Tokura, Current switching of resistive states in magnetoresistive manganites. Nature 388, 50–52 (1997)

    Article  Google Scholar 

  35. A. Beck, J.G. Bednorz, C. Gerber, C. Rossel, D. Widmer, Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139 (2000)

    Article  Google Scholar 

  36. S.Q. Liu, N.J. Wu, A. Ignatiev, Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749 (2000)

    Article  Google Scholar 

  37. R. Waser, M. Aono, Nanoionics-based resistive switching. Nat. Mater. 6, 833–840 (2007)

    Article  Google Scholar 

  38. S. Karthauser, B. Lussem, M. Weides, Resistive switching of rose bengal devices: A molecular effect? J. Appl. Phys. 100, 094504 (2006)

    Article  Google Scholar 

  39. M. Janousch, G.I. Meijer, U. Staub, B. Delley, S.F. Karg, B.P. Andreasson, Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory. Adv. Mater. 19, 2232–2235 (2007)

    Article  Google Scholar 

  40. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006)

    Article  Google Scholar 

  41. Y.B. Nian, J. Strozier, N.J. Wu, X. Chen, A. Ignatiev, Evidence for an oxygen diffusion models for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 98, 146403 (2007)

    Article  Google Scholar 

  42. M. Quintero, P. Levy, A.G. Leyva, M.J. Rozenberg, Mechanism of electric-pulse-induced resistance switching in manganites. Phys. Rev. Lett. 98, 116601 (2007)

    Article  Google Scholar 

  43. X. Chen, N.J. Wu, J. Strozier, A. Ignatiev, Direct resistance profile for an electrical pulse induced resistance change device. Appl. Phys. Lett. 87, 233506 (2005)

    Article  Google Scholar 

  44. M.J. Rozenberg, I.H. Inoue, M.J. Sanchez, Nonvolatile memory with multilevel switching: A basic model. Phys. Rev. Lett. 92, 178302 (2004)

    Article  Google Scholar 

  45. X. Cao, X.M. Li, X.D. Gao, W.D. Yu, X.J. Liu, Y.W. Zhang, L.D. Chen, X.H. Cheng, Forming-free coloccal resistive switching effect in rare-earth-oxide Gd2O3 films for memristor applications. J. Appl. Phys. 106, 073723 (2009)

    Article  Google Scholar 

  46. J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009)

    Article  Google Scholar 

  47. J.J. Yang, M.D. Pickett, X.M. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008)

    Article  Google Scholar 

  48. F. Argal, Switching phenomena in titanium oxide thin films. Solid State Electron. 11, 535–541 (2010)

    Article  Google Scholar 

  49. T. Chang, S.H. Jo, K.H. Kim, P. Sheridan, S. Gaba, W. Lu, Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A 102, 857–863 (2011)

    Article  Google Scholar 

  50. S.E. Savel’ev, A.S. Alexandrov, A.M. Bratkovsky, R.S. Williams, Molecular dynamics simulations of oxide memory resistors (memristors). Nanotechnology 22, 25401 (2011)

    Article  Google Scholar 

  51. M. Cavallini, Z. Hemmatian, A. Riminucci, M. Preziozo, V. Morandi, M. Murgia, Rerenerable resistive switching in silicon oxide based nanojunctions. Adv. Mater. 24, 1197–1201 (2012)

    Article  Google Scholar 

  52. D.B. Strukov, A. Fabien, W.R. Stanley, Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal-oxide-metal memristors. Appl. Phys. A 107, 509–518 (2012)

    Article  Google Scholar 

  53. A. Younis, D. Adnan, S. Li, Oxygen level: The dominant of resistive switching characteristics in cerium oxide thin films. J. Phys. D Appl. Phys. 45, 355101 (2012)

    Article  Google Scholar 

  54. J. Guo, Y. Zhou, H.J. Yuan, D. Zhao, Y.L. Yin, K. Hai, Y.H. Peng, W.C. Zhou, D.S. Tang, Reconfigurable resistive switching dvices based on individual tungsten trioxide nanowires. AIP Adv. 3, 042137 (2013)

    Article  Google Scholar 

  55. Z.B. Yan, J.-M. Liu, Coexistence of high performance resistance and capacitance memory based on multilayered metal-oxide structures. Sci. Rep. 3, 2482 (2013)

    Article  Google Scholar 

  56. Y. Yang, S.H. Choi, W. Lu, Oxide heterostructure resistive memory. Nano Lett. 13, 2908–2915 (2013)

    Article  Google Scholar 

  57. E. Gale, R. Mayne, A. Adamatzky, B. de Lacy Costello, Drop-coated titanium dioxide memristors. Mater. Chem. Phys. 143, 524–529 (2014)

    Article  Google Scholar 

  58. Y. Aoki, C. Wiemann, V. Feyer, H.-S. Kim, C.M. Schneider, H. Ill-Yoo, M. Martin, Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behavior. Nat. Commun. 5, 3473 (2014)

    Article  Google Scholar 

  59. S. Kim, S. Choi, W. Lu, Comprehensive physical model of dynamic resistive switching in an oxide memristor. ACS Nano 8, 2369–2376 (2014)

    Article  Google Scholar 

  60. B. Gao, Y.J. Bi, H.Y. Chen, R. Liu, P. Huang, B. Chen, L.F. Liu, J.F. Liu, S.M. Yu, H.S.P. Wong, J.F. Kang, Ultra-low-energy three-dimensional oxide-based electronic synapses for implementation of robust high-accuracy neuromorphic computation systems. ACS Nano 8, 6998–7004 (2014)

    Article  Google Scholar 

  61. V.I. Avilov, O.A. Ageev, A.S. Kolomiitsev, B.G. Konoplev, V.A. Smirnov, O.G. Tsukanova, Formation of a memristor matrix based on titanium oxide and investigation by probe-nanotechnology methods. Semiconductors 48, 1757–1762 (2014)

    Article  Google Scholar 

  62. K. Zhang, Y. Cao, Y. Fang, Q. Li, J. Zhang, C. Duan, S. Yan, Y. Tian, R. Huang, R. Zheng, S. Kang, Y. Chen, G. Liu, L. Mei, Electrical control of memristance and magnetoresistance in oxide magnetic tunnel junctions. Nanoscale 7, 6334–6339 (2015)

    Article  Google Scholar 

  63. M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, D.B. Strukov, Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015)

    Article  Google Scholar 

  64. E. Gale, D. Pearson, S. Kitson, A. Adamatzky, B. De Lacy Costello, The effect of changing electrode metal on solution-processed flexible titanium dioxide memristors. Mater. Chem. Phys. 162, 20–30 (2015)

    Article  Google Scholar 

  65. A. Younis, D. Chu, S. Li, Evidence of filamentary switching in oxide-based memory devices via weak programming and retention failure analysis. Sci. Rep. 5, 13599 (2015)

    Article  Google Scholar 

  66. A. Regoutz, I. Gupta, A. Serb, A. Khiat, F. Borgatti, T.L. Lee, C. Schlueter, P. Torelli, S. Gobaut, M. Light, D. Carta, S. Pearce, G. Panaccione, T. Prodromakis, Role and optimization of the active oxide layer in TiO2-based RRAM. Adv. Funct. Mater. 26, 507–513 (2016)

    Article  Google Scholar 

  67. M. Prezioso, F.M. Bayat, B. Hoskins, K. Likharev, D. Strukov, Self-adaptive spike-time-dependent plasticity of metal-oxide memristors. Sci. Rep. 6, 21331 (2016)

    Article  Google Scholar 

  68. M. Ungureanu, R. Zazpe, F. Golman, P. Stoliar, R. Llopis, F. Casanova, L.E. Hueso, A light-controlled resistive switching memory. Adv. Mater. 24, 2496–2500 (2012)

    Article  Google Scholar 

  69. M. Prezioso, F.M. Bayat, B. Hoskins, K. Likharev, D. Strukov, Self-adaptive spike-timing-dependent plasticity of metal-oxide memristors. Sci. Rep. 6, 21331 (2016)

    Article  Google Scholar 

  70. G.C. Adam, B.D. Hoskins, M. Prezioso, F. Merrikh-Bayat, B. Chakrabarti, D.B. Strukov, 3-D memristor crossbar for analogand neuromorphic computing applicatios. IEEE trans. Electron Devices 64, 312–318 (2017)

    Article  Google Scholar 

  71. W. Banerjee, Q. Liu, H.B. Lv, S.B. Long, M. Liu, Electronic imitation of behavioral and psychological synaptic activities using TiOx/Al2O3-based memristor devices. Nanoscale 38, 14442–14450 (2017)

    Article  Google Scholar 

  72. G. Baldi, S. Battistoni, G. Attolini, M. Bosi, C. Collini, S. Iannotta, L. Lorenzelli, R. Mosca, J.S. Ponraj, R. Verucchi, V. Erokhin, Logic with memory: AND gates made of organic and inorganic memristive devices. Semiconductor Sci. Technol. 29, 104009 (2014)

    Article  Google Scholar 

  73. X. Cao, X.M. Li, X.D. Gao, W.D. Yu, X.J. Liu, Y.W. Zhang, L.D. Chen, X.H. Chen, Forming-free colossal resistive switching effect in rare-earth-oxide Gd2O3 films for memristor applications. J. Appl. Phys. 106, 073723 (2009)

    Article  Google Scholar 

  74. A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S.M. Wang, K.G. West, J.G. Ramirez, I.K. Schuller, Role of thermal heating on the voltage induced insulator-metal transition in VO2. Phys. Rev. Lett. 110, 056601 (2013)

    Article  Google Scholar 

  75. L. Pellegrino, N. Manca, T. Kanki, H. Tanaka, M. Biasotti, E. Bellingeri, A.S. Siri, D. Marre, Multistate devices based on free-standing VO2/TiO2 microstructures driven by Joule self-heating. Adv. Mater. 24, 2929–2934 (2012)

    Article  Google Scholar 

  76. W. Yi, K.K. Tsang, S.K. Lam, X.W. Bai, J.A. Crowell, E.A. Flores, Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9, 4661 (2018)

    Article  Google Scholar 

  77. J. Lappalainen, J. Mizsei, M. Huotari, Neuromorphic thermal-electric circuits based on phase-change VO2 thin-film memristor elements. J. Appl. Phys. 125, 044501 (2019)

    Article  Google Scholar 

  78. J. Sun, I. Maximov, H.Q. Xu, Memristive and memcapacitive characteristics of a Au/Ti-HfO2-InP/InGaAs diode. IEEE Electron Device Lett. 32, 131–133 (2011)

    Article  Google Scholar 

  79. C.H. Kim, J.Y. Byun, W. Kim, M.S. Joo, J.S. Roh, S.K. Park, Dependence of the switching characteristics of resistance random access memory on the type of transition metal oxide: TiO2, ZrO2, and HfO2. J. Electrochem. Soc. 158, H417–H422 (2011)

    Article  Google Scholar 

  80. Y.E. Syu, T.C. Vhang, J.H. Lou, T.M. Tsai, K.C. Chang, M.J. Tsai, Y.L. Wang, M. Liu, S.M. Sze, Atomic-level quantized reaction of HfOx memristor. Appl. Phys. Lett. 102, 172903 (2013)

    Article  Google Scholar 

  81. A. Wedig, M. Luebben, D.-Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K.A. Adepalli, B. Yildiz, R. Waser, I. Valov, Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat. Nanotechnol. 11, 67–74 (2016)

    Article  Google Scholar 

  82. Y. Matveyev, R. Kirtaev, A. Fetisova, S. Zakharchenko, D. Negrov, A. Zenkevich, Crossbar nanoscale HfO2-based electronic synapses. Nanoscale Res. Lett. 11, 147 (2016)

    Article  Google Scholar 

  83. H. Jiang, L. Han, P. Lin, Z. Wang, M.H. Jang, Q. Wu, M. Barnell, J.J. Yang, H.L. Xin, Q. Xia, Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor. Sci. Rep. 6, 28525 (2016)

    Article  Google Scholar 

  84. S. Brivido, J. Frascaroli, S. Spiga, Role of Al doping in the filament distribution in HfO2 resistance switches. Nanotechnology 28, 395202 (2017)

    Article  Google Scholar 

  85. W.F. He, H.J. Sun, Y.X. Zhou, K. Lu, K.H. Xue, X.S. Miao, Coustomized binary and multi-level Hf02-x-based memristors tuned by oxidation conditions. Sci. Rep. 7, 10070 (2017)

    Article  Google Scholar 

  86. Y. Kim, Y.J. Kwon, D.E. Kwon, K.J. Yoon, J.H. Yoon, S. Yoo, H.J. Kim, T.H. Park, J.W. Han, K.M. Kim, C.S. Hwang, Nociceptive memristor. Adv. Mater. 30, 1704320 (2018)

    Article  Google Scholar 

  87. W. Xiong, L. Zhu, C. Ye, F. Yu, Z.Y. Ren, Z.Y. Ge, Bilayered oxide-based cognitive memristor with brain-inspired learning activities. Adv. Electronic Mater. 5, 1900439 (2019)

    Article  Google Scholar 

  88. W.I. Park, J.M. Yoon, M. Park, S.K. Kim, J.W. Jeong, K. Kim, H.Y. Jeong, S. Jeon, K.S. No, J.Y. Lee, Y.S. Jung, Self-assembly-induced formation of high-density silicon oxide memristor nanostructures on graphene and metal electrodes. Nano Lett. 12, 1235–1240 (2012)

    Article  Google Scholar 

  89. A. Younis, D. Chu, X. Lin, J. Yi, F. Dang, S. Li, High-performance nanocomposite based memristor with controlled quantum dots as charge traps, and graphene electrodes. ACS Appl. Mater. Interfaces 5, 2249–2254 (2013)

    Article  Google Scholar 

  90. T. Berzina, K. Gorshkov, V. Erokhin, V. Nevolin, Y. Chaplygin, Investigation of electrical properties of organic memristors based on thin polyaniline-graphene films. Russ. Microelectron. 42, 27–32 (2013)

    Article  Google Scholar 

  91. Y.C. Yang, J. Lee, S. Lee, C.H. Liu, Z.H. Zhong, W. Lu, Oxide resistive memory with functionalized graphene as built-in selector element. Adv. Mater. 26, 3693–3699 (2014)

    Article  Google Scholar 

  92. S. Porro, C. Ricciardi, Memristive behavior in inkjet printed graphene oxide thin layers. RSC Adv. 5, 68565–68570 (2015)

    Article  Google Scholar 

  93. M. Rogala, P.J. Kowalczyk, P. Dabrowski, I. Wlasny, W. Kozlowski, A. Busiakiewicz, S. Pawlowski, G. Dobinski, M. Smolny, I. Karaduman, L. Lipinska, R. Kozinski, K. Librant, J. Jagiello, K. Grodecki, J.M. Baranowski, K. Szot, Z. Klusek, The role of water in resistive switching in graphene oxide. Appl. Phys. Lett. 106, 263104 (2015)

    Article  Google Scholar 

  94. J. Lee, C. Du, K. Sun, E. Kioupakis, W.D. Lu, Tuning ionic transport in memristive devices by graphene with engineered nanopores. ACS Nano 10, 3571–3579 (2016)

    Article  Google Scholar 

  95. K. Ueda, S. Aichi, H. Asano, Photo-controllable memristive behavior of graphene/diamond heterojunctions. Appl. Phys. Lett. 108, 222102 (2016)

    Article  Google Scholar 

  96. X. Pan, E. Skafidas, Resonant tunneling based graphene quantum dot memristors. Nanoscale 8, 20074–20079 (2016)

    Article  Google Scholar 

  97. H. Tian, W.T. Mi, H.M. Zhao, M.A. Mohammad, Y. Yang, P.W. Chiu, T.L. Ren, A novel artificial synapse with dual modes using bilayer graphene as the bottom electrode. Nanoscale 9, 9275–9283 (2017)

    Article  Google Scholar 

  98. M. Wang, S.H. Cai, C. Pan, C.Y. Wang, X.J. Lian, Y. Zhuo, K. Xu, T.J. Cao, X.Q. Pan, B.G. Wang, S.J. Liang, J.J. Yang, P. Wang, F. Miao, Robust memristors based on layered two-dimensional materials. Nature Electronics 1, 130–136 (2018)

    Article  Google Scholar 

  99. Y. Xin, X.F. Zhao, X.K. Jiang, Q. Yang, J.H. Huang, S.H. Wang, R.R. Zheng, C. Wang, Y.J. Hou, Bistable electrical switching and nonvolatile memory effects by doping different amounts of GO in poly(9,9-dioctylfluorene-2,7-diyl). RSC Adv. 8, 6878–6886 (2018)

    Article  Google Scholar 

  100. Q.Y. Chen, M. Lin, Z.W. Wang, X.L. Zhao, Y.M. Cai, Q. Liu, Y.C. Fang, Y.C. Yang, M. He, R. Huang, Low power parylene-based memristors with a graphene barrier layer for flexible electronics applications. Adv. Funct. Mater. 5, 1800852 (2019)

    Google Scholar 

  101. A.S. Sokolov, M. Ali, R. Riaz, Y. Abbas, M.J. Ko, C. Choi, Silver-adapted diffusive memristor based on organic nitrogen-doped graphene oxide quantum dots (N-GOQDs) for artificial biosynapse applications. Adv. Funct. Mater. 29, 1807504 (2019)

    Article  Google Scholar 

  102. Z.M. Liao, C. Hou, Q. Zhao, D.S. Wang, Y.D. Li, D.P. Yu, Resistive switching and metallic-filament formation in Ag2S nanowire transistors. Small 5, 2377–2381 (2009)

    Article  Google Scholar 

  103. Y.C. Yang, P. Gao, S. Gaba, T. Chang, X.Q. Pan, W. Lu, Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)

    Article  Google Scholar 

  104. D. Li, M.Z. Li, F. Zahid, J. Wang, H. Guo, Oxygen vacancy filament formation in TiO2: A kinetic Monte Carlo study. J. Appl. Phys. 112, 073512 (2012)

    Article  Google Scholar 

  105. C.-H. Huang, J.-S. Huang, C.-C. Lai, H.-W. Huang, S.-J. Lin, Y.-L. Chueh, Manipulated transformation of filamentary and homogeneous resistive switching on ZnO thin film memristor with controllable multistate. ACS Appl. Mater. Interfaces 5, 6017–6023 (2013)

    Article  Google Scholar 

  106. J.Y. Chen, C.L. Hsin, C.W. Huang, C.H. Chiu, Y.T. Huang, S.J. Lin, W.W. Wu, L.J. Chen, Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 13, 3671–3677 (2013)

    Article  Google Scholar 

  107. L. Zhang, H.Y. Xu, Z.Q. Wang, H. Yu, X.N. Zhao, J.G. Ma, Y.C. Liu, Oxygen-concentration effect on p-type CuAlOx resistive switching behaviors and the nature of conducting filaments. Appl. Phys. Lett. 104, 93512 (2014)

    Article  Google Scholar 

  108. A.J. Lohn, P.R. Mickel, M.J. Marinella, Modeling of filamentary resistive memory by concentric cylinders with variable conductivity. Appl. Phys. Lett. 105, 83511 (2014)

    Article  Google Scholar 

  109. Y.F. Wang, Y.C. Lin, I.T. Wang, T.P. Lin, T.H. Hou, Characterization and modeling of nonfilamentary Ta/TaOx/TiO2/Ti analog synaptic device. Sci. Rep. 5, 10150 (2015)

    Article  Google Scholar 

  110. H. Lv, X. Xu, P. Sun, H. Liu, Q. Luo, Q. Liu, W. Banerjee, H. Sun, S. Long, L. Li, M. Liu, Atomic view of filament growth in electrochemical memristive elements. Sci. Rep. 5, 13311 (2015)

    Article  Google Scholar 

  111. J.-Y. Chen, C.-W. Huang, C.-H. Chiu, Y.-T. Huang, W.-W. Wu, Switching kinetic of VCM-based memristor: Evolution and positioning of nanofilament. Adv. Mater. 27, 5028–5033 (2015)

    Article  Google Scholar 

  112. U. Celano, L. Goux, R. Dergaeve, A. Fantini, O. Richard, H. Bender, M. Jurczak, W. Vandervorst, Imaging the three-dimensional conductive channel filamentary-based oxide resistive switching memory. Nano Lett. 15, 7970–7975 (2015)

    Article  Google Scholar 

  113. S. La Barbera, D. Vuillaume, F. Alibart, Filamentary switching: Synaptic plasticity through device volatility. ACS Nano 9, 941–949 (2015)

    Article  Google Scholar 

  114. H. Nakamura, Y. Asai, Competitive effects of oxygen vacancy formation and interfacial oxidation on an ultra-thin Hf02 based resistive switching memory: Beyond filament and charge hopping models. Phys. Chem. Chem. Phys. 18, 8820–8826 (2016)

    Article  Google Scholar 

  115. Y.-C. Shih, T.H. Wang, J.-S. Huang, C.-C. Lai, Y.-J. Hong, Y.-L. Chueh, Role of oxygen and nitrogen in control of nonlinear resistive behaviors via filamentary and homogeneous switching in an oxynitride thin film memristor. RSC Adv. 6, 61221–61227 (2016)

    Article  Google Scholar 

  116. C. Li, B. Gao, Y. Yao, X.X. Guan, X. Shen, Y.G. Wang, P. Huang, L.F. Liu, X.Y. Liu, J.J. Li, C.Z. Gu, J.F. Kang, R.C. Yu, Direct observation of nanofilament evolution in switching processes in HfO2-based resistive random access memory by in situ TEM studies. Adv. Mater. 29, 1602976 (2017)

    Article  Google Scholar 

  117. C. Baeumer, R. Valenta, C. Schmitz, A. Locatelli, T.O. Mentes, S.P. Rogers, A. Sala, N. Raab, S. Nemsak, M. Shim, C.M. Schneider, S. Menzel, R. Waser, R. Dittman, Subfilamentary networks cause cycle-to cycle variability in memristive devices. ACS Nano 11, 6921–6929 (2017)

    Article  Google Scholar 

  118. Y. Lu, J.H. Lee, I.-W. Chen, Scalability of voltage-controlled filamentary and nanometallic resistance memory devices. Nanoscale 9, 12690–12697 (2017)

    Article  Google Scholar 

  119. Y. Sun, C. Song, J. Yin, X. Chen, Q. Wan, F. Zeng, F. Pan, Guiding the growth of a conductive filament by nanoindentation to improve resistive switching. ACS Appl. Mater. Interfaces 9, 34064–34070 (2017)

    Article  Google Scholar 

  120. J. Molina-Reyes, L. Hernandez-Martinez, Understanding the resistive switching phenomena of stacked Al/Al2O3/Al thin films from dynamics of conductive filaments. Complexity 2017, 8263904 (2017)

    Article  Google Scholar 

  121. Y. Xia, B. Sun, H. Wang, G. Zhou, X. Kan, Y. Zhang, Y. Zhao, Metal ion formed conductive filaments by redox process induced nonvolatile resistive switching memories in MoS2 film. Appl. Surf. Sci. 426, 812–816 (2017)

    Article  Google Scholar 

  122. I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, R. Waser, Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013)

    Article  Google Scholar 

  123. Z.Q. Hu, Q. Li, M.Y. Li, Q.W. Wang, Y.D. Zhu, X.L. Liu, X.Z. Zhao, Y. Liu, S.X. Dong, Ferroelectric memristor based on Pt/BiFeO3/Nb-doped SrTiO3 heterostructure. Appl. Phys. Lett. 102, 102901 (2013)

    Article  Google Scholar 

  124. E.Y. Tsymbal, A. Gruverman, Ferroelectric tunnel junctions beyond the barrier. Nat. Mater. 12, 602–604 (2013)

    Article  Google Scholar 

  125. Z.H. Wang, W.S. Zhao, W. Kang, A. Bouchenak-Khelladi, Y. Zhang, Y.G. Zhang, J.O. Klein, D. Ravelosona, C. Chappert, A physics-based compact model of ferroelectric tunnel junction for memory and logic design. J. Phys. D Appl. Phys. 47, 045001 (2014)

    Article  Google Scholar 

  126. S. Boyn, S. Girod, V. Garcia, S. Fusil, S. Xavier, C. Deranlot, H. Yamada, C. Carretero, E. Jacquet, M. Bibes, A. Barthelemy, J. Grollier, High-performance ferroelectric memory based on fully patterned tunnel junctions. Appl. Phys. Lett. 104, 52909 (2014)

    Article  Google Scholar 

  127. A.N. Morosovska, E.A. Eliseev, O.V. Varenyk, Y. Kim, E. Stelcov, A. Tselev, N.V. Morozovsky, S.V. Kalinin, Nonlinear space charge dynamics in mixed ionic-electronic conductors: Resistive switching and ferroelectric-like hysteresis of electromechanical response. J. Appl. Phys. 116, 066808 (2014)

    Article  Google Scholar 

  128. V. Garcia, M. Bibes, Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. 5, 4289 (2014)

    Article  Google Scholar 

  129. L. Kiu, A. Tsurumaki-Fukuchi, H. Yamada, A. Sawa, Ca doping dependence of a resistive switching characteristics in ferroelectric capacitors comprising Ca-doped BiFeO3. J. Appl. Phys. 118, 204104 (2015)

    Article  Google Scholar 

  130. P. Hou, J. Wang, X. Zhong, Y. Wu, A ferroelectric memristor based on the migration of vacancies. RSC Adv. 6, 54113–54118 (2016)

    Article  Google Scholar 

  131. Z.B. Yan, H.M. Yau, Z.W. Li, X.S. Gao, J.Y. Dai, J.-M. Liu, Self-electroforming and high-performance complementary memristor based on ferroelectric tunnel junctions. Appl. Phys. Lett. 109, 053506 (2016)

    Article  Google Scholar 

  132. C.M. Li, Rectification: Light-controlled resistive switching memory of multiferroic BiMnO3 nanowire arrays. Phys. Chem. Chem. Phys. 19, 10699–10700 (2017)

    Article  Google Scholar 

  133. N. Samardzic, B. Bajac, V.V. Srdic, G.M. Stojanovic, Conduction mechanisms in multiferroic multilayer BaTiO3/NiFe2O4/BaTIO3 memristors. J. Electron. Mater. 46, 5492–5496 (2017)

    Article  Google Scholar 

  134. R. Guo, Y.X. Zhou, L.J. Wu, Z.R. Wang, Z.S. Lim, X.B. Yan, W.N. Lin, H. Wang, S.H. Chen, T. Vankatesan, J. Wang, G.M. Chow, A. Gruverman, X.S. Miao, Y.M. Zhu, J.S. Chen, Control of synaptic plasticity learning of ferroelectric tunnel memristor by nanoscale interface engineering. ACS Appl. Mater. Interfaces 10, 12862–12869 (2018)

    Article  Google Scholar 

  135. Z.M. Gao, X.S. Huang, P. Li, L.F. Wang, L. Wei, W.F. Zhang, H.Z. Guo, Reversible resistance switching of 2D electron gas at LaAlO3/SrTiO3 heterointerface. Adv. Mater. Interfaces 5, 1701565 (2018)

    Article  Google Scholar 

  136. B.B. Tian, L. Liu, M.G. Yan, J.L. Wang, Q.B. Zhao, N. Zhong, P.H. Xiang, L. Sun, H. Peng, H. Shen, T. Lin, B. Dkhi, X.J. Meng, J.H. Chu, X.D. Tang, C.G. Duan, A robust artificial synapse based on organic ferroelectric polymer. Adv. Electronic Mater. 5, 1800600 (2019)

    Article  Google Scholar 

  137. F. Xue, X. He, J.R.D. Retamal, A.L. Han, J.W. Zhang, Z.X. Liu, J.K. Huang, W.J. Hu, V. Tung, R.H. He, L.J. Li, X.X. Zhang, Gate-tunable and multidirection-switchable memristive phenomena in a Van der Waals ferroelectric. Adv. Mater. 31, 1901300 (2019)

    Article  Google Scholar 

  138. A. Chanthbouala, V. Garcia, R.O. Cherifi, K. Bouzehouane, S. Fusil, X. Moya, S. Xavier, H. Yamada, C. Deranlot, N.D. Mathur, M. Bibes, A. Barthelemy, J. Grollier, A ferroelectric memristor. Nat. Mater. 11, 860–864 (2012)

    Article  Google Scholar 

  139. M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov, T. Bartsch, P. Meuffels, H. Kohlstedt, An electronic version of Pavlov’s dog. Adv. Funct. Mater. 22, 2744–2749 (2012)

    Article  Google Scholar 

  140. V. Erokhin, T. Berzina, P. Camorani, A. Smerieri, D. Vavoulis, J. Feng, M.P. Fontana, Material memristive device circuits with synaptic plasticity: Learning and memory. BioNanoScience 1, 24–30 (2011)

    Article  Google Scholar 

  141. P.R. Benjamin, K. Staras, G. Kemenes, A systems approach to the cellular analysis of associative learning in the pond snail Lymnaea. Learn. Mem. 7, 124–131 (2000)

    Article  Google Scholar 

  142. K. Staras, G. Kemenes, P.R. Benjamin, Pattern-generating role for motoneurons in rhythmically active neuronal network. J. Neurosci. 18, 3669–3688 (1998)

    Article  Google Scholar 

  143. V.A. Straub, P.R. Benjamin, Extrinsic modulation and motor pattern generation in a feeding network: A cellular study. J. Neurosci. 21, 1767–1778 (2001)

    Article  Google Scholar 

  144. M.S. Yeoman, A.W. Pieneman, G.P. Ferguson, A. Ter Maat, P.R. Benjamin, Modulatory role for the sterotonergic cerebral giant cells in the feeding system of the snail, Lymnaea. I. Fine wire recording in the intact animal and pharmacology. J. Neurosci. 72, 1357–1371 (1994)

    Google Scholar 

  145. D.V. Vavoulis, V.A. Straub, I. Kemenes, G. Kemenes, J. Feng, P.R. Benjamin, Dynamic control of a central pattern generator circuit: A computational model of the snail feeding network. Eur. J. Neurosci. 25, 2805–2818 (2007)

    Article  Google Scholar 

  146. E.S. Nikitin, D.V. Vavoulis, I. Kemenes, V. Marra, Z. Pirger, M. Michel, J. Feng, M. O’Shea, P.R. Benjamin, G. Kemenes, Persistent sodium current is a non-synaptic substrate for long-term associative memory. Curr. Biol. 18, 1221–1226 (2008)

    Article  Google Scholar 

  147. D.V. Vavoulis, E.S. Nikitin, I. Kemenes, V. Mara, J. Feng, P.R. Benjamin, G. Kemenes, Balanced plasticity and stability of the electrical properties of a molluscan modulatory interneuron after classic conditioning: A computational study. Front. Behav. Neurosci. 4, 19 (2010)

    Google Scholar 

  148. F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain. Physiol. Rev. 65, 386–408 (1958)

    Google Scholar 

  149. M.M. Taylor, The problem of stimulus sstructure in the behavioural theory of perceptron. S. Afr. J. Psychol. 3, 23–45 (1973)

    Google Scholar 

  150. W.B. Levy, O. Steward, Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8, 791–797 (1983)

    Article  Google Scholar 

  151. Y. Dan, M.M. Poo, Hebbian depression of isolated neuromuscular synapses in vitro. Science 256, 1570–1573 (1992)

    Article  Google Scholar 

  152. D. Debanne, B. Gahwiler, S. Thompson, Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro. Proc. Natl. Acad. Sci. U. S. A. 91, 1148–1152 (1994)

    Article  Google Scholar 

  153. H. Markram, J. Lubke, M. Frotscher, B. Sakmann, Regulation of synaptic efficacy by coincidence of postsynaptic Aps and EPSPs. Science 275, 213–215 (1997)

    Article  Google Scholar 

  154. G.Q. Bi, M.M. Poo, Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)

    Article  Google Scholar 

  155. B.S. Liu, Z.Q. You, X.R. Li, J.S. Kuang, Z. Qin, Comparator and half adder design using complimentary resistive switches crossbar. IEICE Electron. Express 10, 20130369 (2013)

    Article  Google Scholar 

  156. X. Zhu, Y.H. Tang, C.Q. Wu, J.J. Wu, X. Yi, Impact of multiplexed reading scheme on nanocrossbar memristor memory’s scalabolity. Chinese Phys. B 23, 028501 (2014)

    Article  Google Scholar 

  157. I. Vourkas, G.C. Sirakoulis, Nano-crossbar memories comprising parallel/serial complementary memristive switches. BioNanoScience 4, 166–179 (2014)

    Article  Google Scholar 

  158. L. Chen, C.D. Li, T.W. Huang, Y.R. Chen, X. Wang, Memristor crossbar-based unsupervised image learning. Neural Comput. Appl. 25, 393–400 (2014)

    Article  Google Scholar 

  159. M. Hu, H. Li, Y. Chen, Q. Wu, G.S. Rose, R.W. Linderman, Memristor crossbar-based neuromorphic computing system: A case study. IEEE Trans. Neural Netw. Learning Syst. 25, 1864–1878 (2014)

    Article  Google Scholar 

  160. M.A. Zidan, H. Omran, A. Sultan, H.A.H. Fahmy, K.N. Salama, Compensated readout for high-density MOS-gated memristor crossbar array. IEEE Trans. Nanotechnol. 14, 3–6 (2015)

    Article  Google Scholar 

  161. M. Wang, X. Lian, Y. Pan, J. Zeng, C. Wang, E. Liu, B. Wang, J.J. Yang, F. Miao, D. Xing, A selector device based on graphene-oxide heterostructures for memristor crossbar applications. Appl. Phys. A 120, 403–407 (2015)

    Article  Google Scholar 

  162. C. Yakopcic, R. Hasan, T.M. Taha, Hybrid crossbar architecture for a memristor based cache. Microelectronic J. 46, 1020–1032 (2015)

    Article  Google Scholar 

  163. Q.F. Xia, W. Wu, G.Y. Jung, S. Pi, P. Lin, Y. Chen, X.M. Li, Z.Y. Li, S.Y. Wang, R.S. Williams, Nanoimprint lithography enables memristor crossbar and hybrid circuits. Appl Phys. A 121, 467–479 (2015)

    Article  Google Scholar 

  164. S. Agarwal, T.T. Quach, Q. Parekh, A.H. Hsia, E.P. DeBenedictis, C.D. James, M.J. Marinella, J.B. Aimone, Energy scaling advantages of resistive memory crossbar based computation and its application to sparse coding. Front. Neurosci. 9, 484 (2016)

    Article  Google Scholar 

  165. B.J. Choi, J. Zhang, K. Norris, G. Gibson, K.M. Kim, W. Jackson, M.-X. Zhang, Z. Li, J.J. Yang, R.S. Williams, Alternative architectures toward reliable memristive crossbar memories. Adv. Mater. 28, 356–362 (2016)

    Article  Google Scholar 

  166. M.A. Zidan, H. Omran, R. Naous, A. Sultan, H.A.H. Fahmy, W.D. Lu, K.N. Salama, Single-readout high-density memristor crossbar. Sci. Rep. 6, 18863 (2016)

    Article  Google Scholar 

  167. W. Xu, Y. Lee, S.-Y. Min, C. Park, T.-W. Lee, Simple, inexpensive, and rapid approach to fabricate cross-shaped memristors using an inorganic-nanowire-digital-alignment technique and a one-step reduction process. Adv. Mater. 28, 527–532 (2016)

    Article  Google Scholar 

  168. Y. Li, Y.-Z. Zhou, L. Xu, K. Lu, Z.-R. Wang, N. Duan, L. Jiang, L. Cheng, T.-C. Chang, K.-C. Chang, H.-J. Sun, K.-H. Xue, X.-S. Miao, Realization of functional complete stateful Boolean logic memristive crossbar. ACS Appl. Mater. Interfaces 8, 34559–34567 (2016)

    Article  Google Scholar 

  169. B. Chakrabarti, M.A. Lastras-Montano, G. Adam, M. Preziozo, B. Hoskins, K.-T. Cheng, D.B. Strukov, A multi-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit. Sci. Rep. 7, 42429 (2017)

    Article  Google Scholar 

  170. C. Li, L.L. Han, H. Jiang, M.H. Jang, P. Lin, Q. Wu, M. Barnell, J.J. Yang, H.L.L. Xin, Q.F. Xia, Three-dimensional crossbar arrays of self-rectifying Si/SiO2/Si memristors. Nat. Commun. 8, 15666 (2017)

    Article  Google Scholar 

  171. V.A. Demin, V. Erokhin, A.V. Emelyanov, S. Battistoni, G. Baldi, S. Iannotta, P.K. Kashkarov, M.V. Kovalchuk, Hardware elementary perceptron based on polyaniline memristive device. Org. Electronics 25, 16–20 (2015)

    Article  Google Scholar 

  172. O. Kayehei, S.J. Lee, K.R. Cho, S. Al-Sarawi, D. Abbot, A pulse-frequency modulation sensor using memristive-based inhibitory interconnections. J. Nanosci. Nanotechnol. 13, 3505–3510 (2013)

    Article  Google Scholar 

  173. P. Puppo, M. Di Ventra, G. De Micheli, S. Carrara, Memristive sensors for pH measure in dry conditions. Surf. Sci. 624, 76–79 (2014)

    Article  Google Scholar 

  174. F. Puppo, A. Dave, M.A. Doucey, D. Sacchetto, C. Baj-Rossi, Y. Leblebici, G. De Micheli, S. Carrara, Memristive biosensors under varying humidity conditions. IEEE Trans. Nanobioscience 13, 19–30 (2014)

    Article  Google Scholar 

  175. I. Tzouvadaki, F. Puppo, M.A. Doucey, G. De Micheli, S. Carrara, Computational study on the electrical behavior of silicon nanowire memristive biosensors. IEEE Sensors J. 15, 6208–6217 (2015)

    Article  Google Scholar 

  176. I. Tzouvadaki, C. Parrozzani, A. Gallotta, G. De Michele, S. Carrara, Memristive biosensors for PSA-IgM detection. BioNanoScience 5, 189–195 (2015)

    Article  Google Scholar 

  177. I. Tzouvadaki, N. Madaboosi, I. Taurino, V. Chu, J.P. Conde, G. De Micheli, S. Carrara, Study on the bio-functionalization of memristive nanowires for optimum memristive biosensors. J. Mater. Chem. B 4, 2153–2162 (2016)

    Article  Google Scholar 

  178. I. Tzouvadaki, P. Jolly, X. Lu, S. Ingebrandt, G. de Micheli, S. Carrara, Label-free ultrasensitive memristive aptasensor. Nano Lett. 16, 4472–4476 (2016)

    Article  Google Scholar 

  179. B. Ibarlucea, T.F. Akbar, K. Kim, T. Rim, C.K. Baek, A. Ascoli, R. Tetzlaff, L. Baraban, G. Cuniberti, Ultrasensitive detection of Ebola matrix protein in a memristor mode. Nano Res. 11, 1057–1068 (2018)

    Article  Google Scholar 

  180. A. Adeyemo, J. Mathew, A. Jabir, C. Di Natale, E. Martinelli, M. Ottavi, Efficient sensing approaches for high-density memristor sensor array. J. Comput. Electron. 17, 1285–1296 (2018)

    Article  Google Scholar 

  181. K.D. Cantley, A. Subramaniam, H.J. Stiegler, R.A. Chapman, E.M. Vogel, Hebbian learning in spiking neural networks with nanocrystalline silicon TFTs and memristive synapses. IEEE Trans. Nanotechnol. 10, 1066–1073 (2011)

    Article  Google Scholar 

  182. J.-S. Huang, W.-C. Yen, S.-M. Lin, C.-Y. Lee, J. Wu, Z.M. Wang, T.-S. Chin, Y.-L. Chueh, Amorphous zinc-doped silicon oxide (SZO) resistive switching memory: Manipulated bias control from selector to memristor. J. Mater. Chem. C 2, 4401–4405 (2014)

    Article  Google Scholar 

  183. A.N. Mikhailov, A.I. Belov, D.V. Guseinov, D.S. Korolev, I.N. Antonov, D.V. Efimovykh, S.V. Tikhov, A.P. Kasatkin, O.N. Gorshkov, D.I. Tetelbaum, A.I. Bobrov, N.V. Malekhonova, D.A. Pavlov, E.G. Gryaznov, A.P. Yatmanov, Bipolar resistive switching and charge transport in silicon oxide memristor. Mater. Sci. Engineer. B 194, 48–54 (2015)

    Article  Google Scholar 

  184. L. Martinez, D. Becerra, V. Agarwal, Dual layer ZnO configuration over nanostructured porous silicon substrate for enhanced memristive switching. Superlattices Microstruct. 100, 89–96 (2016)

    Article  Google Scholar 

  185. V. Erokhin, M.P. Fontana, Thin film electrochemical memristive systems for bio-inspired computation. J. Comput. Theor. Nanosci. 8, 313–330 (2010)

    Article  Google Scholar 

  186. S. Kim, H.Y. Jeong, S.K. Kim, S.Y. Choi, K.J. Lee, Flexible memristive memory array on plastic substrates. Nano Lett. 11, 5438–5442 (2011)

    Article  Google Scholar 

  187. S.M. Yoon, S. Yang, S.W. Jung, C.W. Byun, M.K. Ryu, W.S. Cheong, B. Kim, H. Oh, S.H. Park, C.S. Hwang, S.Y. Kang, H.J. Ryu, B.G. Yu, Polymeric ferroelectric oxide semiconductor-based fully transparent memristor cell. Appl. Phys. A 102, 983–990 (2011)

    Article  Google Scholar 

  188. M.K. Hota, M.K. Bera, B. Kundu, S.C. Kundu, C.K. Maiti, A natural silk fibroin protein-based transparent bio-memristor. Adv. Funct. Mater. 22, 4493–4499 (2012)

    Article  Google Scholar 

  189. M.N. Awais, K.H. Choi, Resistive switching and current conduction mechanism in full organic resistive switch with the sandwiched structure of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)/poly(4-vinylphenol)/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate). Electron. Mater. Lett. 10, 601–606 (2014)

    Article  Google Scholar 

  190. Y. Wang, X. Yan, R. Dong, Organic memristive devices based on silver nanoparticles and DNA. Org. Electron. 15, 3476–3481 (2014)

    Article  Google Scholar 

  191. S. Qin, R. Dong, X. Yan, Q. Du, A reproducible write-(read)n-erese and multilevel bio-memristor based on DNA molecule. Org. Electronics 22, 147–153 (2015)

    Article  Google Scholar 

  192. B. Sun, L. Wei, H. Li, X. Jia, J. Wu, P. Chen, The DNA strand assisted conductive filament mechanism for improved resistive switching. J. Mater. Chem. B 3, 12149–12155 (2015)

    Article  Google Scholar 

  193. Y.-C. Chen, H.-C. Yu, C.-Y. Huang, W.-L. Chung, S.-L. Wu, Y.-K. Su, Nonvolatile bio-memristor fabricated with egg albumen film. Sci. Rep. 5, 10022 (2015)

    Article  Google Scholar 

  194. N.R. Hosseini, J.-S. Lee, Resistive switching memory based on bioinspired natural solid polymer electrolytes. ACS Nano 9, 419–426 (2015)

    Article  Google Scholar 

  195. N. Raeis-Hosseini, J.-S. Lee, Controlling the resistive switching behavior in starch-based flexible biomemristors. ACS Appl. Mater. Interfaces 8, 7326–7332 (2016)

    Article  Google Scholar 

  196. Y. Cai, J. Tan, Y.F. Liu, M. Lin, R. Huang, A flexible organic resistance memory device for wearable biomedical applications. Nanotechnology 27, 275206 (2016)

    Article  Google Scholar 

  197. S. Song, J. Jang, Y. Ji, S. Park, T.-W. Kim, Y. Song, M.-H. Yoon, H.C. Ko, G.-Y. Jung, T. Lee, Twistable nonvolatile organic resistive memory devices. Org. Electronics 14, 2087–2092 (2013)

    Article  Google Scholar 

  198. D. Son, S. Qiao, R. Ghaffari, Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9, 397–404 (2014)

    Article  Google Scholar 

  199. R. Wang, Y. Liu, B. Bai, N. Guo, J. Guo, X. Wang, M. Liu, G. Zhang, B. Zhang, C. Xue, Wide-frequency-bandwidth whisker-inspired MEMS vector hydrophone encapsulated with parylene. J. Phys. D Appl. Phys. 49, 07LT02 (2016)

    Article  Google Scholar 

  200. B.J. Kim, C.A. Gutierrez, E. Meng, Parylene-based electrochemical-MEMS force sensor for studies of intracortical probe insertion mechanisms. J. Microelectromech. Syst 24, 1534–1544 (2015)

    Article  Google Scholar 

  201. A.A. Minnekhanov, A.V. Emelyanov, D.A. Lapkin, K.E. Nikiruy, B.S. Shvetsov, A.A. Nesmelov, V.V. Rylkov, V.A. Demin, V.V. Erokhin, Parylene based memristive devices with multilevel resistive switching for neuromorphic applications. Sci. Rep. 9, 10800 (2019)

    Article  Google Scholar 

  202. S. Saighi, C.M. Mayr, T. Serrano-Gotarredona, H. Schmidt, G. Lecerf, J. Tomas, J. Grollier, S. Boyn, A.F. Vincent, D. Querlioz, S. La Barbera, F. Alibard, D. Vuillaume, O. Bichler, C. Gamrat, B. Linares-Barranco, Plasticity in memristive devices for spiking neural networks. Front. Neurosci. 9, 51 (2015)

    Article  Google Scholar 

  203. I.P. Pavlov, Experimental psychology and psychopathology in animals, in Lectures on Conditioned Reflexes, vol. 1, (International Publishers, New York, 1928), pp. 47–60

    Google Scholar 

  204. P. Dayan, S. Kakade, P.R. Montague, Learning and selective attention. Nat. Neurosci. 3, 1218–1223 (2000)

    Article  Google Scholar 

  205. Z. Wang, M. Rao, J.-W. Han, J. Zhang, P. Lin, Y. Li, C. Li, W. Song, S. Asapu, R. Midya, Y. Zhuo, H. Jiang, J.H. Yoon, N.K. Upadhyay, S. Joshi, M. Hu, J.P. Strachan, M. Barnell, Q. Wu, H. Wu, Q. Qiu, R.S. Williams, Q. Xia, J.J. Yang, Capacitive neural network with neuro-transistors. Nat. Commun. 9, 3208 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erokhin, V. (2022). Memristive Devices and Circuits. In: Fundamentals of Organic Neuromorphic Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-79492-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79492-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79491-0

  • Online ISBN: 978-3-030-79492-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics