Skip to main content

Bit-Complexity of Solving Systems of Linear Evolutionary Partial Differential Equations

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2021)

Abstract

Finite Elements are a common method for solving differential equations via discretization. Under suitable hypotheses, the solution \(\mathbf {u}=\mathbf {u}(t,\vec x)\) of a well-posed initial/boundary-value problem for a linear evolutionary system of PDEs is approximated up to absolute error \(1/2^n\) by repeatedly (exponentially often in n) multiplying a matrix \(\mathbf {A}_n\) to the vector from the previous time step, starting with the initial condition \(\mathbf {u}(0)\), approximated by the spatial grid vector \(\mathbf {u}(0)_n\). The dimension of the matrix \(A_n\) is exponential in n, which is the number of the bits of the output.

We investigate the bit-cost of computing exponential powers and inner products \(\mathbf {A}_n^K\cdot \mathbf {u}(0)_n\), \(K\sim 2^{\mathcal {O}(n)}\), of matrices and vectors of exponential dimension for various classes of such difference schemes \(\mathbf {A}_n\). Non-uniformly fixing any polynomial-time computable initial condition and focusing on single but arbitrary entries (instead of the entire vector/matrix) allows to improve naïve exponential sequential runtime EXP: Closer inspection shows that, given any time \(0\le t\le 1\) and space \(\vec x\in [0;1]^d\), the computational cost of evaluating the solution \(\mathbf {u}(t,\vec x)\) corresponds to the discrete class PSPACE.

Many partial differential equations, including the Heat Equation, admit difference schemes that are (tensor products of constantly many) circulant matrices of constant bandwidth; and for these we show exponential matrix powering, and PDE solution computable in #P. This is achieved by calculating individual coefficients of the matrix’ multivariate companion polynomial’s powers using Cauchy’s Differentiation Theorem; and shown optimal for the Heat Equation. Exponentially powering twoband circulant matrices is established even feasible in P; and under additional conditions, also the solution to certain linear PDEs becomes computable in P.

Supported by the National Research Foundation of Korea (grant 2017R1E1A1A03071032) and by the International Research & Development Program of the Korean Ministry of Science and ICT (grant 2016K1A3A7A03950702) and by the NRF Brain Pool program (grant 2019H1D3A2A02102240). GP was supported by NSF grants CCF-1564132, CCF-1563942, DMS-1853482, DMS-1853650, and DMS-1760448, by PSC-CUNY grants #69827-0047 and #60098-0048. We thank Lina Bondar’ for a helpful discussion on different versions of the Sobolev Embedding Theorem (Example 2b)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Definitions of the real-valued counterparts of the complexity classes are given in Subsect. 1.3; for simplicity we use same notation as for the “discrete” case for them.

  2. 2.

    The reader may forgive us for identifying decision and function complexity classes.

References

  1. Bournez, O., Graça, D.S., Pouly, A.: Solving analytic differential equations in polynomial time over unbounded domains. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 170–181. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22993-0_18

    Chapter  Google Scholar 

  2. Braverman, M., Cook, S.: Computing over the reals: foundations for scientific computing. Not. AMS 53(3), 318–329 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Evans, L.: Partial differential equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society (1998)

    Google Scholar 

  4. Godunov, S., Ryaben’kii, V.: Difference schemes: an introduction to the underlying theory. Studies in Mathematics and Its Applications, vol. 19. North-Holland (1987)

    Google Scholar 

  5. Gordienko, V.: Hyperbolic systems equivalent to the wave equation. Siberian Math. J. 50, 14–21 (2009)

    Article  MathSciNet  Google Scholar 

  6. Hemachandra, L.A., Ogiwara, M.: Is #P closed under subtraction? Current Trends in Theoretical Computer Science, pp. 523–536 (1993). https://doi.org/10.1142/9789812794499_0039

  7. Epstein, M.: Standing waves and separation of variables. In: Partial Differential Equations. ME, pp. 183–208. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55212-5_9

    Chapter  Google Scholar 

  8. Kawamura, A.: Lipschitz continuous ordinary differential equations are polynomial-space complete. Comput. Complex. 19(2), 305–332 (2010)

    Article  MathSciNet  Google Scholar 

  9. Kawamura, A., Cook, S.: Complexity theory for operators in analysis. ACM Trans. Comput. Theor. 4(2), 5:1–5:24 (2012)

    Google Scholar 

  10. Kawamura, A., Ota, H., Rösnick, C., Ziegler, M.: Computational complexity of smooth differential equations. Logical Methods Comput. Sci. 10(1:6), 15 (2014). https://doi.org/10.2168/LMCS-10(1:6)2014

  11. Kawamura, A., Steinberg, F., Thies, H.: Parameterized complexity for uniform operators on multidimensional analytic functions and ODE solving. In: Proceedings 25th International Workshop on Logic, Language, Information, and Computation (WOLLIC), pp. 223–236 (2018). https://doi.org/10.1007/978-3-662-57669-4_13

  12. Kawamura, A., Steinberg, F., Ziegler, M.: Complexity theory of (functions on) compact metric spaces. In: Proceedings 31st Annual Symposium on Logic in Computer Science, LICS, pp. 837–846. ACM (2016). https://doi.org/10.1145/2933575.2935311

  13. Kawamura, A., Steinberg, F., Ziegler, M.: On the computational complexity of the Dirichlet problem for Poisson’s equation. Math. Struct. Comput. Sci. 27(8), 1437–1465 (2017). https://doi.org/10.1017/S096012951600013X

  14. Kawamura, A., Thies, H., Ziegler, M.: Average-case polynomial-time computability of hamiltonian dynamics. In: Potapov, I., Spirakis, P.G., Worrell, J. (eds.) 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27–31, 2018, Liverpool, UK. LIPIcs, vol. 117, pp. 30:1–30:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

    Google Scholar 

  15. Ko, K.I.: Complexity theory of real functions. Progress in Theoretical Computer Science, Birkhäuser, Boston (1991)

    Google Scholar 

  16. Kolmogorov, A.N., Tikhomirov, V.M.: E-entropy and E-capacity of sets in functional spaces. In: Shiryayev, A. (ed.) Selected Works of A.N. Kolmogorov, vol. III, pp. 86–170. Springer, Dordrecht (1993). originally, pp. 3–86 in Uspekhi Mat. Nauk, vol. 14:2 (1959)

    Google Scholar 

  17. Koswara, I., Selivanova, S., Ziegler, M.: Computational complexity of real powering and improved solving linear differential equations. In: van Bevern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp. 215–227. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19955-5_19

    Chapter  MATH  Google Scholar 

  18. Kra, I., Simanca, S.R.: On circulant matrices. Not. AMS 59(3), 368–377 (2012). https://doi.org/10.1090/noti804

  19. LeVeque, R.J. (ed.): Finite Difference Methods for Differential Equations. SIAM, Philadelphia (2007)

    Google Scholar 

  20. Liao, H.l., Sun, Z.Z.: Maximum norm error estimates of efficient difference schemes for second-order wave equations. J. Comput. Appl. Math. 235(8), 2217–2233 (2011). https://doi.org/10.1016/j.cam.2010.10.019

  21. Neff, C.A.: Specified precision polynomial root isolation is in NC. J. Comput. Syst. Sci. 48(3), 429–463 (1994). https://doi.org/10.1016/S0022-0000(05)80061--3

  22. Pan, V., Reif, J.: The bit-complexity of discrete solutions of partial differential equations: compact multigrid. Comput. Math. Appl. 20, 9–16 (1990)

    Article  MathSciNet  Google Scholar 

  23. Park, S.: Reliable degenerate matrix diagonalization. Technical report CS-TR-2018-415, KAIST (2018)

    Google Scholar 

  24. Park, S., et al.: Foundation of computer (algebra) analysis systems: Semantics, logic, programming, verification (2020). https://arxiv.org/abs/1608.05787

  25. Pour-El, M.B., Richards, J.I.: The wave equation with computable inital data such that its unique solution is not computable. Adv. Math. 39, 215–239 (1981)

    Article  Google Scholar 

  26. Schaefer, T.J.: The complexity of satisfiability problems. In: Lipton, R.J., Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.) Proceedings of the 10th Annual ACM Symposium on Theory of Computing, May 1–3, 1978, San Diego, California, USA, pp. 216–226. ACM (1978)

    Google Scholar 

  27. Selivanova, S., Selivanov, V.L.: Computing solution operators of boundary-value problems for some linear hyperbolic systems of PDEs. Logical Methods in Computer Science, vol. 13, no. 4 (2017). https://doi.org/10.23638/LMCS-13(4:13)2017

  28. Selivanova, S.V., Selivanov, V.L.: Bit complexity of computing solutions for symmetric hyperbolic systems of PDEs (Extended Abstract). In: Manea, F., Miller, R.G., Nowotka, D. (eds.) CiE 2018. LNCS, vol. 10936, pp. 376–385. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94418-0_38

    Chapter  MATH  Google Scholar 

  29. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. SIAM, Thailand (2004)

    Google Scholar 

  30. Sun, S.-M., Zhong, N., Ziegler, M.: Computability of the solutions to navier-stokes equations via effective approximation. In: Du, D.-Z., Wang, J. (eds.) Complexity and Approximation. LNCS, vol. 12000, pp. 80–112. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41672-0_7

    Chapter  MATH  Google Scholar 

  31. Weihrauch, K.: 9. other approaches to computable analysis. In: Computable Analysis. TTCSAES, pp. 249–268. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-56999-9_9

    Chapter  MATH  Google Scholar 

  32. Weihrauch, K.: Computational complexity on computable metric spaces. Math. Logic Q. 49(1), 3–21 (2003)

    Article  MathSciNet  Google Scholar 

  33. Weihrauch, K., Zhong, N.: Is wave propagation computable or can wave computers beat the Turing machine? Proc. London Math. Soc. 85(2), 312–332 (2002)

    Article  MathSciNet  Google Scholar 

  34. Ziegler, M., Brattka, V.: A computable spectral theorem. In: Blanck, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 378–388. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45335-0_23

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Selivanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koswara, I., Pogudin, G., Selivanova, S., Ziegler, M. (2021). Bit-Complexity of Solving Systems of Linear Evolutionary Partial Differential Equations. In: Santhanam, R., Musatov, D. (eds) Computer Science – Theory and Applications. CSR 2021. Lecture Notes in Computer Science(), vol 12730. Springer, Cham. https://doi.org/10.1007/978-3-030-79416-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79416-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79415-6

  • Online ISBN: 978-3-030-79416-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics